Type A and Type B personality hypothesis describes two contrasting personality types.
In this hypothesis, personalities that are more competitive, highly
organized, ambitious, impatient, highly aware of time management, or
aggressive are labeled Type A, while more relaxed, "receptive", less
"neurotic" and "frantic" personalities are labeled Type B.
The two cardiologists, Meyer Friedman and Ray Rosenman, who developed this theory came to believe that Type A personalities had a greater chance of developing coronary heart disease. Following the results of further studies and considerable controversy about the role of the tobacco industry
funding of early research in this area, some reject, either partially
or completely, the link between Type A personality and coronary disease.
Nevertheless, this research had a significant effect on the development
of the health psychology field, in which psychologists look at how an individual's mental state affects physical health.
History
Type A personality behavior was first described as a potential risk factor for heart disease in the 1950s by cardiologistsMeyer Friedman and Ray Rosenman.
They credit their insight to an upholsterer who called to their
attention the peculiar fact that the chairs in their waiting rooms were
only worn out on the front edge of the seat.
After an eight-and-a-half-year-long study of healthy men between the
ages of 35 and 59, Friedman and Rosenman estimated that Type A behavior
more than doubled the risk of coronary heart disease in otherwise healthy individuals.
The individuals enrolled in this study were followed well beyond the
original time frame of the study. Participants were asked to fill out a
questionnaire, that asked questions like "Do you feel guilty if you use
spare time to relax?" and "Do you generally move, walk, and eat
rapidly?"
Subsequent analysis indicated that although Type A personality is
associated with the incidence of coronary heart disease, it does not
seem to be a risk factor for mortality.
It was originally called 'Type A Personality' by Friedman and Roseman,
it has now been conceptualized as the Type A behavior pattern.
The types
Type A
The hypothesis describes Type A individuals as outgoing, ambitious, rigidly organized, highly status-conscious, impatient, anxious, proactive, and concerned with time management. People with Type A personalities are often high-achieving "workaholics". They push themselves with deadlines, and hate both delays and ambivalence. People with Type A personalities experience more job-related stress and less job satisfaction. They tend to set high expectations for themselves, and may believe others have these same high expectations of them as well.
Interestingly, those with Type A personalities do not always outperform
those with Type B personalities. Depending on the task and the
individual's sense of time urgency and control, it can lead to poor
results when there are complex decisions to be made. However, research has shown that Type A individuals are in general associated with higher performance and productivity. Moreover, Type A students tend to earn higher grades than Type B students,
and Type-A faculty members were shown to be more productive than their
Type B behavior counterparts (Taylor, Locke, Lee, & Gist, 1984).
In his 1996 book dealing with extreme Type A behavior, Type A Behavior: Its Diagnosis and Treatment, Friedman
suggests that dangerous Type A behavior is expressed through three
major symptoms: (1) free-floating hostility, which can be triggered by
even minor incidents; (2) time urgency and impatience, which causes irritation and exasperation usually described as being "short-fused"; and (3) a competitivedrive, which causes stress
and an achievement-driven mentality. The first of these symptoms is
believed to be covert and therefore less observable, while the other two
are more overt.
Type A people were said to be hasty, impatient, impulsive, hyperalert, potentially hostile, and angry.
Research has also shown that Type A personalities may be used to deal
with reality or avoiding difficult realizations. Therefore, those with
Type A may use certain defenses or ways of dealing with reality to avoid
difficult realizations.
For example, one study found that the those with Type A personality are
more likely to show higher levels of denial, than Type B, in stressful
situations.
However, Type A personality are also known to be more capable of
multitasking, being competitive, having ambition, and being more focused
on their goals than Type B.
There are two main methods to assessing Type A behavior, the first being the SI and the second being the Jenkins Activity Survey (JAS).
The SI assessment involves an interviewer measuring a person's
emotional, nonverbal and verbal responses (expressive style). The JAS
involves a self-questionnaire with three main categories: Speed and
Impatience, Job Involvement, and Hard-Driving Competitiveness.
Individuals with Type A personalities have often been linked to
higher rates of coronary heart disease, higher morbidity rates, and
other undesirable physical outcomes.
Type B
Type B is
a behavior pattern that is lacking in Type A behaviors. A-B personality
is a continuum where one either leans to be more Type A or Non Type A
(Type B).
The hypothesis describes Type B individuals as a contrast to
those of Type A. Type B personalities, by definition, are noted to live
at lower stress levels. They typically work steadily and may enjoy
achievement, although they have a greater tendency to disregard physical
or mental stress when they do not achieve. When faced with competition,
they may focus less on winning or losing than their Type A
counterparts, and more on enjoying the game regardless of winning or
losing. Type B individuals are also more likely to have a poorer sense of time.
Type B personality types are more tolerant than individuals in the Type A category.
This can be evident through their relationship style that members of
upper management prefer. Type B individuals can "...see things from a
global perspective, encourage teamwork, and exercise patience in
decision making..."
Interactions between Type A and Type B
Type
A individuals' proclivity for competition and aggression is illustrated
in their interactions with other Type As and Type Bs. When playing a
modified Prisoner's Dilemma
game, Type A individuals elicited more competitiveness and angry
feelings from both Type A and Type B opponents than did the Type B
individuals. Type A individuals punished their Type A counterparts more
than their Type B counterparts, and more than Type Bs punished other
Type Bs. The rivalry between Type A individuals was shown by more
aggressive behavior in their interactions, including initial antisocial
responses, refusal to cooperate, verbal threats, and behavioral
challenges.
