Search This Blog

Saturday, August 23, 2025

Medicine

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Medicine 

Medicine is the science and practice of caring for patients, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care practices evolved to maintain and restore health by the prevention and treatment of illness. Contemporary medicine applies biomedical sciences, biomedical research, genetics, and medical technology to diagnose, treat, and prevent injury and disease, typically through pharmaceuticals or surgery, but also through therapies as diverse as psychotherapy, external splints and traction, medical devices, biologics, and ionizing radiation, amongst others.

Medicine has been practiced since prehistoric times, and for most of this time it was an art (an area of creativity and skill), frequently having connections to the religious and philosophical beliefs of local culture. For example, a medicine man would apply herbs and say prayers for healing, or an ancient philosopher and physician would apply bloodletting according to the theories of humorism. In recent centuries, since the advent of modern science, most medicine has become a combination of art and science (both basic and applied, under the umbrella of medical science). For example, while stitching technique for sutures is an art learned through practice, knowledge of what happens at the cellular and molecular level in the tissues being stitched arises through science.

Prescientific forms of medicine, now known as traditional medicine or folk medicine, remain commonly used in the absence of scientific medicine and are thus called alternative medicine. Alternative treatments outside of scientific medicine with ethical, safety and efficacy concerns are termed quackery.

Etymology

Medicine (UK: /ˈmɛdsɪn/ , US: /ˈmɛdɪsɪn/ ) is the science and practice of the diagnosis, prognosis, treatment, and prevention of disease. The word "medicine" is derived from Latin medicus, meaning "a physician". The word "physic" itself, from which "physician" derives, was the old word for what is now called a medicine, and also the field of medicine.

Clinical practice

Oil painting of medicine in the age of colonialism
The Doctor by Sir Luke Fildes (1891)
Elizabeth Blackwell, the first female physician in the United States graduated from SUNY Upstate (1847)

Medical availability and clinical practice vary across the world due to regional differences in culture and technology. Modern scientific medicine is highly developed in the Western world, while in developing countries such as parts of Africa or Asia, the population may rely more heavily on traditional medicine with limited evidence and efficacy and no required formal training for practitioners.

In the developed world, evidence-based medicine is not universally used in clinical practice; for example, a 2007 survey of literature reviews found that about 49% of the interventions lacked sufficient evidence to support either benefit or harm.

In modern clinical practice, physicians and physician assistants personally assess patients to diagnose, prognose, treat, and prevent disease using clinical judgment. The doctor-patient relationship typically begins with an interaction with an examination of the patient's medical history and medical record, followed by a medical interview and a physical examination. Basic diagnostic medical devices (e.g., stethoscope, tongue depressor) are typically used. After examining for signs and interviewing for symptoms, the doctor may order medical tests (e.g., blood tests), take a biopsy, or prescribe pharmaceutical drugs or other therapies. Differential diagnosis methods help to rule out conditions based on the information provided. During the encounter, properly informing the patient of all relevant facts is an important part of the relationship and the development of trust. The medical encounter is then documented in the medical record, which is a legal document in many jurisdictions. Follow-ups may be shorter but follow the same general procedure, and specialists follow a similar process. The diagnosis and treatment may take only a few minutes or a few weeks, depending on the complexity of the issue.

The components of the medical interview and encounter are:

  • Chief complaint (CC): the reason for the current medical visit. These are the symptoms. They are in the patient's own words and are recorded along with the duration of each one. Also called chief concern or presenting complaint.
  • Current activity: occupation, hobbies, what the patient actually does.
  • Family history (FH): listing of diseases in the family that may impact the patient. A family tree is sometimes used.
  • History of present illness (HPI): the chronological order of events of symptoms and further clarification of each symptom. Distinguishable from history of previous illness, often called past medical history (PMH). Medical history comprises HPI and PMH.
  • Medications (Rx): what drugs the patient takes including prescribed, over-the-counter, and home remedies, as well as alternative and herbal medicines or remedies. Allergies are also recorded.
  • Past medical history (PMH/PMHx): concurrent medical problems, past hospitalizations and operations, injuries, past infectious diseases or vaccinations, history of known allergies.
  • Review of systems (ROS) or systems inquiry: a set of additional questions to ask, which may be missed on HPI: a general enquiry (have you noticed any weight loss, change in sleep quality, fevers, lumps and bumps? etc.), followed by questions on the body's main organ systems (heart, lungs, digestive tract, urinary tract, etc.).
  • Social history (SH): birthplace, residences, marital history, social and economic status, habits (including diet, medications, tobacco, alcohol).

The physical examination is the examination of the patient for medical signs of disease that are objective and observable, in contrast to symptoms that are volunteered by the patient and are not necessarily objectively observable. The healthcare provider uses sight, hearing, touch, and sometimes smell (e.g., in infection, uremia, diabetic ketoacidosis). Four actions are the basis of physical examination: inspection, palpation (feel), percussion (tap to determine resonance characteristics), and auscultation (listen), generally in that order, although auscultation occurs prior to percussion and palpation for abdominal assessments.

The clinical examination involves the study of:

It is to likely focus on areas of interest highlighted in the medical history and may not include everything listed above.

The treatment plan may include ordering additional medical laboratory tests and medical imaging studies, starting therapy, referral to a specialist, or watchful observation. A follow-up may be advised. Depending upon the health insurance plan and the managed care system, various forms of "utilization review", such as prior authorization of tests, may place barriers on accessing expensive services.

The medical decision-making (MDM) process includes the analysis and synthesis of all the above data to come up with a list of possible diagnoses (the differential diagnoses), along with an idea of what needs to be done to obtain a definitive diagnosis that would explain the patient's problem.

On subsequent visits, the process may be repeated in an abbreviated manner to obtain any new history, symptoms, physical findings, lab or imaging results, or specialist consultations.

Institutions

Color fresco of an ancient hospital setting
The Hospital of Santa Maria della Scala, fresco by Domenico di Bartolo, 1441–1442

Contemporary medicine is, in general, conducted within health care systems. Legal, credentialing, and financing frameworks are established by individual governments, augmented on occasion by international organizations, such as churches. The characteristics of any given health care system have a significant impact on the way medical care is provided.

From ancient times, Christian emphasis on practical charity gave rise to the development of systematic nursing and hospitals, and the Catholic Church today remains the largest non-government provider of medical services in the world. Advanced industrial countries (with the exception of the United States) and many developing countries provide medical services through a system of universal health care that aims to guarantee care for all through a single-payer health care system or compulsory private or cooperative health insurance. This is intended to ensure that the entire population has access to medical care on the basis of need rather than ability to pay. Delivery may be via private medical practices, state-owned hospitals and clinics, or charities, most commonly a combination of all three.

Most tribal societies provide no guarantee of healthcare for the population as a whole. In such societies, healthcare is available to those who can afford to pay for it, have self-insured it (either directly or as part of an employment contract), or may be covered by care financed directly by the government or tribe.

collection of glass bottles of different sizes
Modern drug ampoules

Transparency of information is another factor defining a delivery system. Access to information on conditions, treatments, quality, and pricing greatly affects the choice of patients/consumers and, therefore, the incentives of medical professionals. While the US healthcare system has come under fire for its lack of openness, new legislation may encourage greater openness. There is a perceived tension between the need for transparency on the one hand and such issues as patient confidentiality and the possible exploitation of information for commercial gain on the other.

The health professionals who provide care in medicine comprise multiple professions, such as medics, nurses, physiotherapists, and psychologists. These professions will have their own ethical standards, professional education, and bodies. The medical profession has been conceptualized from a sociological perspective.

