Search This Blog

Thursday, November 17, 2022

Unconditional love

From Wikipedia, the free encyclopedia
 
Parental love is said to be the best example of unconditional love.

Unconditional love is known as affection without any limitations, or love without conditions. This term is sometimes associated with other terms such as true altruism or complete love. Each area of expertise has a certain way of describing unconditional love, but most will agree that it is that type of love which has no bounds and is unchanging.

In Christianity, unconditional love is thought to be part of the Four Loves; affection, friendship, eros, and charity. In ethology, or the study of animal behavior, unconditional love would refer to altruism, which in turn refers to the behavior by individuals that increases the fitness of another while decreasing the fitness of the individual committing the act. In psychology, unconditional love refers to a state of mind in which one has the goal of increasing the welfare of another, despite the lack of any evidence of benefit for oneself.

Conditional love

Some authors make a distinction between unconditional love and conditional love. In conditional love, love is "earned" on the basis of conscious or unconscious conditions being met by the lover, whereas in unconditional love, love is "given freely" to the loved one "no matter what". Loving is primary. Conditional love requires some kind of finite exchange, whereas unconditional love is seen as infinite and measureless.

Unconditional love should not be confused with unconditional dedication: unconditional dedication or "duty" refers to an act of the will irrespective of feelings (e.g. a person may consider that they have a duty to stay with someone); unconditional love is an act of the feelings irrespective of will.

Unconditional love separates the individual from their behavior. However, the individual may exhibit behaviors that are unacceptable in a particular situation.

Humanistic psychology

Humanistic psychologist Carl Rogers spoke of an unconditional positive regard and dedication towards one single support. Rogers stated that the individual needed an environment that provided them with genuineness, authenticity, openness, self-disclosure, acceptance, empathy, and approval. Rogers proposed this idea of Unconditional Positive Regard not only in social and familial situations, but also encouraged getting the healthy loving environment in therapy situations as well. It is important that in face-to-face therapy settings this environment is fostered along with empathy and understanding for the individual. It is through unconditional positive regard that change happens because the individual can feel that openness, love, and ability to be themselves again which fosters a true desire to change for the right reasons. 

Also, Abraham Maslow supported the unconditional love perspective by saying that in order to grow, an individual had to have a positive perspective of themselves. In Man's Search For Meaning, logotherapist and Holocaust survivor Viktor Frankl draws parallels between the human capacity to love unconditionally and living a meaningful life. Frankl writes: "Love is the only way to grasp another human being in the innermost core of his personality. No one can become fully aware of the essence of another human being unless he loves him. ... Furthermore, by his love, the loving person enables the beloved person to actualize ... potentialities." For Frankl, unconditional love is a means by which we enable and reach human potential.

Neurological basis

There has been some evidence to support a neural basis for unconditional love, showing that it stands apart from other types of love.

In a study conducted by Mario Beauregard and his colleagues, using an fMRI procedure, they studied the brain imaging of participants who were shown different sets of images either referring to "maternal love" (unconditional love) or "romantic love". Seven areas of the brain became active when these participants called to mind feelings of unconditional love. Three of these were similar to areas that became active when it came to romantic love. The other four active parts activated during the unconditional love portions of the experiment were different, showing certain brain regions associated with rewarding aspects, pleasurable (non-sexual) feelings, and human maternal behaviors. Through the associations made between the different regions, results show that the feeling of love for someone without the need of being rewarded is different from the feeling of romantic love.

Along with the idea of "mother love", which is commonly associated with unconditional love, a study found patterns in the neuroendocrine system and motivation-affective neural system. Using the fMRI procedure, mothers watched a video of themselves playing with their children in a familiar environment, like home. The procedure found part of the amygdala and nucleus accumbens were responsive on levels of emotion and empathy. Emotion and empathy (compassion) are descriptives of love, therefore it supports the idea that the neural occurrences are evidence of unconditional love.

Religious perspective

Christianity

In Christianity, the term "unconditional love" can be used to indicate God's love for a person irrespective of that person's love for God. This comes from the concept of God sending His only Son, Jesus Christ down from heaven to earth to die on a cross in order to take the punishment for all of humanity's sins. If someone chooses to believe in this, commonly called "The Gospel", then Jesus' price on the cross pays for their sins so they can freely enter into heaven, and not hell. The term is not explicitly used in the Bible, and advocates for God's conditional or unconditional love, using different passages or interpretations to support their point of view, are both encountered due to the different facets of God's nature. The cross is a clear indicator of God's unconditional love in that there is no way to earn one's way to heaven, one must simply believe. In all other religions cited below, there is a conditional striving to achieve a sense of unconditional love, based on one's own efforts and understanding. In Christianity, it all depends on Jesus, not the person's effort nor understanding. A passage in scriptures cites this "For it is by grace you have been saved, through faith—and this is not from yourselves, it is the gift of God—" Ephesians 2:8,9, NIV. God's discipline can be viewed as conditional based on people's choices, but His actual love through Jesus is unconditional, and this is where some may become confused. His salvation is a free gift, but His discipline, which is shaping of good character, can look more conditional. Ultimately, knowing God and free passage to heaven have already been supplied by a God of unconditional love, one can simply choose to believe in order to receive such love. The civil rights leader and Pastor, Dr. Martin Luther King Jr. was quoted as saying "I believe that unarmed truth and unconditional love will have the final word in reality".

Buddhism

In Buddhism one of the most important concepts is called "bodhicitta". There are two kinds of Bodhicitta. They are relative and absolute bodhicitta.

In relative bodhicitta, one learns about the desire to gain the understanding of unconditional love, which in Buddhism is expressed as loving-kindness and compassion. The point is to develop bodhicitta for all living (sentient) beings.

Absolute bodhicitta is a more esoteric tantric teaching. Understanding the principle of loving-kindness and compassion is expressed when one treats all living beings as if one was or had been (in former lives) their own mother. One's mother will do anything for the benefit of her child. The most loving of all relationships may be that between a mother and her child. Of course, if all beings treated all other living beings as they would their own child, then there would be much less enmity in this world.

The importance of this cannot be overstated. At every moment one has the opportunity to make a choice how to act, and to be completely mindful of one's actions means that in every interaction with another being one will consciously act with loving-kindness and compassion toward every other being, no matter what the nature of that interaction.