A common misconception is that having a Type A personality is
better than having a Type B personality. This largely comes into play in
the workforce because people with Type A personalities are often viewed
as very hardworking, highly motivated, and competitive, while Type B
personalities often don't feel a sense of urgency to get projects
completed and are more relaxed and easy-going. In reality, both personality types are required and bring their own set of strengths to the workplace.
Criticism
Friedman et al. (1986)
conducted a randomized controlled trial on 862 male and female
post-myocardial infarction patients, ruling out (by probabilistic
equivalence) diet and other confounds. Subjects in the control group
received group cardiac counseling, and subjects in the treatment group
received cardiac counseling plus Type-A counseling, and a comparison
group received no group counseling of any kind. The recurrence rate was
21% in the control group and 13% in the treatment group, a strong and
statistically significant (p < .005) finding, whereas the
comparison group experienced a 28% recurrence rate. The investigative
studies following Friedman and Rosenman's discovery compared Type A
behavior to independent coronary risk factors such as hypertension and
smoking; in contrast, the results here suggest that the negative effects
on cardiovascular health associated with Type A personality can be
mitigated by modifying Type A behavior patterns.
Funding by tobacco companies
Further
discrediting the so-called Type A Behavior Pattern (TABP), a study from
2012 – based on searching the Legacy Tobacco Documents Library –
suggests the phenomenon of initially promising results followed by
negative findings to be partly explained by the tobacco industry's
involvement in TABP research to undermine the scientific evidence on
smoking and health. Documents indicate that around 1959, the tobacco
industry first became interested in the TABP when the Tobacco Institute
Research Committee received an application for funding from New York
University in order to investigate the relationship between smoking and
personality.
The industry's interest in TABP lasted at least four decades until the
late 1990s, involving substantial funding to key researchers encouraged
to prove smoking to simply correlate with a personality type prone to
coronary heart disease (CHD) and cancer.
Hence, until the early 1980s, the industry's strategy consisted of
suggesting the risks of smoking to be caused by psychological
characteristics of individual smokers rather than tobacco products by
deeming the causes of cancer to be multifactorial with stress as a key
contributing factor. Philip Morris (today Altria) and RJ Reynolds
helped generate substantial evidence to support these claims by funding
workshops and research aiming to educate about and alter TABP to reduce
risks of CHD and cancer. Moreover, Philip Morris primarily funded the
Meyer Friedman Institute, e.g. conducting the "crown-jewel" trial on the
effectiveness of reducing TABP whose expected findings could discredit
studies associating smoking with CHD and cancer but failing to control
for Type A behavior.
In 1994, Friedman wrote to the US Occupational Safety and Health Administration
criticising restrictions on indoor smoking to reduce CHD, claiming the
evidence remained unreliable since it did not account for the
significant confounder of Type A behavior, although by then, TABP had
proven to be significant in only three of twelve studies. Though
apparently unpaid for, this letter was approved by and blind-copied to
Philip Morris, and Friedman (falsely) claimed to receive funding largely
from the National Heart, Lung and Blood Institute.
When TABP finally became untenable, Philip Morris supported research on its hostility component,
allowing Vice President Jetson Lincoln to explain passive smoking
lethality by the stress exerted on a non-smoking spouse through media
claiming the smoking spouse to be slowly killing themselves.
When examining the most recent review on TABP and CHD in this light,
the close relationship to the tobacco industry becomes evident: of
thirteen etiologic studies in the review, only four reported positive
findings,
three of which had a direct or indirect link to the industry. Also on
the whole most TABP studies had no relationship to the tobacco lobby but
the majority of those with positive findings did. Furthermore, TABP was used as a litigation defence, similar to psychosocial stress.
Hence, Petticrew et al. proved the tobacco industry to have
substantially helped generate the scientific controversy on TABP,
contributing to the (in lay circles) enduring popularity and prejudice
for Type A personality even though it has been scientifically disproven.
Other issues
Some scholars argue that Type A behavior is not a good predictor of coronary heart disease. According to research by Redford Williams of Duke University, the hostility component of Type A personality is the only significant risk factor.
Thus, it is a high level of expressed anger and hostility, not the
other elements of Type A behavior, that constitutes the problem.
Research done by Hecker et al. (1988) showed that the ‘hostility’
component of the Type A description was predictive of cardiac disease.
As time continued, more research was conducted which focused on
different components of type A behavior such as hostility, depression,
and anxiety predicting cardiac disease.
The initial study that pointed to the association of Type A
personality and heart attacks had a massive number of questions under
consideration. When there are a lot of questions there is a high
probability of a false positive. A study undertaken by the U.S. National
Institute of Aging, Sardinian and Italian researchers, as well as
bio-statisticians from the University of Michigan, had specifically
tested for a direct relationship between coronary heart disease and Type
A personalities, and the results had indicated that no such relation
exists.
A simple explanation is that the initial finding was chance due to
multiple questions being under consideration. Those considerations may
have changed.
Other studies
A study (that later was questioned for nonplausible results and considered unsafe publication) was performed that tested the effect of psychosocial variables, in particular personality and stress, as risk factors for cancer and coronary heart disease (CHD).
In this study, four personality types were recorded. Type 1 personality
is cancer-prone, Type 2 is CHD-prone, Type 3 is alternating between
behaviors characteristic of Types 1 and 2, and Type 4 is a healthy,
autonomous type hypothesized to survive best. The data suggest that the
Type 1 probands die mainly from cancer, type 2 from CHD, whereas Type 3
and especially Type 4 probands show a much lower death rate. Two
additional types of personalities were measured Type 5 and Type 6. Type 5
is a rational anti-emotional type, which shows characteristics common
to Type 1 and Type 2. Type 6 personality shows psychopathic tendencies
and is prone to drug addiction and AIDS.