Delivery

Provision of medical care is classified into primary, secondary, and tertiary care categories.

photograph of three nurses
Nurses in Kokopo, East New Britain, Papua New Guinea

Primary care medical services are provided by physicians, physician assistants, nurse practitioners, or other health professionals who have first contact with a patient seeking medical treatment or care. These occur in physician offices, medical practices, clinics, nursing homes, schools, patients' homes, and in other places that are typically geographically close to where patients live, work or study. About 90% of medical visits can be satisfactorily and effectively dealt with by primary care provider(s). Primary care visits might include treatment of minor, acute or chronic illnesses, preventive care, and health education. Primary care is directed to the health of entire populations and thus providers care for patients of all ages and sexes.

Secondary care medical services are provided by medical specialists in their offices, practices or clinics, or at local community hospitals, to patients referred by the primary care provider who first diagnosed or treated the patient. 'Referrals' are made of those patients who required the particular expertise of, or specific procedures performed by, specialists. Secondary care services include both ambulatory care and inpatient services, emergency departments, some intensive care medicine, some surgeries and related services, physical therapy, labor and delivery, endoscopy units, diagnostic laboratory and medical imaging services, hospice centers, and others depending on the health services systems within which the care is being delivered. Some primary care providers may also take care of hospitalized patients and deliver babies in a secondary care setting.

Tertiary care medical services are provided by specialist teams of providers in larger, more specialised hospitals or regional medical centers, which are equipped with diagnostic and treatment facilities not typically available at local (often smaller) hospitals. This allows for the treatment and care of patients with more complex or urgent or serious medical conditions, which in turn may require more expertise (including multi-disciplinary teams) and resources (facilities, staff, bed days) to effectively treat. Tertiary care may include that provided at burn treatment or trauma centers, advanced neonatology unit services, organ transplants, high-risk pregnancy and child delivery, radiation oncology, and very many other forms of specialist and intensive care.

Modern medical care also depends on the keeping and use of information, including about a particular patient—still kept in many health care settings on paper 'medical records', but increasingly nowadays by electronic means.

In low-income countries, modern healthcare is often too expensive for the average person. International healthcare policy researchers have advocated that "user fees" be removed in these areas to ensure access; however, even with removal of patient fee obligations, significant costs and barriers remain for the poor and the sick in accessing sufficient care.

Separation of prescribing and dispensing is a practice in medicine and pharmacy in which the physician who provides a medical prescription is different from the pharmacist who provides the prescription drug to the patient. In the Western world there are centuries of tradition and practice differentiating pharmacists from physicians, and two quite separate professions developed. In many Asian countries, on the other hand, it is traditional for physicians to also deliver drugs directly to patients, at least in some cases. This model is also being used increasingly in the west: especially for simply-treated conditions (eg, those needing general antibiotics), in remote locations, with vulnerable communities of patients, and in small or integrated medical facilities.

Branches

Drawing by Marguerite Martyn (1918) of a visiting nurse in St. Louis, Missouri, with medicine and babies

Working together as an interdisciplinary team, many highly trained health professionals besides medical practitioners are involved in the delivery of modern health care. Examples include: nurses, emergency medical technicians and paramedics, laboratory scientists, pharmacists, podiatrists, physiotherapists, respiratory therapists, speech therapists, occupational therapists, radiographers, dietitians, and bioengineers, medical physicists, surgeons, surgeon's assistant, surgical technologist.

The scope and sciences underpinning human medicine overlap many other fields. A patient admitted to the hospital is usually under the care of a specific team based on their main presenting problem, e.g., the cardiology team, who then may interact with other specialties, e.g., surgical, radiology, to help diagnose or treat the main problem or any subsequent complications/developments.

Physicians have many specializations and subspecializations into certain branches of medicine, which are listed below. There are variations from country to country regarding which specialties certain subspecialties are in.

The main branches of medicine are:

Basic sciences

  • Anatomy is the study of the physical structure of organisms. In contrast to macroscopic or gross anatomy, cytology and histology are concerned with microscopic structures.
  • Biochemistry is the study of the chemistry taking place in living organisms, especially the structure and function of their chemical components.
  • Biomechanics is the study of the structure and function of biological systems by means of the methods of Mechanics.
  • Biophysics is an interdisciplinary science that uses the methods of physics and physical chemistry to study biological systems.
  • Biostatistics is the application of statistics to biological fields in the broadest sense. A knowledge of biostatistics is essential in the planning, evaluation, and interpretation of medical research. It is also fundamental to epidemiology and evidence-based medicine.
  • Cytology is the microscopic study of individual cells.
Louis Pasteur, as portrayed in his laboratory, 1885 by Albert Edelfelt
Statue of Robert Koch in Berlin

Specialties

In the broadest meaning of "medicine", there are many different specialties. In the UK, most specialities have their own body or college, which has its own entrance examination. These are collectively known as the Royal Colleges, although not all currently use the term "Royal". The development of a speciality is often driven by new technology (such as the development of effective anaesthetics) or ways of working (such as emergency departments); the new specialty leads to the formation of a unifying body of doctors and the prestige of administering their own examination.

Within medical circles, specialities usually fit into one of two broad categories: "Medicine" and "Surgery". "Medicine" refers to the practice of non-operative medicine, and most of its subspecialties require preliminary training in Internal Medicine. In the UK, this was traditionally evidenced by passing the examination for the Membership of the Royal College of Physicians (MRCP) or the equivalent college in Scotland or Ireland. "Surgery" refers to the practice of operative medicine, and most subspecialties in this area require preliminary training in General Surgery, which in the UK leads to membership of the Royal College of Surgeons of England (MRCS). At present, some specialties of medicine do not fit easily into either of these categories, such as radiology, pathology, or anesthesia. Most of these have branched from one or other of the two camps above; for example anaesthesia developed first as a faculty of the Royal College of Surgeons (for which MRCS/FRCS would have been required) before becoming the Royal College of Anaesthetists and membership of the college is attained by sitting for the examination of the Fellowship of the Royal College of Anesthetists (FRCA).

Surgical specialty

Surgeons in an operating room

Surgery is an ancient medical specialty that uses operative manual and instrumental techniques on a patient to investigate or treat a pathological condition such as disease or injury, to help improve bodily function or appearance or to repair unwanted ruptured areas (for example, a perforated ear drum). Surgeons must also manage pre-operative, post-operative, and potential surgical candidates on the hospital wards. In some centers, anesthesiology is part of the division of surgery (for historical and logistical reasons), although it is not a surgical discipline. Other medical specialties may employ surgical procedures, such as ophthalmology and dermatology, but are not considered surgical sub-specialties per se.

Surgical training in the U.S. requires a minimum of five years of residency after medical school. Sub-specialties of surgery often require seven or more years. In addition, fellowships can last an additional one to three years. Because post-residency fellowships can be competitive, many trainees devote two additional years to research. Thus in some cases surgical training will not finish until more than a decade after medical school. Furthermore, surgical training can be very difficult and time-consuming.

Surgical subspecialties include those a physician may specialize in after undergoing general surgery residency training as well as several surgical fields with separate residency training. Surgical subspecialties that one may pursue following general surgery residency training:

Other surgical specialties within medicine with their own individual residency training:

Internal medicine specialty

Internal medicine is the medical specialty dealing with the prevention, diagnosis, and treatment of adult diseases. According to some sources, an emphasis on internal structures is implied. In North America, specialists in internal medicine are commonly called "internists". Elsewhere, especially in Commonwealth nations, such specialists are often called physicians. These terms, internist or physician (in the narrow sense, common outside North America), generally exclude practitioners of gynecology and obstetrics, pathology, psychiatry, and especially surgery and its subspecialities.

Because their patients are often seriously ill or require complex investigations, internists do much of their work in hospitals. Formerly, many internists were not subspecialized; such general physicians would see any complex nonsurgical problem; this style of practice has become much less common. In modern urban practice, most internists are subspecialists: that is, they generally limit their medical practice to problems of one organ system or to one particular area of medical knowledge. For example, gastroenterologists and nephrologists specialize respectively in diseases of the gut and the kidneys.

In the Commonwealth of Nations and some other countries, specialist pediatricians and geriatricians are also described as specialist physicians (or internists) who have subspecialized by age of patient rather than by organ system. Elsewhere, especially in North America, general pediatrics is often a form of primary care.