Hinduism

Hinduism and Buddhism, the Sanskrit word "bhakti" is apparently used by some to refer to unconditional love, even though its root meaning seems to be "participate". Bhakti or bhakthi is unconditional religious devotion of a devotee in worship of a divine.

Islam

In Islamic belief, unconditional love can only be directed to Allah. The highest spiritual attainment in Islam is related to the love of God. "Yet there are men who take (for worship) others besides God, as equal (with God): They love them as they should love God. But those of Faith are overflowing in their love for God."

O lovers! The religion of the love of God is not found in Islam alone.

In the realm of love, there is neither belief, nor unbelief.

In Islamic Sufism, unconditional love is the basis for the divine love Ishq-e-Haqeeqi, elaborated by many great Muslim saints to date. Prominent mystics explain the concept in its entirety and describe its hardcore reality.

Rabia of Basra was the one who first set forth the doctrine of divine love known as ishq-e-haqeeqi and is widely considered to be the most important of the early renunciants, one mode of piety that would eventually become labeled as Sufism.

She prayed:

O Lord, if I worship You because of Fear of Hell,
then burn me in Hell;

If I worship You because I desire Paradise,
then exclude me from Paradise;

But if I worship You for Yourself alone,
then deny me not your Eternal Beauty.

Ishq itself means to love God selflessly and unconditionally. For Rumi, "Sufism" itself is Ishq and not the path of asceticism (zuhd). According to Sultan Bahoo, Ishq means to serve God unconditionally by devoting one's entire life to Him and asking no reward in return.

Other religions

Neopaganism in general, and Wicca in particular, commonly use a traditional inspirational text Charge of the Goddess, which affirms that the Goddess's "law is love unto all beings".

Mohism, China around 500 BCE, bases its entire premise on the supremacy of such an element, comparing one's duty to the indiscriminate generosity of "The Sky", or "Heaven", in contrast to Confucianism, which based its model of society on family love and duty. Later schools engaged in much debate on exactly how unconditional one could be in actual society (cf. "...who is my neighbour?" in "The Good Samaritan" story of Jesus of Nazareth).

Unitarian Universalism, though not having a set religious creed or doctrine, generally accepts the belief that all human begins are worthy and in need of unconditional love though charity in the community and spiritual understanding. The Unitarian Universalist Association explicitly argues this in the Seven Principles, where the "inherent worth and dignity" of all humans is a regularly cited source arguing for unconditional love.

Neuroendocrinology

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Neuroendocrinology

Neuroendocrinology is the branch of biology (specifically of physiology) which studies the interaction between the nervous system and the endocrine system; i.e. how the brain regulates the hormonal activity in the body. The nervous and endocrine systems often act together in a process called neuroendocrine integration, to regulate the physiological processes of the human body. Neuroendocrinology arose from the recognition that the brain, especially the hypothalamus, controls secretion of pituitary gland hormones, and has subsequently expanded to investigate numerous interconnections of the endocrine and nervous systems.

The endocrine system consists of numerous glands throughout the body that produce and secrete hormones of diverse chemical structure, including peptides, steroids, and neuroamines. Collectively, hormones regulate many physiological processes. The neuroendocrine system is the mechanism by which the hypothalamus maintains homeostasis, regulating reproduction, metabolism, eating and drinking behaviour, energy utilization, osmolarity and blood pressure.

Neuroendocrine system

Hypothalamus

Hypothalamic interaction with the posterior and anterior pituitary glands. The hypothalamus produces the hormones oxytocin and vasopressin in its endocrine cells (left). These are released at nerve endings in the posterior pituitary gland and then secreted into the systemic circulation. The hypothalamus releases tropic hormones into the hypophyseal portal system to the anterior pituitary (right). The anterior pituitary then secretes trophic hormones into the circulation which elicit different responses from various target tissues. These responses then signal back to the hypothalamus and anterior pituitary to either stop producing or continue to produce their precursor signals.
 

The hypothalamus is commonly known as the relay center of the brain because of its role in integrating inputs from all areas of the brain and producing a specific response. In the neuroendocrine system, the hypothalamus receives electrical signals from different parts of the brain and translates those electrical signals into chemical signals in the form of hormones or releasing factors. These chemicals are then transported to the pituitary gland and from there to the systemic circulation.

Pituitary gland

The pituitary gland is divided into three lobes: the anterior pituitary, the intermediate pituitary lobe, and the posterior pituitary. The hypothalamus controls the anterior pituitary's hormone secretion by sending releasing factors, called tropic hormones, down the hypothalamo-hypophysial portal system. For example, thyrotropin-releasing hormone released by the hypothalamus in to the portal system stimulates the secretion of thyroid-stimulating hormone by the anterior pituitary.

The posterior pituitary is directly innervated by the hypothalamus; the hormones oxytocin and vasopressin are synthesized by neuroendocrine cells in the hypothalamus and stored at the nerve endings in the posterior pituitary. They are secreted directly into systemic circulation by the hypothalamic neurons.

Major neuroendocrine axes

Oxytocin and vasopressin (also called anti-diuretic hormone), the two neurohypophysial hormones of the posterior pituitary gland (the neurohypophysis), are secreted from the nerve endings of magnocellular neurosecretory cells into the systemic circulation. The cell bodies of the oxytocin and vasopressin neurons are in the paraventricular nucleus and supraoptic nucleus of the hypothalamus, respectively, and the electrical activity of these neurons is regulated by afferent synaptic inputs from other brain regions.

By contrast, the hormones of the anterior pituitary gland (the adenohypophysis) are secreted from endocrine cells that, in mammals, are not directly innervated, yet the secretion of these hormones (adrenocorticotrophic hormone, luteinizing hormone, follicle-stimulating hormone, thyroid-stimulating hormone, prolactin, and growth hormone) remains under the control of the hypothalamus. The hypothalamus controls the anterior pituitary gland via releasing factors and release-inhibiting factors; these are substances released by hypothalamic neurons into blood vessels at the base of the brain, at the median eminence. These vessels, the hypothalamo-hypophysial portal vessels, carry the hypothalamic factors to the anterior pituitary, where they bind to specific receptors on the surface of the hormone-producing cells.