While most studies attempt to show the correlation between
personality types and coronary heart disease, studies (that also later
were questioned for non plausible results and were considered unsafe)
suggested that mental attitudes constitute an important prognostic
factor for cancer and that as a method of treatment for cancer-prone
patients, behavior therapy should be used.
The patient is taught to express his/her emotions more freely, in a
socially acceptable manner, to become autonomous and be able to stand up
for his/her rights. Behavior therapy would also teach them how to cope
with stress-producing situations more successfully. The effectiveness of
therapy in preventing death in cancer and CHD is evident.
The statistical data associated with higher death rates is impressive.
Other measures of therapy have been attempted, such as group therapy.
The effects were not as dramatic as behavior therapy, but still showed
improvement in preventing death among cancer and CHD patients.
From the study above, several conclusions have been made. A
relationship between personality and cancer exists, along with a
relationship between personality and coronary heart disease. Personality
type acts as a risk factor for diseases and interacts synergistically
with other risk factors, such as smoking and heredity. It has been
statistically proven that behavior therapy can significantly reduce the
likelihood of cancer or coronary heart disease mortality.
Studies suggest that both body and mental disease arise from each
other. Mental disorders arise from physical causes, and likewise,
physical disorders arise from mental causes. While Type A personality
did not show a strong direct relationship between its attributes and the
cause of coronary heart disease, other types of personalities have
shown strong influences on both cancer-prone patients and those prone to
coronary heart disease.
A study conducted by the International Journal of Behavioral Medicine
re-examined the association between the Type A concept with
cardiovascular (CVD) and non-cardiovascular (non-CVD) mortality by using
a long follow-up (on average 20.6 years) of a large population-based
sample of elderly males (N = 2,682), by applying multiple Type A
measures at baseline, and looking separately at early and later
follow-up years. The study sample was the participants of the Kuopio
Ischemic Heart Disease Risk Factor Study, (KIHD), which includes a
randomly selected representative sample of Eastern Finnish men, aged
42–60 years at baseline in the 1980s. They were followed up until the
end of 2011 through linkage with the National Death Registry. Four
self-administered scales, Bortner Short Rating Scale, Framingham Type A
Behavior Pattern Scale, Jenkins Activity Survey, and Finnish Type A
Scale, were used for Type A assessment at the start of follow-up. Type A
measures were inconsistently associated with cardiovascular mortality,
and most associations were non-significant. Some scales suggested a
slightly decreased, rather than increased, risk of CVD death during the
follow-up. Associations with non-cardiovascular deaths were even weaker.
The study's findings further suggest that there is no evidence to
support the Type A as a risk factor for CVD and non-CVD mortality.
Substance use disorder
In
a 1998 study done by Ball et al., they looked at differences in Type A
and Type B personalities based on substance use. Their results showed
that Type B personalities had more severe issues with substance use disorders than Type A personalities.
Another discovery in their research was more Type B personalities had
been diagnosed with a personality disorder than users who had Type A
personalities. Type B personalities were rated higher than Type A personalities on symptoms of all DSM-IV personality disorders, with the exception of schizoid personality disorder.
The research conducted in the experiment was tested on 370
outpatients and inpatients who used alcohol, cocaine, and opiates. The
personality types and distinctions were replicated.
Additionally within the personality dimensions Type A and Type B
exhibited different results. Type A personality portrayed higher levels
of agreeableness, conscientiousness, cooperativeness, and
self-directedness. In contrast, Type B personality showed higher levels
of neuroticism, novelty seeking, and harm avoidance.
These dimensions can have high correlational levels with mental illness
or substance use disorders. Furthermore, even after antisocial
personality and psychiatric symptoms, these effects remained.
In the United States, cultural conservatism may imply a conservative position in the culture wars. Because cultural conservatism (according to the compass theory) expresses the social dimension of conservatism, it is sometimes referred to as social conservatism. However, social conservatism describes conservative moral and social values or stances on socio-cultural issues such as abortion and same-sex marriage in opposition to cultural liberalism (in USA, social liberalism). Nationalism, meanwhile, also differs from cultural conservatism as it does not always develop in a particular culture.
Arguments
In favor
Proponents argue that cultural conservatism preserves the cultural identity of a country. They often promote assimilation into the dominant culture, believing that monoculturalism is more constructive to national unity.They claim that assimilation facilitates the integration of immigrants
and ethnic minorities into broader society, framing cultural
conservatism as a solution to ethnic strife.Researchers note that the more culturally homogeneous a community is, the more people trust each other. Trust was shown to decrease in more culturally diverse areas.
Opponents argue that cultural conservatism is detrimental to cultural diversity. They criticize cultural conservatism for promoting cultural intolerance, creating narrow ethnocentric mindsets, and stifling self-expression. Opponents cite numerous historical atrocities that originated from extreme forms of cultural conservatism, such as racism, genocide, ethnic cleansing, colonialism, and racial segregation. They claim that cultural assimilation leads to the marginalization of minorities who do not conform to the dominant culture.
Opponents have supported multiculturalism, believing it creates a more diverse and tolerant society. They claim it helps people of the ethnic majority to learn more about other cultures, adapt better to social change, and be more tolerant of diversity.
They also believe multiculturalism brings more attention to the
historical accomplishments of other ethnic groups, which had been
neglected in past times. Support for immigration
is also a common stance among opponents of cultural conservatism, who
argue that it enriches society by contributing diverse new ideas. In
some cases the art, music, food, or clothing of the immigrants are adopted by the dominant culture.