There are many subspecialities (or subdisciplines) of internal medicine:

Training in internal medicine (as opposed to surgical training), varies considerably across the world: see the articles on medical education for more details. In North America, it requires at least three years of residency training after medical school, which can then be followed by a one- to three-year fellowship in the subspecialties listed above. In general, resident work hours in medicine are less than those in surgery, averaging about 60 hours per week in the US. This difference does not apply in the UK where all doctors are now required by law to work less than 48 hours per week on average.

Diagnostic specialties

Other major specialties

The following are some major medical specialties that do not directly fit into any of the above-mentioned groups:

  • Anesthesiology (also known as anaesthetics): concerned with the perioperative management of the surgical patient. The anesthesiologist's role during surgery is to prevent derangement in the vital organs' (i.e. brain, heart, kidneys) functions and postoperative pain. Outside of the operating room, the anesthesiology physician also serves the same function in the labor and delivery ward, and some are specialized in critical medicine.
  • Emergency medicine is concerned with the diagnosis and treatment of acute or life-threatening conditions, including trauma, surgical, medical, pediatric, and psychiatric emergencies.
  • Family medicine, family practice, general practice or primary care is, in many countries, the first port-of-call for patients with non-emergency medical problems. Family physicians often provide services across a broad range of settings including office based practices, emergency department coverage, inpatient care, and nursing home care.
Gynecologist Michel Akotionga of Ouagadougou, Burkina Faso

Interdisciplinary fields

Some interdisciplinary sub-specialties of medicine include:

Medical students learning about stitches

Medical education and training varies around the world. It typically involves entry level education at a university medical school, followed by a period of supervised practice or internship, or residency. This can be followed by postgraduate vocational training. A variety of teaching methods have been employed in medical education, still itself a focus of active research. In Canada and the United States of America, a Doctor of Medicine degree, often abbreviated M.D., or a Doctor of Osteopathic Medicine degree, often abbreviated as D.O. and unique to the United States, must be completed in and delivered from a recognized university.

Since knowledge, techniques, and medical technology continue to evolve at a rapid rate, many regulatory authorities require continuing medical education. Medical practitioners upgrade their knowledge in various ways, including medical journals, seminars, conferences, and online programs. A database of objectives covering medical knowledge, as suggested by national societies across the United States, can be searched at http://data.medobjectives.marian.edu/ Archived 4 October 2018 at the Wayback Machine.

Headquarters of the Organización Médica Colegial de España, which regulates the medical profession in Spain

In most countries, it is a legal requirement for a medical doctor to be licensed or registered. In general, this entails a medical degree from a university and accreditation by a medical board or an equivalent national organization, which may ask the applicant to pass exams. This restricts the considerable legal authority of the medical profession to physicians that are trained and qualified by national standards. It is also intended as an assurance to patients and as a safeguard against charlatans that practice inadequate medicine for personal gain. While the laws generally require medical doctors to be trained in "evidence based", Western, or Hippocratic Medicine, they are not intended to discourage different paradigms of health.

In the European Union, the profession of doctor of medicine is regulated. A profession is said to be regulated when access and exercise is subject to the possession of a specific professional qualification. The regulated professions database contains a list of regulated professions for doctor of medicine in the EU member states, EEA countries and Switzerland. This list is covered by the Directive 2005/36/EC.

Doctors who are negligent or intentionally harmful in their care of patients can face charges of medical malpractice and be subject to civil, criminal, or professional sanctions.

Medical ethics

A 12th-century Byzantine manuscript of the Hippocratic Oath

Medical ethics is a system of moral principles that apply values and judgments to the practice of medicine. As a scholarly discipline, medical ethics encompasses its practical application in clinical settings as well as work on its history, philosophy, theology, and sociology. Six of the values that commonly apply to medical ethics discussions are:

  • autonomy – the patient has the right to refuse or choose their treatment. (Latin: Voluntas aegroti suprema lex.)
  • beneficence – a practitioner should act in the best interest of the patient. (Latin: Salus aegroti suprema lex.)
  • justice – concerns the distribution of scarce health resources, and the decision of who gets what treatment (fairness and equality).
  • non-maleficence – "first, do no harm" (Latin: primum non-nocere).
  • respect for persons – the patient (and the person treating the patient) have the right to be treated with dignity.
  • truthfulness and honesty – the concept of informed consent has increased in importance since the historical events of the Doctors' Trial of the Nuremberg trials, Tuskegee syphilis experiment, and others.

Values such as these do not give answers as to how to handle a particular situation, but provide a useful framework for understanding conflicts. When moral values are in conflict, the result may be an ethical dilemma or crisis. Sometimes, no good solution to a dilemma in medical ethics exists, and occasionally, the values of the medical community (i.e., the hospital and its staff) conflict with the values of the individual patient, family, or larger non-medical community. Conflicts can also arise between health care providers, or among family members. For example, some argue that the principles of autonomy and beneficence clash when patients refuse blood transfusions, considering them life-saving; and truth-telling was not emphasized to a large extent before the HIV era.

History

Statuette of ancient Egyptian physician Imhotep, the first physician from antiquity known by name

Ancient world

Prehistoric medicine incorporated plants (herbalism), animal parts, and minerals. In many cases these materials were used ritually as magical substances by priests, shamans, or medicine men. Well-known spiritual systems include animism (the notion of inanimate objects having spirits), spiritualism (an appeal to gods or communion with ancestor spirits); shamanism (the vesting of an individual with mystic powers); and divination (magically obtaining the truth). The field of medical anthropology examines the ways in which culture and society are organized around or impacted by issues of health, health care and related issues.

The earliest known medical texts in the world were found in the ancient Syrian city of Ebla and date back to 2500 BCE. Other early records on medicine have been discovered from ancient Egyptian medicine, Babylonian Medicine, Ayurvedic medicine (in the Indian subcontinent), classical Chinese medicine (Alternative medicine) predecessor to the modern traditional Chinese medicine), and ancient Greek medicine and Roman medicine.

In Egypt, Imhotep (3rd millennium BCE) is the first physician in history known by name. The oldest Egyptian medical text is the Kahun Gynaecological Papyrus from around 2000 BCE, which describes gynaecological diseases. The Edwin Smith Papyrus dating back to 1600 BCE is an early work on surgery, while the Ebers Papyrus dating back to 1500 BCE is akin to a textbook on medicine.

In China, archaeological evidence of medicine in Chinese dates back to the Bronze Age Shang dynasty, based on seeds for herbalism and tools presumed to have been used for surgery. The Huangdi Neijing, the progenitor of Chinese medicine, is a medical text written beginning in the 2nd century BCE and compiled in the 3rd century.

In India, the oldest known surgical text, the Sushruta Samhita written by the surgeon Sushruta, described numerous surgical operations, including the earliest forms of plastic surgery as well as methods of sterilization for surgical instruments. The earliest records of dedicated hospitals come from Mihintale in Sri Lanka where evidence of dedicated medicinal treatment facilities for patients are found.

Mosaic on the floor of the Asclepieion of Kos, depicting Hippocrates, with Asklepius in the middle (2nd–3rd century)

In Greece, the ancient Greek physician Hippocrates, the "father of modern medicine", laid the foundation for a rational approach to medicine. Hippocrates introduced the Hippocratic Oath for physicians, which is still relevant and in use today, and was the first to categorize illnesses as acute, chronic, endemic and epidemic, and use terms such as, "exacerbation, relapse, resolution, crisis, paroxysm, peak, and convalescence". The Greek physician Galen was also one of the greatest surgeons of the ancient world and performed many audacious operations, including brain and eye surgeries. After the fall of the Western Roman Empire and the onset of the Early Middle Ages, the Greek tradition of medicine went into decline in Western Europe, although it continued uninterrupted in the Eastern Roman (Byzantine) Empire.