For example, the secretion of growth hormone is controlled by two neuroendocrine systems: the growth hormone-releasing hormone (GHRH) neurons and the somatostatin neurons, which stimulate and inhibit GH secretion, respectively. The GHRH neurons are located in the arcuate nucleus of the hypothalamus, whereas the somatostatin cells involved in growth hormone regulation are in the periventricular nucleus. These two neuronal systems project axons to the median eminence, where they release their peptides into portal blood vessels for transport to the anterior pituitary. Growth hormone is secreted in pulses, which arise from alternating episodes of GHRH release and somatostatin release, which may reflect neuronal interactions between the GHRH and somatostatin cells, and negative feedback from growth hormone.

Functions

The neuroendocrine systems control reproduction in all its aspects, from bonding to sexual behaviour. They control spermatogenesis and the ovarian cycle, parturition, lactation, and maternal behaviour. They control the body's response to stress and infection. They regulate the body's metabolism, influencing eating and drinking behaviour, and influence how energy intake is utilised, that is, how fat is metabolised. They influence and regulate mood, body fluid and electrolyte homeostasis, and blood pressure.

The neurons of the neuroendocrine system are large; they are mini factories for producing secretory products; their nerve terminals are large and organised in coherent terminal fields; their output can often be measured easily in the blood; and what these neurons do and what stimuli they respond to are readily open to hypothesis and experiment. Hence, neuroendocrine neurons are good "model systems" for studying general questions, like "how does a neuron regulate the synthesis, packaging, and secretion of its product?" and "how is information encoded in electrical activity?"

History

Pioneers

Ernst and Berta Scharrer, of the University of Munich the Albert Einstein College of Medicine are credited as co-founders the field of neuroendocrinology with their initial observations and proposals in 1945 concerning neuropeptides.

Geoffrey Harris is considered by many to be the "father" of neuroendocrinology. Harris, the Dr. Lee's Professor of Anatomy at Oxford University, is credited with showing that the anterior pituitary gland of mammals is regulated by hormones secreted by hypothalamic neurons into the hypothalamohypophysial portal circulation. By contrast, the hormones of the posterior pituitary gland are secreted into the systemic circulation directly from the nerve endings of hypothalamic neurons. This seminal work was done in collaboration with Dora Jacobsohn of Lund University.

The first of these factors to be identified are thyrotropin-releasing hormone (TRH) and gonadotropin-releasing hormone (GnRH). TRH is a small peptide that stimulates the secretion of thyroid-stimulating hormone; GnRH (also called luteinizing hormone-releasing hormone) stimulates the secretion of luteinizing hormone and follicle-stimulating hormone.

Roger Guillemin, a medical student of Faculté de Médecine of Lyon, and Andrew W. Schally of Tulane University isolated these factors from the hypothalamus of sheep and pigs, and then identified their structures. Guillemin and Schally were awarded the Nobel Prize in Physiology and Medicine in 1977 for their contributions to understanding "the peptide hormone production of the brain".

In 1952, Andor Szentivanyi, of the University of South Florida, and Geza Filipp wrote the world's first research paper showing how neural control of immunity takes place through the hypothalamus.

Modern scope

Today, neuroendocrinology embraces a wide range of topics that arose directly or indirectly from the core concept of neuroendocrine neurons. Neuroendocrine neurons control the gonads, whose steroids, in turn, influence the brain, as do corticosteroids secreted from the adrenal gland under the influence of adrenocorticotrophic hormone. The study of these feedbacks became the province of neuroendocrinologists. The peptides secreted by hypothalamic neuroendocrine neurons into the blood proved to be released also into the brain, and the central actions often appeared to complement the peripheral actions. So understanding these central actions also became the province of neuroendocrinologists, sometimes even when these peptides cropped up in quite different parts of the brain that appeared to serve functions unrelated to endocrine regulation. Neuroendocrine neurons were discovered in the peripheral nervous system, regulating, for instance, digestion. The cells in the adrenal medulla that release adrenaline and noradrenaline proved to have properties between endocrine cells and neurons, and proved to be outstanding model systems for instance for the study of the molecular mechanisms of exocytosis. And these, too, have become, by extension, neuroendocrine systems.

Neuroendocrine systems have been important to our understanding of many basic principles in neuroscience and physiology, for instance, our understanding of stimulus-secretion coupling. The origins and significance of patterning in neuroendocrine secretion are still dominant themes in neuroendocrinology today.

Neuroendocrinology is also used as an integral part of understanding and treating neurobiological brain disorders. One example is the augmentation of the treatment of mood symptoms with thyroid hormone. Another is the finding of a transthyretin (thyroxine transport) problem in the cerebrospinal fluid of some patients diagnosed with schizophrenia.

Experimental techniques

Since the original experiments by Geoffrey Harris investigating the communication of the hypothalamus with the pituitary gland, much has been learned about the mechanistic details of this interaction. Various experimental techniques have been employed. Early experiments relied heavily on the electrophysiology techniques used by Hodgkin and Huxley. Recent approaches have incorporated various mathematical models to understand previously identified mechanisms and predict systemic response and adaptation under various circumstances.

Electrophysiology

Electrophysiology experiments were used in the early days of neuroendocrinology to identify the physiological happenings in the hypothalamus and the posterior pituitary especially. In 1950, Geoffrey Harris and Barry Cross outlined the oxytocin pathway by studying oxytocin release in response to electrical stimulation. In 1974, Walters and Hatton investigated the effect of water dehydration by electrically stimulating the supraoptic nucleus—the hypothalamic center responsible for the release of vasopressin. Glenn Hatton dedicated his career to studying the physiology of the Neurohypophyseal system, which involved studying the electrical properties of hypothalamic neurons. Doing so enabled investigation into the behavior of these neurons and the resulting physiological effects. Studying the electrical activity of neuroendocrine cells enabled the eventual distinction between central nervous neurons, neuroendocrine neurons, and endocrine cells.

Mathematical Models

Hodgkin-Huxley Model

The Hodgkin-Huxley model translates data about the current of a system at a specific voltage into time-dependent data describing the membrane potential. Experiments using this model typically rely on the same format and assumptions, but vary the differential equations to answer their particular questions. Much has been learned about vasopressin, GnRH, somatotrophs, corticotrophs, and lactotrophic hormones by employing this method.

Integrate-and-Fire Model

The integrate-and-fire model aims for mathematic simplicity in describing biological systems by focusing on, and only on the threshold activity of a neuron. By doing so, the model successfully reduces the complexity of a complicated system; however it ignores the actual mechanisms of action and replaces them with functions that define how the output of a system depends on its input. This model has been used to describe the release of hormones to the posterior pituitary gland, specifically oxytocin and vasopressin.