By country
Australia
In 2006 the Australian Government
proposed to introduce a compulsory citizenship test which would assess
English skills and knowledge of Australian values. This sparked a debate
over cultural conservatism in Australia. Andrew Robb
told a conference that some Australians worried that interest groups
had transformed multiculturalism into a philosophy that put "allegiances
to original culture ahead of national loyalty, a philosophy which
fosters separate development, a federation of ethnic cultures, not one
community."
The One Nation Party
is a conservative political party that opposes multiculturalism,
calling it "a threat to the very basis of the Australian culture,
identity and shared values."
Unlike the United States, Canada has always been a culturally divided country, though to varying degrees. Since the premiership of Pierre Trudeau, Canadian identity has been viewed as a cultural mosaic.
Trudeau Sr. once stated that there is "no such thing as a model or
ideal Canadian," and that to desire one is a "disastrous" pursuit. His son Justin Trudeau,
likewise Prime Minister, has continued to spread this spirit in
declaring Canada "the first post-national state" due to its lack of a
core identity and mainstream. The fifth wave of immigration to Canada
which followed Trudeau Sr.'s premiership and continues to this day is
the largest manifestation of this change. For example, the city of Richmond, British Columbia is majority Chinese, and nearly half of Torontonians are foreign-born, the city which now bears the motto "Diversity Our Strength." Canadian cultural conservatism as a reaction to the multiculturalism of Pierre Trudeau (and subsequently of Brian Mulroney) reached its peak with the Reform Party and waned over time. Its decline has been marked by the electoral failure of the People's Party of Canada, which formed partly as a response to the Conservative Party's perceived weakness on the issue.
Quebec
is unique in Canada for its cultural conservatism. Though not a
socially conservative province, nor religiously conservative (not since
the aftermath of the Grande Noirceur),
Quebecois culture has always maintained a certain suspicion and
reluctance towards unity with the rest of Canada. Language protectionism
(reflected in laws such as Bill 101)
is a central concern of Quebec cultural conservatives. Quebec has held
two referendums on separation and has never ratified the Constitution Act of 1982. The Bloc Québécois
formed in reaction to the Mulroney premiership (like the Reform Party)
to advocate for Quebecois interests in the federal parliament. It once
held the office of Official Opposition,
which was followed by a decline, but the party has seen a surge in
popularity as of late, currently holding 32 of Quebec's 78 seats in the House of Commons.
China
Central to the ideas of the Cultural Revolution was the elimination of the Four Olds, which were elements of Chinese culture that at the time were seen to oppose the goals of Communism in China. However, the Chinese Communist Party
(CCP) at the time protected some of the most important Chinese
historical monuments, including some archaeological discoveries such as
the Terracotta Army. CCP general secretaryXi Jinping has overseen a revival in popularity of historical Chinese cultural figures such as Confucius and has placed more emphasis on the value of Chinese culture than his predecessors. He also includes culture in his "comprehensive" political goals.
France
French political theorist Alain de Benoist
argues that democracy itself must inherently be a government of a
national culture, and that liberal pluralism is therefore not
democratic.
Germany
In Germany, parallel societies established by some immigrant communities have been criticized by cultural conservatives, giving rise to the concept of the Leitkultur. Conservative Chancellor Angela Merkel of the Christian Democratic Union
described attempts to build a multicultural German society to have
"failed, utterly failed". Many Germans have expressed alarm over the
large number of Muslim immigrants in their country, many of whom have
failed to integrate into German society.
Italy
Italy
is a very culturally conservative society. Recent surveys show that the
vast majority of Italians want fewer immigrants to be allowed into the
country, while few want to keep the current level or increase
immigration.
Japan
Japan has been a culturally conservative society. Being monocultural, it has traditionally refused to recognize ethnic differences in Japan. Taro Aso has called Japan a "one race" nation.
Paul Scheffer
believes that cultural conservatism and integration are necessary for a
society, but the presence of immigrants undermines this. He cites
failure to assimilate, de facto segregation, unemployment, crime, and Muslim opposition to secularism as the main problems resulting from immigration.
Russia
In Russia, Russian culture has been defended by cultural conservatives on the grounds that the destruction of traditional values is undemocratic.
United Kingdom
In the 20th century, immigration to the United Kingdom
gave rise to multicultural policies. However, ever since the beginning
of the 21st century, the UK government has moved towards cultural
conservatism and the assimilation of minority communities. Opposition has grown to multicultural government policies, with some viewing it as a costly failure. After the 7 July 2005 London bombings, ConservativeDavid Davis called such policies "outdated".
Ed West
argues that the British establishment had blindly embraced
multiculturalism without proper consideration of the downsides of ethnic
diversity.
According to cultural conservatives, while minority cultures are
allowed to remain distinct, traditional British culture is abhorred for
being exclusive and adapts to accommodate minorities, often without the
consent of the local population.
A prominent criticism by cultural conservatives in the United States is that multiculturalism undermines national unity, hinders social integration, and leads to the fragmentation of society. Samuel P. Huntington
described multiculturalism as an anti-Western ideology that attacked
the United States' inclusion in Western civilization, denied the
existence of a common American culture, and promoted ethnic identities
over national ones.
Discussions to do with the conservation of American culture often
involve definitional disputes. Some consider the United States as a
nation of immigrants or "melting pot," others (such as David Hackett Fischer) argue that British immigrant cultures
are responsible for the development of modern American culture and
values. American cultural conservatives often claim that the culture is
at risk due primarily to demographic change from immigration, as well as
the influence of academia, which has produced increasingly left-wing
alumni over time. Dinesh D'Souza argues that multiculturalism in American universities undermines the moral universalism that education once stood for. In particular, he criticized the growth of ethnic studies programs.