Most of our knowledge of ancient Hebrew medicine during the 1st millennium BC comes from the Torah, i.e. the Five Books of Moses, which contain various health related laws and rituals. The Hebrew contribution to the development of modern medicine started in the Byzantine Era, with the physician Asaph the Jew.

Middle Ages

A manuscript of Al-Risalah al-Dhahabiah by Ali al-Ridha, the eighth Imam of Shia Muslims. The text says: "Golden dissertation in medicine which is sent by Imam Ali ibn Musa al-Ridha, peace be upon him, to al-Ma'mun."

The concept of hospital as institution to offer medical care and possibility of a cure for the patients due to the ideals of Christian charity, rather than just merely a place to die, appeared in the Byzantine Empire.

Although the concept of uroscopy was known to Galen, he did not see the importance of using it to localize the disease. It was under the Byzantines with physicians such of Theophilus Protospatharius that they realized the potential in uroscopy to determine disease in a time when no microscope or stethoscope existed. That practice eventually spread to the rest of Europe.

After 750 CE, the Muslim world had the works of Hippocrates, Galen and Sushruta translated into Arabic, and Islamic physicians engaged in some significant medical research. Notable Islamic medical pioneers include the Persian polymath, Avicenna, who, along with Imhotep and Hippocrates, has also been called the "father of medicine". He wrote The Canon of Medicine which became a standard medical text at many medieval European universities, considered one of the most famous books in the history of medicine. Others include AbulcasisAvenzoarIbn al-Nafis, and AverroesPersian physician Rhazes was one of the first to question the Greek theory of humorism, which nevertheless remained influential in both medieval Western and medieval Islamic medicine. Some volumes of Rhazes's work Al-Mansuri, namely "On Surgery" and "A General Book on Therapy", became part of the medical curriculum in European universities. Additionally, he has been described as a doctor's doctor, the father of pediatrics, and a pioneer of ophthalmology. For example, he was the first to recognize the reaction of the eye's pupil to light. The Persian Bimaristan hospitals were an early example of public hospitals.

In Europe, Charlemagne decreed that a hospital should be attached to each cathedral and monastery and the historian Geoffrey Blainey likened the activities of the Catholic Church in health care during the Middle Ages to an early version of a welfare state: "It conducted hospitals for the old and orphanages for the young; hospices for the sick of all ages; places for the lepers; and hostels or inns where pilgrims could buy a cheap bed and meal". It supplied food to the population during famine and distributed food to the poor. This welfare system the church funded through collecting taxes on a large scale and possessing large farmlands and estates. The Benedictine order was noted for setting up hospitals and infirmaries in their monasteries, growing medical herbs and becoming the chief medical care givers of their districts, as at the great Abbey of Cluny. The Church also established a network of cathedral schools and universities where medicine was studied. The Schola Medica Salernitana in Salerno, looking to the learning of Greek and Arab physicians, grew to be the finest medical school in medieval Europe.

Siena's Santa Maria della Scala Hospital, one of Europe's oldest hospitals. During the Middle Ages, the Catholic Church established universities to revive the study of sciences, drawing on the learning of Greek and Arab physicians in the study of medicine.

However, the fourteenth and fifteenth century Black Death devastated both the Middle East and Europe, and it has even been argued that Western Europe was generally more effective in recovering from the pandemic than the Middle East. In the early modern period, important early figures in medicine and anatomy emerged in Europe, including Gabriele Falloppio and William Harvey.

The major shift in medical thinking was the gradual rejection, especially during the Black Death in the 14th and 15th centuries, of what may be called the "traditional authority" approach to science and medicine. This was the notion that because some prominent person in the past said something must be so, then that was the way it was, and anything one observed to the contrary was an anomaly (which was paralleled by a similar shift in European society in general – see Copernicus's rejection of Ptolemy's theories on astronomy). Physicians like Vesalius improved upon or disproved some of the theories from the past. The main tomes used both by medicine students and expert physicians were Materia Medica and Pharmacopoeia.

Andreas Vesalius was the author of De humani corporis fabrica, an important book on human anatomy. Bacteria and microorganisms were first observed with a microscope by Antonie van Leeuwenhoek in 1676, initiating the scientific field microbiology. Independently from Ibn al-Nafis, Michael Servetus rediscovered the pulmonary circulation, but this discovery did not reach the public because it was written down for the first time in the "Manuscript of Paris" in 1546, and later published in the theological work for which he paid with his life in 1553. Later this was described by Renaldus Columbus and Andrea Cesalpino. Herman Boerhaave is sometimes referred to as a "father of physiology" due to his exemplary teaching in Leiden and textbook 'Institutiones medicae' (1708). Pierre Fauchard has been called "the father of modern dentistry".

Modern

Paul-Louis Simond injecting a plague vaccine in Karachi, 1898

Veterinary medicine was, for the first time, truly separated from human medicine in 1761, when the French veterinarian Claude Bourgelat founded the world's first veterinary school in Lyon, France. Before this, medical doctors treated both humans and other animals.

Modern scientific biomedical research (where results are testable and reproducible) began to replace early Western traditions based on herbalism, the Greek "four humours" and other such pre-modern notions. The modern era really began with Edward Jenner's discovery of the smallpox vaccine at the end of the 18th century (inspired by the method of variolation originated in ancient China), Robert Koch's discoveries around 1880 of the transmission of disease by bacteria, and then the discovery of antibiotics around 1900.

The post-18th century modernity period brought more groundbreaking researchers from Europe. From Germany and Austria, doctors Rudolf Virchow, Wilhelm Conrad Röntgen, Karl Landsteiner and Otto Loewi made notable contributions. In the United Kingdom, Alexander Fleming, Joseph Lister, Francis Crick and Florence Nightingale are considered important. Spanish doctor Santiago Ramón y Cajal is considered the father of modern neuroscience.

From New Zealand and Australia came Maurice Wilkins, Howard Florey, and Frank Macfarlane Burnet.

Others that did significant work include William Williams Keen, William Coley, James D. Watson (United States); Salvador Luria (Italy); Alexandre Yersin (Switzerland); Kitasato Shibasaburō (Japan); Jean-Martin Charcot, Claude Bernard, Paul Broca (France); Adolfo Lutz (Brazil); Nikolai Korotkov (Russia); Sir William Osler (Canada); and Harvey Cushing (United States).

As science and technology developed, medicine became more reliant upon medications. Throughout history and in Europe right until the late 18th century, not only plant products were used as medicine, but also animal (including human) body parts and fluids. Pharmacology developed in part from herbalism and some drugs are still derived from plants (atropine, ephedrine, warfarin, aspirin, digoxin, vinca alkaloidstaxol, hyoscine, etc.). Vaccines were discovered by Edward Jenner and Louis Pasteur.

The first antibiotic was arsphenamine (Salvarsan) discovered by Paul Ehrlich in 1908 after he observed that bacteria took up toxic dyes that human cells did not. The first major class of antibiotics was the sulfa drugs, derived by German chemists originally from azo dyes.

Packaging of cardiac medicine at the Star pharmaceutical factory in Tampere, Finland in 1953

Pharmacology has become increasingly sophisticated; modern biotechnology allows drugs targeted towards specific physiological processes to be developed, sometimes designed for compatibility with the body to reduce side-effects. Genomics and knowledge of human genetics and human evolution is having increasingly significant influence on medicine, as the causative genes of most monogenic genetic disorders have now been identified, and the development of techniques in molecular biology, evolution, and genetics are influencing medical technology, practice and decision-making.

Evidence-based medicine is a contemporary movement to establish the most effective algorithms of practice (ways of doing things) through the use of systematic reviews and meta-analysis. The movement is facilitated by modern global information science, which allows as much of the available evidence as possible to be collected and analyzed according to standard protocols that are then disseminated to healthcare providers. The Cochrane Collaboration leads this movement. A 2001 review of 160 Cochrane systematic reviews revealed that, according to two readers, 21.3% of the reviews concluded insufficient evidence, 20% concluded evidence of no effect, and 22.5% concluded positive effect.