Functional or Mean Fields Model

The functional or mean fields model relies on the premise "simpler is better". It strives to reduce the complexity of modelling multi-faceted systems by using a single variable to describe an entire population of cells. The alternative would be to use a different set of variables for each population. When attempting to model a system where multiple populations of cells interact, using several sets quickly becomes overcomplicated. This model has been used to describe several systems, especially involving the reproductive cycle (menstrual cycles, luteinizing hormone, prolactin surges). Functional models also exist to represent cortisol secretion, and growth hormone secretion.

Neurochemistry

From Wikipedia, the free encyclopedia

Neurochemistry is the study of chemicals, including neurotransmitters and other molecules such as psychopharmaceuticals and neuropeptides, that control and influence the physiology of the nervous system. This particular field within neuroscience examines how neurochemicals influence the operation of neurons, synapses, and neural networks. Neurochemists analyze the biochemistry and molecular biology of organic compounds in the nervous system, and their roles in such neural processes including cortical plasticity, neurogenesis, and neural differentiation.

History

While neurochemistry as a recognized science is relatively new, the idea behind neurochemistry has been around since the 18th century. Originally, the brain had been thought to be a separate entity apart from the peripheral nervous system. Beginning in 1856, there was a string of research that refuted that idea. The chemical makeup of the brain was nearly identical to the makeup of the peripheral nervous system. The first large leap forward in the study of neurochemistry came from Johann Ludwig Wilhelm Thudichum, who is one of the pioneers in the field of "brain chemistry." He was one of the first to hypothesize that many neurological illnesses could be attributed to an imbalance of chemicals in the brain. He was also one of the first scientists to believe that through chemical means, the vast majority of neurological diseases could be treated, if not cured.

Irvine Page (1901-1991) was an American psychologist that published the first major textbook focusing on neurochemistry in 1937. He had also established the first department that was solely devoted to the study of neurochemistry in 1928 at the Munich Kaiser Wilhelm Institute for Psychiatry.

Back in the 1930s, neurochemistry was mostly referred to as "brain chemistry" and was mostly devoted to finding different chemical species without directly proposing their specific roles and functions in the nervous system. The first biochemical pathology test for any brain disease can be attributed to Maria Buscaino (1887-1978), a neuropsychiatrist who studied schizophrenia. She found that treating her patients' urine who had schizophrenia, extrapyramidal disorders, or amentia, with 5% silver nitrate produced a black precipitate linked with an abnormal level of amines. This became known as the "Buscaino Reaction."

In the 1950s, neurochemistry became a recognized scientific research discipline. The founding of neurochemistry as a discipline traces its origins to a series of "International Neurochemical Symposia", of which the first symposium volume published in 1954 was titled Biochemistry of the Developing Nervous System. These meetings led to the formation of the International Society for Neurochemistry and the American Society for Neurochemistry. These early gatherings discussed the tentative nature of possible neurotransmitter substances such as acetylcholine, histamine, substance P, and serotonin. By 1972, ideas were more concrete.

One of the first major successes in using chemicals to alter brain function was the L-DOPA experiment. In 1961, Walter Burkmayer injected L-DOPA into a patient with Parkinson's disease. Shortly after injection, the patient had a drastic reduction in tremors, and they were able to control their muscles in ways they hadn't been able to in a long time. The effect peaked within 2.5 hours and lasted approximately 24 hours.

Neurotransmitters and neuropeptides

The most important aspect of neurochemistry is the neurotransmitters and neuropeptides that comprise the chemical activity in the nervous system. There are many neurochemicals that are integral for proper neural functioning.

The neuropeptide oxytocin, synthesized in magnocellular neurosecretory cells, plays an important role in maternal behavior and sexual reproduction, particularly before and after birth. It is a precursor protein that is processed proteolytically to activate the neuropeptide as its shorter form. It is involved in the letdown reflex when mothers breastfeed, uterine contractions, and the hypothalamic-pituitary-adrenal axis where oxytocin inhibits the release of cortisol and adrenocorticotropic hormone.

Glutamate, which is the most abundant neurotransmitter, is an excitatory neurochemical, meaning that its release in the synaptic cleft causes the firing of an action potential. GABA, or Gamma-aminobutyric acid, is an inhibitory neurotransmitter. It binds to the plasma membrane in the synapses of neurons, triggering the influx of negatively charged chloride ions and the efflux of positively charged potassium ions. This exchange of ions leads to the hyperpolarization of the transmembrane potential of the neuron, which is caused by this negative change.

Dopamine is a neurotransmitter with much importance in the limbic system which regulates emotional function regulation. Dopamine has many roles in the brain including cognition, sleep, mood, milk production, movement, motivation, and reward.

Serotonin is a neurotransmitter that regulates mood, sleep, and other roles of the brain. It is a peripheral signal mediator and is found in the gastrointestinal tract as well as in blood. Research also suggests that serotonin may play an important role in liver regeneration.

Neurotypical neurochemistry

Neurochemistry is the study of the different types, structures, and functions of neurons and their chemical components. Chemical signaling between neurons is mediated by neurotransmitters, neuropeptides, hormones, neuromodulators, and many other types of signaling molecules. Many neurological diseases arise due to an imbalance in the brain's neurochemistry. For example, in Parkinson's Disease, there is an imbalance in the brain's level of dopamine. Medications include neurochemicals that are used to alter brain function and treat disorders of the brain. A typical neurochemist might study how the chemical components of the brain interact, neural plasticity, neural development, physical changes in the brain during disease, and changes in the brain during aging.

Neurochemistry of PTSD

One of the major areas of research within neurochemistry is looking at how post-traumatic stress disorder alters the brain. Neurotransmitter level fluctuations can dictate whether a PTSD episode occurs and how long the episode lasts. Dopamine has less of an effect than norepinephrine. Different neurochemicals can affect different parts of the brain. This allows drugs to be used for PTSD to not have an undesired effect on other brain processes. An effective medication to help alleviate nightmares associated with PTSD is Prazosin.

Signal transduction

From Wikipedia, the free encyclopedia
 
Simplified representation of major signal transduction pathways in mammals.

Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellular response. Proteins responsible for detecting stimuli are generally termed receptors, although in some cases the term sensor is used. The changes elicited by ligand binding (or signal sensing) in a receptor give rise to a biochemical cascade, which is a chain of biochemical events known as a signaling pathway.