By the beginning of the Jurassic, the supercontinentPangaea had begun rifting into two landmasses: Laurasia to the north and Gondwana to the south. The climate of the Jurassic was warmer than the present, and there were no ice caps. Forests grew close to the poles, with large arid expanses in the lower latitudes.
On land, the fauna transitioned from the Triassic fauna, dominated jointly by dinosauromorph and pseudosuchianarchosaurs, to one dominated by dinosaurs alone. The first birds appeared during the Jurassic, evolving from a branch of theropod dinosaurs. Other major events include the appearance of the earliest lizards and the evolution of therian mammals. Crocodylomorphs made the transition from a terrestrial to an aquatic life. The oceans were inhabited by marine reptiles such as ichthyosaurs and plesiosaurs, while pterosaurs were the dominant flying vertebrates. The first sharks, rays and crabs also first appeared during the period.
During a tour of the region in 1795, German naturalist Alexander von Humboldt recognized carbonate deposits within the Jura Mountains as geologically distinct from the Triassic aged Muschelkalk of Southern Germany, but he erroneously concluded that they were older. He then named them Jura-Kalkstein ('Jura limestone') in 1799.
In 1829, the French naturalist Alexandre Brongniart published a book entitled Description of the Terrains that Constitute the Crust of the Earth or Essay on the Structure of the Known Lands of the Earth. In this book, Brongniart used the phrase terrains jurassiques when correlating the "Jura-Kalkstein" of Humboldt with similarly aged oolitic limestones in Britain, thus coining and publishing the term "Jurassic".
The French palaeontologistAlcide d'Orbigny in papers between 1842 and 1852 divided the Jurassic into ten stages based on ammonite
and other fossil assemblages in England and France, of which seven are
still used, but none has retained its original definition. The German
geologist and palaeontologist Friedrich August von Quenstedt in 1858 divided the three series of von Buch in the Swabian Jura into six subdivisions defined by ammonites and other fossils.
The German palaeontologist Albert Oppel in his studies between 1856 and 1858 altered d'Orbigny's original scheme and further subdivided the stages into biostratigraphic
zones, based primarily on ammonites. Most of the modern stages of the
Jurassic were formalized at the Colloque du Jurassique à Luxembourg in
1962.
Geology
The Jurassic Period is divided into three epochs: Early, Middle, and Late. Similarly, in stratigraphy, the Jurassic is divided into the Lower Jurassic, Middle Jurassic, and Upper Jurassicseries. Geologists divide the rocks of the Jurassic into a stratigraphic set of units called stages, each formed during corresponding time intervals called ages.
Jurassic stratigraphy is primarily based on the use of ammonites as index fossils. The first appearance datum of specific ammonite taxa
is used to mark the beginnings of stages, as well as smaller timespans
within stages, referred to as "ammonite zones"; these, in turn, are also
sometimes subdivided further into subzones. Global stratigraphy is
based on standard European ammonite zones, with other regions being
calibrated to the European successions.
Early Jurassic
The
oldest part of the Jurassic Period has historically been referred to as
the Lias or Liassic, roughly equivalent in extent to the Early
Jurassic, but also including part of the preceding Rhaetian. The Hettangian Stage was named by Swiss palaeontologist Eugène Renevier in 1864 after Hettange-Grande in north-eastern France. The GSSP for the base of the Hettangian is located at the Kuhjoch Pass, Karwendel Mountains, Northern Calcareous Alps, Austria; it was ratified in 2010. The beginning of the Hettangian, and thus the Jurassic as a whole, is marked by the first appearance of the ammonite Psiloceras spelae tirolicum in the Kendlbach Formation exposed at Kuhjoch. The base of the Jurassic was previously defined as the first appearance of Psiloceras planorbis
by Albert Oppel in 1856–58, but this was changed as the appearance was
seen as too localised an event for an international boundary.
The Sinemurian Stage was first defined and introduced into
scientific literature by Alcide d'Orbigny in 1842. It takes its name
from the French town of Semur-en-Auxois, near Dijon.
The original definition of Sinemurian included what is now the
Hettangian. The GSSP of the Sinemurian is located at a cliff face north
of the hamlet of East Quantoxhead, 6 kilometres east of Watchet, Somerset, England, within the Blue Lias, and was ratified in 2000. The beginning of the Sinemurian is defined by the first appearance of the ammonite Vermiceras quantoxense.
The village Thouars (Latin: Toarcium), just south of Saumur in the Loire Valley of France,
lends its name to the Toarcian Stage. The Toarcian was named by Alcide
d'Orbigny in 1842, with the original locality being Vrines quarry around
2 km northwest of Thouars. The GSSP for the base of the Toarcian is
located at Peniche, Portugal, and was ratified in 2014. The boundary is defined by the first appearance of ammonites belonging to the subgenus Dactylioceras(Eodactylites).
Middle Jurassic
The Aalenian is named after the city of Aalen in Germany. The Aalenian was defined by Swiss geologist Karl Mayer-Eymar in 1864. The lower boundary was originally between the dark clays of the Black Jurassic and the overlying clayey sandstone and ferruginous oolite of the Brown Jurassic sequences of southwestern Germany. The GSSP for the base of the Aalenian is located at Fuentelsaz in the Iberian range near Guadalajara, Spain, and was ratified in 2000. The base of the Aalenian is defined by the first appearance of the ammonite Leioceras opalinum.