Quality, efficiency, and access

Evidence-based medicine, prevention of medical error (and other "iatrogenesis"), and avoidance of unnecessary health care are a priority in modern medical systems. These topics generate significant political and public policy attention, particularly in the United States where healthcare is regarded as excessively costly but population health metrics lag similar nations.

Globally, many developing countries lack access to care and access to medicines. As of 2015, most wealthy developed countries provide health care to all citizens, with a few exceptions such as the United States where lack of health insurance coverage may limit access.

Telemedicine

Telemedicine (also Telehealth) refers to preventive, promotive, and curative care delivery, including remote clinical services, such as diagnosis, monitoring, administration and provider education. The main categories of telehealth:

  • Telenursing is experiencing significant growth globally due to factors such as the need to reduce healthcare costs, an increasing aging and chronically ill population, and expanded healthcare coverage to distant, rural, small, or sparsely populated regions. Telenursing can help address nurse shortages, reduce travel time and distances, and minimize hospital admissions.
  • Telepalliative care is a remote approach to optimising quality of life and relieving suffering for people with serious, complex and often fatal illnesses. The World Health Organization (WHO) recommends integrating palliative care as early as possible for any chronic and fatal illness. Telepalliative care typically utilizes telecommunication technologies like video conferencing, messaging for follow-ups, and digital symptom assessments through questionnaires that generate alerts for healthcare professionals.
  • Telepharmacy involves delivering pharmaceutical care via telecommunications to patients in locations where direct contact with a pharmacist may not be possible or difficult.
  • Telepsychiatry (telemental health) uses telecommunications technology to provide remote psychiatric care for individuals with mental health conditions.
  • Telepsychology is the use of communication technology for the remote administration of psychological tests and psychotherapy.
  • Teleneurotherapy utilizes computers and communications technology to deliver neurotherapy remotely. Research indicates that systematic physical stimuli from standard electronic devices, such as tablets with headphones, may treat injured nervous systems online by modulating neuronal plasticity. Evidence suggests that teleneurotherapy could enhance neurological treatment if it incorporates the therapeutic effect of a systematic abiotic impact of physical forces with key parameters of mother-fetus interaction. Recent research has shown therapeutic effects when implementing the APIN method in the online treatment of patients with various neurological conditions.
  • Telenutrition refers to the use of video conferencing or telephony to provide online consultations by nutritionists or dieticians.
  • Telerehabilitation (or e-rehabilitation) is the delivery of rehabilitation services over telecommunication networks and the Internet. Most services fall into two categories: clinical assessment (evaluating the patient's functional abilities in their environment) and clinical therapy.

Personalized medicine

From Wikipedia, the free encyclopedia

Personalized medicine, also referred to as precision medicine, is a medical model that separates people into different groups—with medical decisions, practices, interventions and/or products being tailored to the individual patient based on their predicted response or risk of disease. The terms personalized medicine, precision medicine, stratified medicine and P4 medicine are used interchangeably to describe this concept, though some authors and organizations differentiate between these expressions based on particular nuances. P4 is short for "predictive, preventive, personalized and participatory".

While the tailoring of treatment to patients dates back at least to the time of Hippocrates, the usage of the term has risen in recent years thanks to the development of new diagnostic and informatics approaches that provide an understanding of the molecular basis of disease, particularly genomics. This provides a clear biomarker on which to stratify related patients.

Among the 14 Grand Challenges for Engineering, an initiative sponsored by National Academy of Engineering (NAE), personalized medicine has been identified as a key and prospective approach to "achieve optimal individual health decisions", therefore overcoming the challenge to "engineer better medicines".

Development of concept

In personalised medicine, diagnostic testing is often employed for selecting appropriate and optimal therapies based on the patient's genetics or their other molecular or cellular characteristics. The use of genetic information has played a major role in certain aspects of personalized medicine (e.g. pharmacogenomics), and the term was first coined in the context of genetics, though it has since broadened to encompass all sorts of personalization measures, including the use of proteomics, imaging analysis, nanoparticle-based theranostics, among others.

Difference between precision medicine and personalized medicine

Precision medicine is a medical model that proposes the customization of healthcare, with medical decisions, treatments, practices, or products being tailored to a subgroup of patients, instead of a one‐drug‐fits‐all model. In precision medicine, diagnostic testing is often employed for selecting appropriate and optimal therapies based on the context of a patient's genetic content or other molecular or cellular analysis. Tools employed in precision medicine can include molecular diagnostics, imaging, and analytics.

Precision medicine and personalized medicine (also individualized medicine) are analogous, applying a person's genetic profile to guide clinical decisions about the prevention, diagnosis, and treatment of a disease. Personalized medicine is established on discoveries from the Human Genome Project.

In explaining the distinction from the similar term of personalized medicine, the United States President's Council of Advisors on Science and Technology writes:

Precision medicine refers to the tailoring of medical treatment to the individual characteristics of each patient. It does not literally mean the creation of drugs or medical devices that are unique to a patient, but rather the ability to classify individuals into subpopulations that differ in their susceptibility to a particular disease, in the biology or prognosis of those diseases they may develop, or in their response to a specific treatment. Preventive or therapeutic interventions can then be concentrated on those who will benefit, sparing expense and side effects for those who will not.

The use of the term "precision medicine" can extend beyond treatment selection to also cover creating unique medical products for particular individuals—for example, "...patient-specific tissue or organs to tailor treatments for different people." Hence, the term in practice has so much overlap with "personalized medicine" that they are often used interchangeably, even though the latter is sometimes misinterpreted as involving a unique treatment for each individual.

Background

Basics

Every person has a unique variation of the human genome. Although most of the variation between individuals has no effect on health, an individual's health stems from genetic variation with behaviors and influences from the environment.

Modern advances in personalized medicine rely on technology that confirms a patient's fundamental biology, DNA, RNA, or protein, which ultimately leads to confirming disease. For example, personalised techniques such as genome sequencing can reveal mutations in DNA that influence diseases ranging from cystic fibrosis to cancer. Another method, called RNA-seq, can show which RNA molecules are involved with specific diseases. Unlike DNA, levels of RNA can change in response to the environment. Therefore, sequencing RNA can provide a broader understanding of a person's state of health. Recent studies have linked genetic differences between individuals to RNA expression, translation, and protein levels.

The concepts of personalised medicine can be applied to new and transformative approaches to health care. Personalised health care is based on the dynamics of systems biology and uses predictive tools to evaluate health risks and to design personalised health plans to help patients mitigate risks, prevent disease and to treat it with precision when it occurs. The concepts of personalised health care are receiving increasing acceptance with the Veterans Administration committing to personalised, proactive patient driven care for all veterans. In some instances personalised health care can be tailored to the markup of the disease causing agent instead of the patient's genetic markup; examples are drug resistant bacteria or viruses.

Precision medicine often involves the application of panomic analysis and systems biology to analyze the cause of an individual patient's disease at the molecular level and then to utilize targeted treatments (possibly in combination) to address that individual patient's disease process. The patient's response is then tracked as closely as possible, often using surrogate measures such as tumor load (versus true outcomes, such as five-year survival rate), and the treatment finely adapted to the patient's response. The branch of precision medicine that addresses cancer is referred to as "precision oncology". The field of precision medicine that is related to psychiatric disorders and mental health is called "precision psychiatry."

Inter-personal difference of molecular pathology is diverse, so as inter-personal difference in the exposome, which influence disease processes through the interactome within the tissue microenvironment, differentially from person to person. As the theoretical basis of precision medicine, the "unique disease principle" emerged to embrace the ubiquitous phenomenon of heterogeneity of disease etiology and pathogenesis. The unique disease principle was first described in neoplastic diseases as the unique tumor principle. As the exposome is a common concept of epidemiology, precision medicine is intertwined with molecular pathological epidemiology, which is capable of identifying potential biomarkers for precision medicine.