When signaling pathways interact with one another they form networks, which allow cellular responses to be coordinated, often by combinatorial signaling events. At the molecular level, such responses include changes in the transcription or translation of genes, and post-translational and conformational changes in proteins, as well as changes in their location. These molecular events are the basic mechanisms controlling cell growth, proliferation, metabolism and many other processes. In multicellular organisms, signal transduction pathways regulate cell communication in a wide variety of ways.

Each component (or node) of a signaling pathway is classified according to the role it plays with respect to the initial stimulus. Ligands are termed first messengers, while receptors are the signal transducers, which then activate primary effectors. Such effectors are typically proteins and are often linked to second messengers, which can activate secondary effectors, and so on. Depending on the efficiency of the nodes, a signal can be amplified (a concept known as signal gain), so that one signaling molecule can generate a response involving hundreds to millions of molecules. As with other signals, the transduction of biological signals is characterised by delay, noise, signal feedback and feedforward and interference, which can range from negligible to pathological. With the advent of computational biology, the analysis of signaling pathways and networks has become an essential tool to understand cellular functions and disease, including signaling rewiring mechanisms underlying responses to acquired drug resistance.

Domino cascade is a daily life analogy of signal transduction cascade

Stimuli

3D Medical animation still showing signal transduction.

The basis for signal transduction is the transformation of a certain stimulus into a biochemical signal. The nature of such stimuli can vary widely, ranging from extracellular cues, such as the presence of EGF, to intracellular events, such as the DNA damage resulting from replicative telomere attrition. Traditionally, signals that reach the central nervous system are classified as senses. These are transmitted from neuron to neuron in a process called synaptic transmission. Many other intercellular signal relay mechanisms exist in multicellular organisms, such as those that govern embryonic development.

Ligands

The majority of signal transduction pathways involve the binding of signaling molecules, known as ligands, to receptors that trigger events inside the cell. The binding of a signaling molecule with a receptor causes a change in the conformation of the receptor, known as receptor activation. Most ligands are soluble molecules from the extracellular medium which bind to cell surface receptors. These include growth factors, cytokines and neurotransmitters. Components of the extracellular matrix such as fibronectin and hyaluronan can also bind to such receptors (integrins and CD44, respectively). In addition, some molecules such as steroid hormones are lipid-soluble and thus cross the plasma membrane to reach cytoplasmic or nuclear receptors. In the case of steroid hormone receptors, their stimulation leads to binding to the promoter region of steroid-responsive genes.

Not all classifications of signaling molecules take into account the molecular nature of each class member. For example, odorants belong to a wide range of molecular classes, as do neurotransmitters, which range in size from small molecules such as dopamine to neuropeptides such as endorphins. Moreover, some molecules may fit into more than one class, e.g. epinephrine is a neurotransmitter when secreted by the central nervous system and a hormone when secreted by the adrenal medulla.

Some receptors such as HER2 are capable of ligand-independent activation when overexpressed or mutated. This leads to constituitive activation of the pathway, which may or may not be overturned by compensation mechanisms. In the case of HER2, which acts as a dimerization partner of other EGFRs, constituitive activation leads to hyperproliferation and cancer.

Mechanical forces

The prevalence of basement membranes in the tissues of Eumetazoans means that most cell types require attachment to survive. This requirement has led to the development of complex mechanotransduction pathways, allowing cells to sense the stiffness of the substratum. Such signaling is mainly orchestrated in focal adhesions, regions where the integrin-bound actin cytoskeleton detects changes and transmits them downstream through YAP1. Calcium-dependent cell adhesion molecules such as cadherins and selectins can also mediate mechanotransduction. Specialised forms of mechanotransduction within the nervous system are responsible for mechanosensation: hearing, touch, proprioception and balance.

Osmolarity

Cellular and systemic control of osmotic pressure (the difference in osmolarity between the cytosol and the extracellular medium) is critical for homeostasis. There are three ways in which cells can detect osmotic stimuli: as changes in macromolecular crowding, ionic strength, and changes in the properties of the plasma membrane or cytoskeleton (the latter being a form of mechanotransduction). These changes are detected by proteins known as osmosensors or osmoreceptors. In humans, the best characterised osmosensors are transient receptor potential channels present in the primary cilium of human cells. In yeast, the HOG pathway has been extensively characterised.

Temperature

The sensing of temperature in cells is known as thermoception and is primarily mediated by transient receptor potential channels. Additionally, animal cells contain a conserved mechanism to prevent high temperatures from causing cellular damage, the heat-shock response. Such response is triggered when high temperatures cause the dissociation of inactive HSF1 from complexes with heat shock proteins Hsp40/Hsp70 and Hsp90. With help from the ncRNA hsr1, HSF1 then trimerizes, becoming active and upregulating the expression of its target genes. Many other thermosensory mechanisms exist in both prokaryotes and eukaryotes.

Light

In mammals, light controls the sense of sight and the circadian clock by activating light-sensitive proteins in photoreceptor cells in the eye's retina. In the case of vision, light is detected by rhodopsin in rod and cone cells. In the case of the circadian clock, a different photopigment, melanopsin, is responsible for detecting light in intrinsically photosensitive retinal ganglion cells.

Receptors

Receptors can be roughly divided into two major classes: intracellular and extracellular receptors.

Extracellular receptors

Extracellular receptors are integral transmembrane proteins and make up most receptors. They span the plasma membrane of the cell, with one part of the receptor on the outside of the cell and the other on the inside. Signal transduction occurs as a result of a ligand binding to the outside region of the receptor (the ligand does not pass through the membrane). Ligand-receptor binding induces a change in the conformation of the inside part of the receptor, a process sometimes called "receptor activation". This results in either the activation of an enzyme domain of the receptor or the exposure of a binding site for other intracellular signaling proteins within the cell, eventually propagating the signal through the cytoplasm.

In eukaryotic cells, most intracellular proteins activated by a ligand/receptor interaction possess an enzymatic activity; examples include tyrosine kinase and phosphatases. Often such enzymes are covalently linked to the receptor. Some of them create second messengers such as cyclic AMP and IP3, the latter controlling the release of intracellular calcium stores into the cytoplasm. Other activated proteins interact with adaptor proteins that facilitate signaling protein interactions and coordination of signaling complexes necessary to respond to a particular stimulus. Enzymes and adaptor proteins are both responsive to various second messenger molecules.