Alcide d'Orbigny in 1842 named the Bajocian Stage after the town of Bayeux (Latin: Bajoce) in Normandy, France. The GSSP for the base of the Bajocian is located in the Murtinheira section at Cabo Mondego, Portugal; it was ratified in 1997. The base of the Bajocian is defined by the first appearance of the ammonite Hyperlioceras mundum.
The Bathonian is named after the city of Bath, England, introduced by Belgian geologist d'Omalius d'Halloy
in 1843, after an incomplete section of oolitic limestones in several
quarries in the region. The GSSP for the base of the Bathonian is Ravin
du Bès, Bas-Auran area, Alpes de Haute Provence, France; it was ratified in 2009. The base of the Bathonian is defined by the first appearance of the ammonite Gonolkites convergens, at the base of the Zigzagiceras zigzag ammonite zone.
The Callovian is derived from the Latinized name of the village of Kellaways in Wiltshire, England, and was named by Alcide d'Orbigny in 1852, originally the base at the contact between the Forest Marble Formation and the Cornbrash Formation. However, this boundary was later found to be within the upper part of the Bathonian.
The base of the Callovian does not yet have a certified GSSP. The
working definition for the base of the Callovian is the first appearance
of ammonites belonging to the genus Kepplerites.
Upper Jurassic
The Oxfordian is named after the city of Oxford in England and was named by Alcide d'Orbigny in 1844 in reference to the Oxford Clay. The base of the Oxfordian lacks a defined GSSP. W. J. Arkell in studies in 1939 and 1946 placed the lower boundary of the Oxfordian as the first appearance of the ammonite Quenstedtoceras mariae (then placed in the genus Vertumniceras). Subsequent proposals have suggested the first appearance of Cardioceras redcliffense as the lower boundary.
The village of Kimmeridge on the coast of Dorset, England, is the origin of the name of the Kimmeridgian. The stage was named by Alcide d'Orbigny in 1842 in reference to the Kimmeridge Clay. The GSSP for the base of the Kimmeridgian is the Flodigarry section at Staffin Bay on the Isle of Skye, Scotland,
which was ratified in 2021. The boundary is defined by the first
appearance of ammonites marking the boreal Bauhini Zone and the
subboreal Baylei Zone.
The Tithonian was introduced in scientific literature by Albert
Oppel in 1865. The name Tithonian is unusual in geological stage names
because it is derived from Greek mythology rather than a place name. Tithonus was the son of Laomedon of Troy and fell in love with Eos, the Greek goddess of dawn. His name was chosen by Albert Oppel for this stratigraphical
stage because the Tithonian finds itself hand in hand with the dawn of
the Cretaceous. The base of the Tithonian currently lacks a GSSP. The working definition for the base of the Tithonian is the first appearance of the ammonite genus Gravesia.
The upper boundary of the Jurassic is currently undefined, and
the Jurassic–Cretaceous boundary is currently the only system boundary
to lack a defined GSSP. Placing a GSSP for this boundary has been
difficult because of the strong regionality of most biostratigraphic
markers, and lack of any chemostratigraphic events, such as isotope excursions (large sudden changes in ratios of isotopes), that could be used to define or correlate a boundary. Calpionellids, an enigmatic group of planktonicprotists with urn-shaped calcitic tests
briefly abundant during the latest Jurassic to earliest Cretaceous,
have been suggested to represent the most promising candidates for
fixing the Jurassic–Cretaceous boundary In particular, the first appearance Calpionella alpina, co-inciding with the base of the eponymous Alpina subzone, has been proposed as the definition of the base of the Cretaceous. The working definition for the boundary has often been placed as the first appearance of the ammonite Strambergella jacobi, formerly placed in the genus Berriasella, but its use as a stratigraphic indicator has been questioned, as its first appearance does not correlate with that of C. alpina.
Mineral and hydrocarbon deposits
The Kimmeridge Clay and equivalents are the major source rock for the North Sea oil.
The Arabian Intrashelf Basin, deposited during the Middle and Late
Jurassic, is the setting of the world's largest oil reserves, including
the Ghawar Field, the world's largest oil field. The Jurassic-aged Sargelu and Naokelekan formations are major source rocks for oil in Iraq. Over 1500 gigatons of Jurassic coal reserves are found in north-west China, primarily in the Turpan-Hami Basin and the Ordos Basin.
Impact structures
Major impact structures include the Morokweng impact structure,
a 70 km diameter impact structure buried beneath the Kalahari desert in
northern South Africa. The impact is dated to the Tithonian,
approximately 146.06 ± 0.16 Mya. Another major structure is the Puchezh-Katunki crater, 40 kilometres in diameter, buried beneath Nizhny Novgorod Oblast in western Russia. The impact has been dated to the Sinemurian, 195.9 ± 1.0 Ma.
Paleogeography and tectonics
At the beginning of the Jurassic, all of the world's major landmasses were coalesced into the supercontinentPangaea, which during the Early Jurassic began to break up into northern supercontinent Laurasia and the southern supercontinent Gondwana.
The rifting between North America and Africa was the first to initiate,
beginning in the early Jurassic, associated with the emplacement of the
Central Atlantic Magmatic Province.
During the Jurassic, the North Atlantic Ocean remained relatively narrow, while the South Atlantic did not open until the Cretaceous. The continents were surrounded by Panthalassa, with the Tethys Ocean between Gondwana and Asia. At the end of the Triassic, there was a marine transgression
in Europe, flooding most parts of central and western Europe
transforming it into an archipelago of islands surrounded by shallow
seas. During the Jurassic, both the North and South Pole were covered by oceans.