Method

In order for physicians to know if a mutation is connected to a certain disease, researchers often do a study called a "genome-wide association study" (GWA study). Such a study will look at one disease, and then sequence the genome of many patients with that particular disease to look for shared mutations in the genome. Mutations that are determined to be related to a disease by a GWA study can then be used to diagnose that disease in future patients, by looking at their genome sequence to find that same mutation. The first GWA study, conducted in 2005, studied patients with age-related macular degeneration (ARMD). It found two different mutations, each containing only a variation in only one nucleotide (called single nucleotide polymorphisms, or SNPs), which were associated with ARMD. GWA studies like this have been very successful in identifying common genetic variations associated with diseases. As of early 2014, over 1,300 GWA studies have been completed.

Disease risk assessment

Multiple genes collectively influence the likelihood of developing many common and complex diseases. Personalised medicine can also be used to predict a person's risk for a particular disease, based on one or even several genes. This approach uses the same sequencing technology to focus on the evaluation of disease risk, allowing the physician to initiate preventive treatment before the disease presents itself in their patient. For example, if it is found that a DNA mutation increases a person's risk of developing Type 2 Diabetes, this individual can begin lifestyle changes that will lessen their chances of developing Type 2 Diabetes later in life.

Practice

The ability to provide precision medicine to patients in routine clinical settings depends on the availability of molecular profiling tests, e.g. individual germline DNA sequencing. While precision medicine currently individualizes treatment mainly on the basis of genomic tests (e.g. Oncotype DX), several promising technology modalities are being developed, from techniques combining spectrometry and computational power to real-time imaging of drug effects in the body. Many different aspects of precision medicine are tested in research settings (e.g., proteome, microbiome), but in routine practice not all available inputs are used. The ability to practice precision medicine is also dependent on the knowledge bases available to assist clinicians in taking action based on test results. Early studies applying omics-based precision medicine to cohorts of individuals with undiagnosed disease has yielded a diagnosis rate ~35% with ~1 in 5 of newly diagnosed receiving recommendations regarding changes in therapy. It has been suggested that until pharmacogenetics becomes further developed and able to predict individual treatment responses, the N-of-1 trials are the best method of identifying patients responding to treatments.

On the treatment side, PM can involve the use of customized medical products such drug cocktails produced by pharmacy compounding or customized devices. It can also prevent harmful drug interactions, increase overall efficiency when prescribing medications, and reduce costs associated with healthcare.

The question of who benefits from publicly funded genomics is an important public health consideration, and attention is needed to ensure that implementation of genomic medicine does not further entrench social‐equity concerns.

Artificial intelligence in precision medicine

Artificial intelligence is providing a paradigm shift toward precision medicine. Machine learning algorithms are used for genomic sequence and to analyze and draw inferences from the vast amounts of data patients and healthcare institutions recorded in every moment. AI techniques are used in precision cardiovascular medicine to understand genotypes and phenotypes in existing diseases, improve the quality of patient care, enable cost-effectiveness, and reduce readmission and mortality rates. A 2021 paper reported that machine learning was able to predict the outcomes of Phase III clinical trials (for treatment of prostate cancer) with 76% accuracy. This suggests that clinical trial data could provide a practical source for machine learning-based tools for precision medicine.

Precision medicine may be susceptible to subtle forms of algorithmic bias. For example, the presence of multiple entry fields with values entered by multiple observers can create distortions in the ways data is understood and interpreted. A 2020 paper showed that training machine learning models in a population-specific fashion (i.e. training models specifically for Black cancer patients) can yield significantly superior performance than population-agnostic models.

Precision Medicine Initiative

In his 2015 State of the Union address, then-U.S. President Barack Obama stated his intention to give $215 million of funding to the "Precision Medicine Initiative" of the United States National Institutes of Health. A short-term goal of this initiative was to expand cancer genomics to develop better prevention and treatment methods. In the long term, the Precision Medicine Initiative aimed to build a comprehensive scientific knowledge base by creating a national network of scientists and embarking on a national cohort study of one million Americans to expand our understanding of health and disease. The mission statement of the Precision Medicine Initiative read: "To enable a new era of medicine through research, technology, and policies that empower patients, researchers, and providers to work together toward development of individualized treatments". In 2016 this initiative was renamed to "All of Us" and by January 2018, 10,000 people had enrolled in its pilot phase.

Benefits of precision medicine

Precision medicine helps health care providers better understand the many things—including environment, lifestyle, and heredity—that play a role in a patient's health, disease, or condition. This information lets them more accurately predict which treatments will be most effective and safe, or possibly how to prevent the illness from starting in the first place. In addition, benefits are to:

  • shift the emphasis in medicine from reaction to prevention
  • predict susceptibility to disease
  • improve disease detection
  • preempt disease progression
  • customize disease-prevention strategies
  • prescribe more effective drugs
  • avoid prescribing drugs with predictable negative side effects
  • reduce the time, cost, and failure rate of pharmaceutical clinical trials
  • eliminate trial-and-error inefficiencies that inflate health care costs and undermine patient care

Applications

Advances in personalised medicine will create a more unified treatment approach specific to the individual and their genome. Personalised medicine may provide better diagnoses with earlier intervention, and more efficient drug development and more targeted therapies.

Diagnosis and intervention

Having the ability to look at a patient on an individual basis will allow for a more accurate diagnosis and specific treatment plan. Genotyping is the process of obtaining an individual's DNA sequence by using biological assays. By having a detailed account of an individual's DNA sequence, their genome can then be compared to a reference genome, like that of the Human Genome Project, to assess the existing genetic variations that can account for possible diseases. A number of private companies, such as 23andMe, Navigenics, and Illumina, have created Direct-to-Consumer genome sequencing accessible to the public. Having this information from individuals can then be applied to effectively treat them. An individual's genetic make-up also plays a large role in how well they respond to a certain treatment, and therefore, knowing their genetic content can change the type of treatment they receive.

An aspect of this is pharmacogenomics, which uses an individual's genome to provide a more informed and tailored drug prescription. Often, drugs are prescribed with the idea that it will work relatively the same for everyone, but in the application of drugs, there are a number of factors that must be considered. The detailed account of genetic information from the individual will help prevent adverse events, allow for appropriate dosages, and create maximum efficacy with drug prescriptions. For instance, warfarin is the FDA approved oral anticoagulant commonly prescribed to patients with blood clots. Due to warfarin's significant interindividual variability in pharmacokinetics and pharmacodynamics, its rate of adverse events is among the highest of all commonly prescribed drugs. However, with the discovery of polymorphic variants in CYP2C9 and VKORC1 genotypes, two genes that encode the individual anticoagulant response, physicians can use patients' gene profile to prescribe optimum doses of warfarin to prevent side effects such as major bleeding and to allow sooner and better therapeutic efficacy. The pharmacogenomic process for discovery of genetic variants that predict adverse events to a specific drug has been termed toxgnostics.

An aspect of a theranostic platform applied to personalized medicine can be the use of diagnostic tests to guide therapy. The tests may involve medical imaging such as MRI contrast agents (T1 and T2 agents), fluorescent markers (organic dyes and inorganic quantum dots), and nuclear imaging agents (PET radiotracers or SPECT agents). or in vitro lab test including DNA sequencing and often involve deep learning algorithms that weigh the result of testing for several biomarkers.

In addition to specific treatment, personalised medicine can greatly aid the advancements of preventive care. For instance, many women are already being genotyped for certain mutations in the BRCA1 and BRCA2 gene if they are predisposed because of a family history of breast cancer or ovarian cancer. As more causes of diseases are mapped out according to mutations that exist within a genome, the easier they can be identified in an individual. Measures can then be taken to prevent a disease from developing. Even if mutations were found within a genome, having the details of their DNA can reduce the impact or delay the onset of certain diseases. Having the genetic content of an individual will allow better guided decisions in determining the source of the disease and thus treating it or preventing its progression. This will be extremely useful for diseases like Alzheimer's or cancers that are thought to be linked to certain mutations in our DNA.