Many adaptor proteins and enzymes activated as part of signal transduction possess specialized protein domains that bind to specific secondary messenger molecules. For example, calcium ions bind to the EF hand domains of calmodulin, allowing it to bind and activate calmodulin-dependent kinase. PIP3 and other phosphoinositides do the same thing to the Pleckstrin homology domains of proteins such as the kinase protein AKT.

G protein–coupled receptors

G protein–coupled receptors (GPCRs) are a family of integral transmembrane proteins that possess seven transmembrane domains and are linked to a heterotrimeric G protein. With nearly 800 members, this is the largest family of membrane proteins and receptors in mammals. Counting all animal species, they add up to over 5000. Mammalian GPCRs are classified into 5 major families: rhodopsin-like, secretin-like, metabotropic glutamate, adhesion and frizzled/smoothened, with a few GPCR groups being difficult to classify due to low sequence similarity, e.g. vomeronasal receptors. Other classes exist in eukaryotes, such as the Dictyostelium cyclic AMP receptors and fungal mating pheromone receptors.

Signal transduction by a GPCR begins with an inactive G protein coupled to the receptor; the G protein exists as a heterotrimer consisting of Gα, Gβ, and Gγ subunits. Once the GPCR recognizes a ligand, the conformation of the receptor changes to activate the G protein, causing Gα to bind a molecule of GTP and dissociate from the other two G-protein subunits. The dissociation exposes sites on the subunits that can interact with other molecules. The activated G protein subunits detach from the receptor and initiate signaling from many downstream effector proteins such as phospholipases and ion channels, the latter permitting the release of second messenger molecules. The total strength of signal amplification by a GPCR is determined by the lifetimes of the ligand-receptor complex and receptor-effector protein complex and the deactivation time of the activated receptor and effectors through intrinsic enzymatic activity; e.g. via protein kinase phosphorylation or b-arrestin-dependent internalization.

A study was conducted where a point mutation was inserted into the gene encoding the chemokine receptor CXCR2; mutated cells underwent a malignant transformation due to the expression of CXCR2 in an active conformation despite the absence of chemokine-binding. This meant that chemokine receptors can contribute to cancer development.

Tyrosine, Ser/Thr and Histidine-specific protein kinases

Receptor tyrosine kinases (RTKs) are transmembrane proteins with an intracellular kinase domain and an extracellular domain that binds ligands; examples include growth factor receptors such as the insulin receptor. To perform signal transduction, RTKs need to form dimers in the plasma membrane; the dimer is stabilized by ligands binding to the receptor. The interaction between the cytoplasmic domains stimulates the autophosphorylation of tyrosine residues within the intracellular kinase domains of the RTKs, causing conformational changes. Subsequent to this, the receptors' kinase domains are activated, initiating phosphorylation signaling cascades of downstream cytoplasmic molecules that facilitate various cellular processes such as cell differentiation and metabolism. Many Ser/Thr and dual-specificity protein kinases are important for signal transduction, either acting downstream of [receptor tyrosine kinases], or as membrane-embedded or cell-soluble versions in their own right. The process of signal transduction involves around 560 known protein kinases and pseudokinases, encoded by the human kinome.

As is the case with GPCRs, proteins that bind GTP play a major role in signal transduction from the activated RTK into the cell. In this case, the G proteins are members of the Ras, Rho, and Raf families, referred to collectively as small G proteins. They act as molecular switches usually tethered to membranes by isoprenyl groups linked to their carboxyl ends. Upon activation, they assign proteins to specific membrane subdomains where they participate in signaling. Activated RTKs in turn activate small G proteins that activate guanine nucleotide exchange factors such as SOS1. Once activated, these exchange factors can activate more small G proteins, thus amplifying the receptor's initial signal. The mutation of certain RTK genes, as with that of GPCRs, can result in the expression of receptors that exist in a constitutively activated state; such mutated genes may act as oncogenes.

Histidine-specific protein kinases are structurally distinct from other protein kinases and are found in prokaryotes, fungi, and plants as part of a two-component signal transduction mechanism: a phosphate group from ATP is first added to a histidine residue within the kinase, then transferred to an aspartate residue on a receiver domain on a different protein or the kinase itself, thus activating the aspartate residue.

Integrins

An overview of integrin-mediated signal transduction, adapted from Hehlgens et al. (2007).

Integrins are produced by a wide variety of cells; they play a role in cell attachment to other cells and the extracellular matrix and in the transduction of signals from extracellular matrix components such as fibronectin and collagen. Ligand binding to the extracellular domain of integrins changes the protein's conformation, clustering it at the cell membrane to initiate signal transduction. Integrins lack kinase activity; hence, integrin-mediated signal transduction is achieved through a variety of intracellular protein kinases and adaptor molecules, the main coordinator being integrin-linked kinase. As shown in the adjacent picture, cooperative integrin-RTK signaling determines the timing of cellular survival, apoptosis, proliferation, and differentiation.

Important differences exist between integrin-signaling in circulating blood cells and non-circulating cells such as epithelial cells; integrins of circulating cells are normally inactive. For example, cell membrane integrins on circulating leukocytes are maintained in an inactive state to avoid epithelial cell attachment; they are activated only in response to stimuli such as those received at the site of an inflammatory response. In a similar manner, integrins at the cell membrane of circulating platelets are normally kept inactive to avoid thrombosis. Epithelial cells (which are non-circulating) normally have active integrins at their cell membrane, helping maintain their stable adhesion to underlying stromal cells that provide signals to maintain normal functioning.

In plants, there are no bona fide integrin receptors identified to date; nevertheless, several integrin-like proteins were proposed based on structural homology with the metazoan receptors. Plants contain integrin-linked kinases that are very similar in their primary structure with the animal ILKs. In the experimental model plant Arabidopsis thaliana, one of the integrin-linked kinase genes, ILK1, has been shown to be a critical element in the plant immune response to signal molecules from bacterial pathogens and plant sensitivity to salt and osmotic stress. ILK1 protein interacts with the high-affinity potassium transporter HAK5 and with the calcium sensor CML9.

Toll-like receptors

When activated, toll-like receptors (TLRs) take adapter molecules within the cytoplasm of cells in order to propagate a signal. Four adaptor molecules are known to be involved in signaling, which are Myd88, TIRAP, TRIF, and TRAM. These adapters activate other intracellular molecules such as IRAK1, IRAK4, TBK1, and IKKi that amplify the signal, eventually leading to the induction or suppression of genes that cause certain responses. Thousands of genes are activated by TLR signaling, implying that this method constitutes an important gateway for gene modulation.