Beginning in the Early Jurassic, the Boreal Ocean was connected to the
proto-Atlantic by the "Viking corridor" or Transcontinental Laurasian
Seaway, a passage between the Baltic Shield and Greenland several hundred kilometers wide. During the Callovian, the Turgai Epicontinental Sea formed, creating a marine barrier between Europe and Asia.
Madagascar and Antarctica began to rift away from Africa during the late Early Jurassic in association with the eruption of the Karoo-Ferrar large igneous provinces, opening the western Indian Ocean and beginning the fragmentation of Gondwana.
At the beginning of the Jurassic, North and South America remained
connected, but by the beginning of the Late Jurassic they had rifted
apart to form the Caribbean Seaway, also known as the Hispanic Corridor,
which connected the North Atlantic Ocean with eastern Panthalassa.
Palaeontological data suggest that the seaway had been open since the
Early Jurassic.
During the Early Jurassic, around 190 million years ago, the Pacific Plate originated at the triple junction of the Farallon, Phoenix, and Izanagitectonic plates, the three main oceanic plates of Panthalassa. The previously stable triple junction had converted to an unstable arrangement surrounded on all sides by transform faults
because of a kink in one of the plate boundaries, resulting in the
formation of the Pacific Plate at the centre of the junction. During the Middle to early Late Jurassic, the Sundance Seaway, a shallow epicontinental sea, covered much of northwest North America.
The eustatic sea level
is estimated to have been close to present levels during the Hettangian
and Sinemurian, rising several tens of metres during the late
Sinemurian–Pliensbachian before regressing to near present levels by the
late Pliensbachian. There seems to have been a gradual rise to a peak
of ~75 m above present sea level during the Toarcian. During the latest
part of the Toarcian, the sea level again dropped by several tens of
metres. It progressively rose from the Aalenian onwards, aside from dips
of a few tens of metres in the Bajocian and around the
Callovian–Oxfordian boundary, peaking possibly as high as 140 metres
above present sea level at the Kimmeridgian–Tithonian boundary. The sea
levels falls in the late Tithonian, perhaps to around 100 metres, before
rebounding to around 110 metres at the Tithonian–Berriasian boundary.
The sea level within the long-term trends across the Jurassic was
cyclical, with 64 fluctuations, 15 of which were over 75 metres. The
most noted cyclicity in Jurassic rocks is fourth order, with a periodicity of approximately 410,000 years.
During the Early Jurassic the world's oceans transitioned from an aragonite sea to a calcite sea chemistry, favouring the dissolution of aragonite and precipitation of calcite. The rise of calcareous plankton during the Middle Jurassic profoundly altered ocean chemistry, with the deposition of biomineralized plankton on the ocean floor acting as a buffer against large CO2 emissions.
Climate
The climate of the Jurassic was generally warmer than that of present, by around 5 °C to 10 °C, with atmospheric carbon dioxide
likely four times higher. Intermittent "cold snap" intervals are known
to have occurred during this time period, however, interrupting the
otherwise warm greenhouse climate.
Forests likely grew near the poles, where they experienced warm summers
and cold, sometimes snowy winters; there were unlikely to have been ice
sheets given the high summer temperatures that prevented the
accumulation of snow, though there may have been mountain glaciers. Dropstones and glendonites in northeastern Siberia during the Early to Middle Jurassic indicate cold winters. The ocean depths were likely 8 °C warmer than present, and coral reefs grew 10° of latitude further north and south. The Intertropical Convergence Zone
likely existed over the oceans, resulting in large areas of desert and
scrubland in the lower latitudes between 40° N and S of the equator. Tropical rainforest and tundra biomes are likely to have been rare or absent.
The Jurassic also witnessed the decline of the Pangaean megamonsoon
that had characterised the preceding Permian and Triassic periods.
The beginning of the Jurassic was likely marked by a thermal
spike corresponding to the Triassic–Jurassic extinction and eruption of
the Central Atlantic magmatic province. The first part of the Jurassic
was marked by the Early Jurassic Cool Interval between 199 and 183
million years ago. It has been proposed that glaciation was present in the Northern Hemisphere during both the early Pliensbachian and the latest Pliensbachian.
There was a spike in global temperatures of around 4–8 °C during the
early part of the Toarcian corresponding to the Toarcian Oceanic Anoxic
Event and the eruption of the Karoo-Ferrar large igneous provinces in southern Gondwana, with the warm interval extending to the end of the Toarcian around 174 million years ago.
During the Toarcian Warm Interval, ocean surface temperatures
likely exceeded 30 °C, and equatorial and subtropical (30°N–30°S)
regions are likely to have been extremely arid, with temperatures in the
interior of Pangea likely in excess of 40 °C. The Toarcian Warm
Interval is followed by the Middle Jurassic Cool Interval (MJCI) between
174 and 164 million years ago, which may have been punctuated by brief, ephemeral icehouse intervals. A transient ice age possibly occurred in the late Bajocian. The Callovian-Oxfordian boundary at the end of the MJCI witnessed particularly notable global cooling, potentially even an ice age. This is followed by the Kimmeridgian Warm Interval between 164 and 150 million years ago. Based on fossil wood distribution, this was one of the wettest intervals of the Jurassic.
The Pangaean interior had less severe seasonal swings than in previous
warm periods as the expansion of the Central Atlantic and Western Indian
Ocean provided new sources of moisture. A prominent drop in temperatures occurred during the Tithonian, known as the Early Tithonian Cooling Event (ETCE).
The end of the Jurassic was marked by the Tithonian–early Barremian
Cool Interval, beginning 150 million years ago and continuing into the
Early Cretaceous.