A tool that is being used now to test efficacy and safety of a drug specific to a targeted patient group/sub-group is companion diagnostics. This technology is an assay that is developed during or after a drug is made available on the market and is helpful in enhancing the therapeutic treatment available based on the individual. These companion diagnostics have incorporated the pharmacogenomic information related to the drug into their prescription label in an effort to assist in making the most optimal treatment decision possible for the patient.

An overall process of personalized cancer therapy. Genome sequencing will allow for a more accurate and personalized drug prescription and a targeted therapy for different patients.

Drug development and usage

Having an individual's genomic information can be significant in the process of developing drugs as they await approval from the FDA for public use. Having a detailed account of an individual's genetic make-up can be a major asset in deciding if a patient can be chosen for inclusion or exclusion in the final stages of a clinical trial. Being able to identify patients who will benefit most from a clinical trial will increase the safety of patients from adverse outcomes caused by the product in testing, and will allow smaller and faster trials that lead to lower overall costs. In addition, drugs that are deemed ineffective for the larger population can gain approval by the FDA by using personal genomes to qualify the effectiveness and need for that specific drug or therapy even though it may only be needed by a small percentage of the population.

Physicians commonly use a trial and error strategy until they find the treatment therapy that is most effective for their patient. With personalized medicine, these treatments can be more specifically tailored by predicting how an individual's body will respond and if the treatment will work based on their genome. This has been summarized as "therapy with the right drug at the right dose in the right patient." Such an approach would also be more cost-effective and accurate. For instance, Tamoxifen used to be a drug commonly prescribed to women with ER+ breast cancer, but 65% of women initially taking it developed resistance. After research by people such as David Flockhart, it was discovered that women with certain mutation in their CYP2D6 gene, a gene that encodes the metabolizing enzyme, were not able to efficiently break down Tamoxifen, making it an ineffective treatment for them. Women are now genotyped for these specific mutations to select the most effective treatment.

Screening for these mutations is carried out via high-throughput screening or phenotypic screening. Several drug discovery and pharmaceutical companies are currently utilizing these technologies to not only advance the study of personalised medicine, but also to amplify genetic research. Alternative multi-target approaches to the traditional approach of "forward" transfection library screening can entail reverse transfection or chemogenomics.

Pharmacy compounding is another application of personalised medicine. Though not necessarily using genetic information, the customized production of a drug whose various properties (e.g. dose level, ingredient selection, route of administration, etc.) are selected and crafted for an individual patient is accepted as an area of personalised medicine (in contrast to mass-produced unit doses or fixed-dose combinations). Computational and mathematical approaches for predicting drug interactions are also being developed. For example, phenotypic response surfaces model the relationships between drugs, their interactions, and an individual's biomarkers.

One active area of research is efficiently delivering personalized drugs generated from pharmacy compounding to the disease sites of the body. For instance, researchers are trying to engineer nanocarriers that can precisely target the specific site by using real-time imaging and analyzing the pharmacodynamics of the drug delivery. Several candidate nanocarriers are being investigated, such as iron oxide nanoparticles, quantum dots, carbon nanotubes, gold nanoparticles, and silica nanoparticles. Alteration of surface chemistry allows these nanoparticles to be loaded with drugs, as well as to avoid the body's immune response, making nanoparticle-based theranostics possible. Nanocarriers' targeting strategies are varied according to the disease. For example, if the disease is cancer, a common approach is to identify the biomarker expressed on the surface of cancer cells and to load its associated targeting vector onto nanocarrier to achieve recognition and binding; the size scale of the nanocarriers will also be engineered to reach the enhanced permeability and retention effect (EPR) in tumor targeting. If the disease is localized in the specific organ, such as the kidney, the surface of the nanocarriers can be coated with a certain ligand that binds to the receptors inside that organ to achieve organ-targeting drug delivery and avoid non-specific uptake. Despite the great potential of this nanoparticle-based drug delivery system, the significant progress in the field is yet to be made, and the nanocarriers are still being investigated and modified to meet clinical standards.

Theranostics

Theranostics is a personalized approach in nuclear medicine, using similar molecules for both imaging (diagnosis) and therapy. The term is a portmanteau of "therapeutics" and "diagnostics". Its most common applications are attaching radionuclides (either gamma or positron emitters) to molecules for SPECT or PET imaging, or electron emitters for radiotherapy. One of the earliest examples is the use of radioactive iodine for treatment of people with thyroid cancer. Other examples include radio-labelled anti-CD20 antibodies (e.g. Bexxar) for treating lymphoma, Radium-223 for treating bone metastases, Lutetium-177 DOTATATE for treating neuroendocrine tumors and Lutetium-177 PSMA for treating prostate cancer. A commonly used reagent is fluorodeoxyglucose, using the isotope fluorine-18.

Respiratory proteomics

The preparation of a proteomics sample on a sample carrier to be analyzed by mass spectrometry

Respiratory diseases affect humanity globally, with chronic lung diseases (e.g., asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, among others) and lung cancer causing extensive morbidity and mortality. These conditions are highly heterogeneous and require an early diagnosis. However, initial symptoms are nonspecific, and the clinical diagnosis is made late frequently. Over the last few years, personalized medicine has emerged as a medical care approach that uses novel technology  aiming to personalize treatments according to the particular patient's medical needs. In specific, proteomics is used to analyze a series of protein expressions, instead of a single biomarker. Proteins control the body's biological activities including health and disease, so proteomics is helpful in early diagnosis. In the case of respiratory disease, proteomics analyzes several biological samples including serum, blood cells, bronchoalveolar lavage fluids (BAL), nasal lavage fluids (NLF), sputum, among others. The identification and quantification of complete protein expression from these biological samples are conducted by mass spectrometry and advanced analytical techniques. Respiratory proteomics has made significant progress in the development of personalized medicine for supporting health care in recent years. For example, in a study conducted by Lazzari et al. in 2012, the proteomics-based approach has made substantial improvement in identifying multiple biomarkers of lung cancer that can be used in tailoring personalized treatments for individual patients. More and more studies have demonstrated the usefulness of proteomics to provide targeted therapies for respiratory disease.

Cancer genomics

Over recent decades cancer research has discovered a great deal about the genetic variety of types of cancer that appear the same in traditional pathology. There has also been increasing awareness of tumor heterogeneity, or genetic diversity within a single tumor. Among other prospects, these discoveries raise the possibility of finding that drugs that have not given good results applied to a general population of cases may yet be successful for a proportion of cases with particular genetic profiles.

Personalized oncogenomics is the application of personalized medicine to cancer genomics. High-throughput sequencing methods are used to characterize genes associated with cancer to better understand disease pathology and improve drug development. Oncogenomics is one of the most promising branches of genomics, particularly because of its implications in drug therapy. Examples of this include:

  • Trastuzumab (trade names Herclon, Herceptin) is a monoclonal antibody drug that interferes with the HER2/neu receptor. Its main use is to treat certain breast cancers. This drug is only used if a patient's cancer is tested for over-expression of the HER2/neu receptor. Two tissue-typing tests are used to screen patients for possible benefit from Herceptin treatment. The tissue tests are immunohistochemistry(IHC) and Fluorescence In Situ Hybridization(FISH). Only Her2+ patients will be treated with Herceptin therapy (trastuzumab)
  • Tyrosine kinase inhibitors such as imatinib (marketed as Gleevec) have been developed to treat chronic myeloid leukemia (CML), in which the BCR-ABL fusion gene (the product of a reciprocal translocation between chromosome 9 and chromosome 22) is present in >95% of cases and produces hyperactivated abl-driven protein signaling. These medications specifically inhibit the Ableson tyrosine kinase (ABL) protein and are thus a prime example of "rational drug design" based on knowledge of disease pathophysiology.
  • The FoundationOne CDx report produced by Foundation Medicine, which looks at genes in individual patients' tumor biopsies and recommends specific drugs
  • High mutation burden is indicative of response to immunotherapy, and also specific patterns of mutations have been associated with previous exposure to cytotoxic cancer drugs.