Ligand-gated ion channels

A ligand-gated ion channel, upon binding with a ligand, changes conformation to open a channel in the cell membrane through which ions relaying signals can pass. An example of this mechanism is found in the receiving cell of a neural synapse. The influx of ions that occurs in response to the opening of these channels induces action potentials, such as those that travel along nerves, by depolarizing the membrane of post-synaptic cells, resulting in the opening of voltage-gated ion channels.

An example of an ion allowed into the cell during a ligand-gated ion channel opening is Ca2+; it acts as a second messenger initiating signal transduction cascades and altering the physiology of the responding cell. This results in amplification of the synapse response between synaptic cells by remodelling the dendritic spines involved in the synapse.

Intracellular receptors

Intracellular receptors, such as nuclear receptors and cytoplasmic receptors, are soluble proteins localized within their respective areas. The typical ligands for nuclear receptors are non-polar hormones like the steroid hormones testosterone and progesterone and derivatives of vitamins A and D. To initiate signal transduction, the ligand must pass through the plasma membrane by passive diffusion. On binding with the receptor, the ligands pass through the nuclear membrane into the nucleus, altering gene expression.

Activated nuclear receptors attach to the DNA at receptor-specific hormone-responsive element (HRE) sequences, located in the promoter region of the genes activated by the hormone-receptor complex. Due to their enabling gene transcription, they are alternatively called inductors of gene expression. All hormones that act by regulation of gene expression have two consequences in their mechanism of action; their effects are produced after a characteristically long period of time and their effects persist for another long period of time, even after their concentration has been reduced to zero, due to a relatively slow turnover of most enzymes and proteins that would either deactivate or terminate ligand binding onto the receptor.

Nucleic receptors have DNA-binding domains containing zinc fingers and a ligand-binding domain; the zinc fingers stabilize DNA binding by holding its phosphate backbone. DNA sequences that match the receptor are usually hexameric repeats of any kind; the sequences are similar but their orientation and distance differentiate them. The ligand-binding domain is additionally responsible for dimerization of nucleic receptors prior to binding and providing structures for transactivation used for communication with the translational apparatus.

Steroid receptors are a subclass of nuclear receptors located primarily within the cytosol. In the absence of steroids, they associate in an aporeceptor complex containing chaperone or heatshock proteins (HSPs). The HSPs are necessary to activate the receptor by assisting the protein to fold in a way such that the signal sequence enabling its passage into the nucleus is accessible. Steroid receptors, on the other hand, may be repressive on gene expression when their transactivation domain is hidden. Receptor activity can be enhanced by phosphorylation of serine residues at their N-terminal as a result of another signal transduction pathway, a process called crosstalk.

Retinoic acid receptors are another subset of nuclear receptors. They can be activated by an endocrine-synthesized ligand that entered the cell by diffusion, a ligand synthesised from a precursor like retinol brought to the cell through the bloodstream or a completely intracellularly synthesised ligand like prostaglandin. These receptors are located in the nucleus and are not accompanied by HSPs. They repress their gene by binding to their specific DNA sequence when no ligand binds to them, and vice versa.

Certain intracellular receptors of the immune system are cytoplasmic receptors; recently identified NOD-like receptors (NLRs) reside in the cytoplasm of some eukaryotic cells and interact with ligands using a leucine-rich repeat (LRR) motif similar to TLRs. Some of these molecules like NOD2 interact with RIP2 kinase that activates NF-κB signaling, whereas others like NALP3 interact with inflammatory caspases and initiate processing of particular cytokines like interleukin-1β.

Second messengers

First messengers are the signaling molecules (hormones, neurotransmitters, and paracrine/autocrine agents) that reach the cell from the extracellular fluid and bind to their specific receptors. Second messengers are the substances that enter the cytoplasm and act within the cell to trigger a response. In essence, second messengers serve as chemical relays from the plasma membrane to the cytoplasm, thus carrying out intracellular signal transduction.

Calcium

The release of calcium ions from the endoplasmic reticulum into the cytosol results in its binding to signaling proteins that are then activated; it is then sequestered in the smooth endoplasmic reticulum and the mitochondria. Two combined receptor/ion channel proteins control the transport of calcium: the InsP3-receptor that transports calcium upon interaction with inositol triphosphate on its cytosolic side; and the ryanodine receptor named after the alkaloid ryanodine, similar to the InsP3 receptor but having a feedback mechanism that releases more calcium upon binding with it. The nature of calcium in the cytosol means that it is active for only a very short time, meaning its free state concentration is very low and is mostly bound to organelle molecules like calreticulin when inactive.

Calcium is used in many processes including muscle contraction, neurotransmitter release from nerve endings, and cell migration. The three main pathways that lead to its activation are GPCR pathways, RTK pathways, and gated ion channels; it regulates proteins either directly or by binding to an enzyme.

Lipid messengers

Lipophilic second messenger molecules are derived from lipids residing in cellular membranes; enzymes stimulated by activated receptors activate the lipids by modifying them. Examples include diacylglycerol and ceramide, the former required for the activation of protein kinase C.

Nitric oxide

Nitric oxide (NO) acts as a second messenger because it is a free radical that can diffuse through the plasma membrane and affect nearby cells. It is synthesised from arginine and oxygen by the NO synthase and works through activation of soluble guanylyl cyclase, which when activated produces another second messenger, cGMP. NO can also act through covalent modification of proteins or their metal co-factors; some have a redox mechanism and are reversible. It is toxic in high concentrations and causes damage during stroke, but is the cause of many other functions like the relaxation of blood vessels, apoptosis, and penile erections.

Redox signaling

In addition to nitric oxide, other electronically activated species are also signal-transducing agents in a process called redox signaling. Examples include superoxide, hydrogen peroxide, carbon monoxide, and hydrogen sulfide. Redox signaling also includes active modulation of electronic flows in semiconductive biological macromolecules.

Cellular responses

Gene activations and metabolism alterations are examples of cellular responses to extracellular stimulation that require signal transduction. Gene activation leads to further cellular effects, since the products of responding genes include instigators of activation; transcription factors produced as a result of a signal transduction cascade can activate even more genes. Hence, an initial stimulus can trigger the expression of a large number of genes, leading to physiological events like the increased uptake of glucose from the blood stream and the migration of neutrophils to sites of infection. The set of genes and their activation order to certain stimuli is referred to as a genetic program.