Population screening

Through the use of genomics (microarray), proteomics (tissue array), and imaging (fMRI, micro-CT) technologies, molecular-scale information about patients can be easily obtained. These so-called molecular biomarkers have proven powerful in disease prognosis, such as with cancer. The main three areas of cancer prediction fall under cancer recurrence, cancer susceptibility and cancer survivability. Combining molecular scale information with macro-scale clinical data, such as patients' tumor type and other risk factors, significantly improves prognosis. Consequently, given the use of molecular biomarkers, especially genomics, cancer prognosis or prediction has become very effective, especially when screening a large population. Essentially, population genomics screening can be used to identify people at risk for disease, which can assist in preventative efforts.

Genetic data can be used to construct polygenic scores, which estimate traits such as disease risk by summing the estimated effects of individual variants discovered through a GWA study. These have been used for a wide variety of conditions, such as cancer, diabetes, and coronary artery disease. Many genetic variants are associated with ancestry, and it remains a challenge to both generate accurate estimates and to decouple biologically relevant variants from those that are coincidentally associated. Estimates generated from one population do not usually transfer well to others, requiring sophisticated methods and more diverse and global data. Most studies have used data from those with European ancestry, leading to calls for more equitable genomics practices to reduce health disparities. Additionally, while polygenic scores have some predictive accuracy, their interpretations are limited to estimating an individual's percentile and translational research is needed for clinical use.

Challenges

As personalised medicine is practiced more widely, a number of challenges arise. The current approaches to intellectual property rights, reimbursement policies, patient privacy, data biases and confidentiality as well as regulatory oversight will have to be redefined and restructured to accommodate the changes personalised medicine will bring to healthcare. For instance, a survey performed in the UK concluded that 63% of UK adults are not comfortable with their personal data being used for the sake of utilizing AI in the medical field. Furthermore, the analysis of acquired diagnostic data is a recent challenge of personalized medicine and its implementation. For example, genetic data obtained from next-generation sequencing requires computer-intensive data processing prior to its analysis. In the future, adequate tools will be required to accelerate the adoption of personalised medicine to further fields of medicine, which requires the interdisciplinary cooperation of experts from specific fields of research, such as medicine, clinical oncology, biology, and artificial intelligence.

Regulatory oversight

The U.S. Food and Drug Administration (FDA) has started taking initiatives to integrate personalised medicine into their regulatory policies. In October 2013, the agency published a report entitled "Paving the Way for Personalized Medicine: FDA's role in a New Era of Medical Product Development," in which they outlined steps they would have to take to integrate genetic and biomarker information for clinical use and drug development. These included developing specific regulatory standards, research methods and reference materials. An example of the latter category they were working on is a "genomic reference library", aimed at improving quality and reliability of different sequencing platforms. A major challenge for those regulating personalized medicine is a way to demonstrate its effectiveness relative to the current standard of care. The new technology must be assessed for both clinical and cost effectiveness, and as of 2013, regulatory agencies had no standardized method.

Intellectual property rights

As with any innovation in medicine, investment and interest in personalised medicine is influenced by intellectual property rights. There has been a lot of controversy regarding patent protection for diagnostic tools, genes, and biomarkers. In June 2013, the U.S. Supreme Court ruled that natural occurring genes cannot be patented, while "synthetic DNA" that is edited or artificially- created can still be patented. The Patent Office is currently reviewing a number of issues related to patent laws for personalised medicine, such as whether "confirmatory" secondary genetic tests post initial diagnosis, can have full immunity from patent laws. Those who oppose patents argue that patents on DNA sequences are an impediment to ongoing research while proponents point to research exemption and stress that patents are necessary to entice and protect the financial investments required for commercial research and the development and advancement of services offered.

Reimbursement policies

Reimbursement policies will have to be redefined to fit the changes that personalised medicine will bring to the healthcare system. Some of the factors that should be considered are the level of efficacy of various genetic tests in the general population, cost-effectiveness relative to benefits, how to deal with payment systems for extremely rare conditions, and how to redefine the insurance concept of "shared risk" to incorporate the effect of the newer concept of "individual risk factors". The study, Barriers to the Use of Personalized Medicine in Breast Cancer, took two different diagnostic tests which are BRACAnalysis and Oncotype DX. These tests have over ten-day turnaround times which results in the tests failing and delays in treatments. Patients are not being reimbursed for these delays which results in tests not being ordered. Ultimately, this leads to patients having to pay out-of-pocket for treatments because insurance companies do not want to accept the risks involved.

Patient privacy and confidentiality

Perhaps the most critical issue with the commercialization of personalised medicine is the protection of patients. One of the largest issues is the fear and potential consequences for patients who are predisposed after genetic testing or found to be non-responsive towards certain treatments. This includes the psychological effects on patients due to genetic testing results. The right of family members who do not directly consent is another issue, considering that genetic predispositions and risks are inheritable. The implications for certain ethnic groups and presence of a common allele would also have to be considered.

Moreover, we could refer to the privacy issue at all layers of personalized medicine from discovery to treatment. One of the leading issues is the consent of the patients to have their information used in genetic testing algorithms primarily AI algorithms. The consent of the institution who is providing the data to be used is of prominent concern as well. In 2008, the Genetic Information Nondiscrimination Act (GINA) was passed in an effort to minimize the fear of patients participating in genetic research by ensuring that their genetic information will not be misused by employers or insurers. On February 19, 2015, FDA issued a press release titled: "FDA permits marketing of first direct-to-consumer genetic carrier test for Bloom syndrome.

Data biases

Data biases also play an integral role in personalized medicine. It is important to ensure that the sample of genes being tested come from different populations. This is to ensure that the samples do not exhibit the same human biases we use in decision making.

Consequently, if the designed algorithms for personalized medicine are biased, then the outcome of the algorithm will also be biased because of the lack of genetic testing in certain populations. For instance, the results from the Framingham Heart Study have led to biased outcomes of predicting the risk of cardiovascular disease. This is because the sample was tested only on white people and when applied to the non-white population, the results were biased with overestimation and underestimation risks of cardiovascular disease.

Implementation

Several issues must be addressed before personalized medicine can be implemented. Very little of the human genome has been analyzed, and even if healthcare providers had access to a patient's full genetic information, very little of it could be effectively leveraged into treatment. Challenges also arise when processing such large amounts of genetic data. Even with error rates as low as 1 per 100 kilobases, processing a human genome could have roughly 30,000 errors. This many errors, especially when trying to identify specific markers, can make discoveries and verifiability difficult. There are methods to overcome this, but they are computationally taxing and expensive. There are also issues from an effectiveness standpoint, as after the genome has been processed, function in the variations among genomes must be analyzed using genome-wide studies. While the impact of the SNPs discovered in these kinds of studies can be predicted, more work must be done to control for the vast amounts of variation that can occur because of the size of the genome being studied. In order to effectively move forward in this area, steps must be taken to ensure the data being analyzed is good, and a wider view must be taken in terms of analyzing multiple SNPs for a phenotype. The most pressing issue that the implementation of personalized medicine is to apply the results of genetic mapping to improve the healthcare system. This is not only due to the infrastructure and technology required for a centralized database of genome data, but also the physicians that would have access to these tools would likely be unable to fully take advantage of them. In order to truly implement a personalized medicine healthcare system, there must be an end-to-end change.

The Copenhagen Institute for Futures Studies and Roche set up FutureProofing Healthcare which produces a Personalised Health Index, rating different countries performance against 27 different indicators of personalised health across four categories called 'Vital Signs'. They have run conferences in many countries to examine their findings.

Spatial ability

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Spatial_ability Space Engineer...