Mammalian cells require stimulation for cell division and survival; in the absence of growth factor, apoptosis ensues. Such requirements for extracellular stimulation are necessary for controlling cell behavior in unicellular and multicellular organisms; signal transduction pathways are perceived to be so central to biological processes that a large number of diseases are attributed to their dysregulation. Three basic signals determine cellular growth:

  • Stimulatory (growth factors)
    • Transcription dependent response
      For example, steroids act directly as transcription factor (gives slow response, as transcription factor must bind DNA, which needs to be transcribed. Produced mRNA needs to be translated, and the produced protein/peptide can undergo posttranslational modification (PTM))
    • Transcription independent response
      For example, epidermal growth factor (EGF) binds the epidermal growth factor receptor (EGFR), which causes dimerization and autophosphorylation of the EGFR, which in turn activates the intracellular signaling pathway.
  • Inhibitory (cell-cell contact)
  • Permissive (cell-matrix interactions)

The combination of these signals is integrated into altered cytoplasmic machinery which leads to altered cell behaviour.

Major pathways

How to read signal transduction diagrams, what does normal arrow and flathead arrow means.
 
Elements of Signal transduction cascade networking

Following are some major signaling pathways, demonstrating how ligands binding to their receptors can affect second messengers and eventually result in altered cellular responses.

History

Occurrence of the term "signal transduction" in MEDLINE-indexed papers since 1977

The earliest notion of signal transduction can be traced back to 1855, when Claude Bernard proposed that ductless glands such as the spleen, the thyroid and adrenal glands, were responsible for the release of "internal secretions" with physiological effects. Bernard's "secretions" were later named "hormones" by Ernest Starling in 1905. Together with William Bayliss, Starling had discovered secretin in 1902. Although many other hormones, most notably insulin, were discovered in the following years, the mechanisms remained largely unknown.

The discovery of nerve growth factor by Rita Levi-Montalcini in 1954, and epidermal growth factor by Stanley Cohen in 1962, led to more detailed insights into the molecular basis of cell signaling, in particular growth factors. Their work, together with Earl Wilbur Sutherland's discovery of cyclic AMP in 1956, prompted the redefinition of endocrine signaling to include only signaling from glands, while the terms autocrine and paracrine began to be used. Sutherland was awarded the 1971 Nobel Prize in Physiology or Medicine, while Levi-Montalcini and Cohen shared it in 1986.

In 1970, Martin Rodbell examined the effects of glucagon on a rat's liver cell membrane receptor. He noted that guanosine triphosphate disassociated glucagon from this receptor and stimulated the G-protein, which strongly influenced the cell's metabolism. Thus, he deduced that the G-protein is a transducer that accepts glucagon molecules and affects the cell. For this, he shared the 1994 Nobel Prize in Physiology or Medicine with Alfred G. Gilman. Thus, the characterization of RTKs and GPCRs led to the formulation of the concept of "signal transduction", a word first used in 1972. Some early articles used the terms signal transmission and sensory transduction. In 2007, a total of 48,377 scientific papers—including 11,211 review papers—were published on the subject. The term first appeared in a paper's title in 1979. Widespread use of the term has been traced to a 1980 review article by Rodbell:[60][66] Research papers focusing on signal transduction first appeared in large numbers in the late 1980s and early 1990s.

Signal transduction in Immunology

The purpose of this section is to briefly describe some developments in immunology in the 1960s and 1970s, relevant to the initial stages of transmembrane signal transduction, and how they impacted our understanding of immunology, and ultimately of other areas of cell biology.

The relevant events begin with the sequencing of myeloma protein light chains, which are found in abundance in the urine of individuals with multiple myeloma. Biochemical experiments revealed that these so-called Bence Jones proteins consisted of 2 discrete domains –one that varied from one molecule to the next (the V domain) and one that did not (the Fc domain or the Fragment crystallizable region). An analysis of multiple V region sequences by Wu and Kabat  identified locations within the V region that were hypervariable and which, they hypothesized, combined in the folded protein to form the antigen recognition site. Thus, within a relatively short time a plausible model was developed for the molecular basis of immunological specificity, and for mediation of biological function through the Fc domain. Crystallization of an IgG molecule soon followed) confirming the inferences based on sequencing, and providing an understanding of immunological specificity at the highest level of resolution.

The biological significance of these developments was encapsulated in the theory of clonal selection which holds that a B cell has on its surface immunoglobulin receptors whose antigen-binding site is identical to that of antibodies that are secreted by the cell when it encounters an antigen, and more specifically a particular B cell clone secretes antibodies with identical sequences. The final piece of the story, the Fluid mosaic model of the plasma membrane provided all the ingredients for a new model for the initiation of signal transduction; viz, receptor dimerization.

The first hints of this were obtained by Becker et al  who demonstrated that the extent to which human basophils—for which bivalent Immunoglobulin E (IgE) functions as a surface receptor – degranulate, depends on the concentration of anti IgE antibodies to which they are exposed, and results in a redistribution of surface molecules, which is absent when monovalent ligand is used. The latter observation was consistent with earlier findings by Fanger et al. These observations tied a biological response to events and structural details of molecules on the cell surface. A preponderance of evidence soon developed that receptor dimerization initiates responses in a variety of cell types, including B cells.

Such observations led to a number of theoretical (mathematical) developments. The first of these was a simple model proposed by Bell  which resolved an apparent paradox: clustering forms stable networks; i.e. binding is essentially irreversible, whereas the affinities of antibodies secreted by B cells increase as the immune response progresses. A theory of the dynamics of cell surface clustering on lymphocyte membranes was developed by DeLisi and Perelson  who found the size distribution of clusters as a function of time, and its dependence on the affinity and valence of the ligand. Subsequent theories for basophils and mast cells were developed by Goldstein and Sobotka and their collaborators, all aimed at the analysis of dose-response patterns of immune cells and their biological correlates. For a recent review of clustering in immunological systems see.

Ligand binding to cell surface receptors is also critical to motility, a phenomenon that is best understood in single-celled organisms. An example is a detection and response to concentration gradients by bacteria -–the classic mathematical theory appearing in.

Representation of a Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Representation_of_a_Lie_group...