The Toarcian Oceanic Anoxic Event (TOAE), also known as the Jenkyns Event, was an episode of widespread oceanic anoxia during the early part of the Toarcian Age, c. 183 Mya. It is marked by a globally documented high amplitude negative carbon isotope excursion, as well as the deposition of black shales and the extinction and collapse of carbonate-producing marine organisms, associated with a major rise in global temperatures.
The TOAE is often attributed to the eruption of the Karoo-Ferrar
large igneous provinces and the associated increase of carbon dioxide
concentration in the atmosphere, as well as the possible associated
release of methane clathrates. This likely accelerated the hydrological cycle and increased silicate weathering, as evidenced by an increased amount of organic matter of terrestrial origin found in marine deposits during the TOAE. Groups affected include ammonites, ostracods, foraminifera, bivalves, cnidarians, and especially brachiopods, for which the TOAE represented one of the most severe extinctions in their evolutionary history. While the event had significant impact on marine invertebrates, it had little effect on marine reptiles. During the TOAE, the Sichuan Basin was transformed into a giant lake, probably three times the size of modern-day Lake Superior, represented by the Da’anzhai Member of the Ziliujing Formation. The lake likely sequestered ~460 gigatons (Gt) of organic carbon and ~1,200 Gt of inorganic carbon during the event. Seawater pH,
which had already substantially decreased prior to the event, increased
slightly during the early stages of the TOAE, before dropping to its
lowest point around the middle of the event. This ocean acidification is the probable cause of the collapse of carbonate production.
Additionally, anoxic conditions were exacerbated by enhanced recycling
of phosphorus back into ocean water as a result of high ocean acidity
and temperature inhibiting its mineralisation into apatite; the
abundance of phosphorus in marine environments caused further
eutrophication and consequent anoxia in a positive feedback loop.
The end-Jurassic transition was originally considered one of eight
mass extinctions, but is now considered to be a complex interval of
faunal turnover, with the increase in diversity of some groups and
decline in others, though the evidence for this is primarily European,
probably controlled by changes in eustatic sea level.
Flora
End-Triassic extinction
There is no evidence of a mass extinction of plants at the Triassic–Jurassic boundary. At the Triassic–Jurassic boundary in Greenland, the sporomorph (pollen and spores) record suggests a complete floral turnover. An analysis of macrofossil floral communities in Europe suggests that changes were mainly due to local ecological succession. At the end of the Triassic, the Peltaspermaceae became extinct in most parts of the world, with Lepidopteris persisting into the Early Jurassic in Patagonia. Dicroidium, a corystosperm
seed fern that was a dominant part of Gondwanan floral communities
during the Triassic, also declined at the Triassic–Jurassic boundary,
surviving as a relict in Antarctica into the Early Jurassic.
Floral composition
Conifers
Conifers
formed a dominant component of Jurassic floras. The Late Triassic and
Jurassic was a major time of diversification of conifers, with most
modern conifer groups appearing in the fossil record by the end of the
Jurassic, having evolved from voltzialean ancestors.
Araucarian conifers have their first unambiguous records during the Early Jurassic, and members of the modern genus Araucaria were widespread across both hemispheres by the Middle Jurassic.
Also abundant during the Jurassic is the extinct family Cheirolepidiaceae, often recognised through their highly distinctive Classopolis pollen. Jurassic representatives include the pollen cone Classostrobus and the seed cone Pararaucaria. Araucarian and Cheirolepidiaceae conifers often occur in association.
The oldest definitive record of the cypress family (Cupressaceae) is Austrohamia minuta from the Early Jurassic (Pliensbachian) of Patagonia, known from many parts of the plant. The reproductive structures of Austrohamia have strong similarities to those of the primitive living cypress genera Taiwania and Cunninghamia.
By the Middle to Late Jurassic Cupressaceae were abundant in warm
temperate–tropical regions of the Northern Hemisphere, most abundantly
represented by the genus Elatides.
Members of the extinct genus Schizolepidopsis which likely represent a stem-group to the pine family (Pinaceae), were widely distributed across Eurasia during the Jurassic. The oldest unambiguous record of Pinaceae is the pine coneEathiestrobus,
known from the Late Jurassic (Kimmeridgian) of Scotland, which remains
the only known unequivocal fossil of the group before the Cretaceous. Despite being the earliest known member of the Pinaceae, Eathiestrobus appears to be a member of the pinoidclade
of the family, suggesting that the initial diversification of Pinaceae
occurred earlier than has been found in the fossil record.
During the Early Jurassic, the flora of the mid-latitudes of
Eastern Asia were dominated by the extinct deciduous broad leafed
conifer Podozamites,
which appears to not be closely related to any living family of
conifer. Its range extended northwards into polar latitudes of Siberia
and then contracted northward in the Middle to Late Jurassic,
corresponding to the increasing aridity of the region.
The earliest record of the yew family (Taxaceae) is Palaeotaxus rediviva, from the Hettangian of Sweden, suggested to be closely related to the living Austrotaxus, while Marskea jurassica from the Middle Jurassic of Yorkshire, England and material from the Callovian–Oxfordian Daohugou Bed in China are thought to be closely related to Amentotaxus,
with the latter material assigned to the modern genus, indicating that
Taxaceae had substantially diversified by the end of the Jurassic.
Podocarpaceae, today largely confined to the Southern Hemisphere, occurred in the Northern Hemisphere during the Jurassic, Examples include Podocarpophyllum from the Early to Middle Jurassic of Central Asia and Siberia, Scarburgia from the Middle Jurassic of Yorkshire, and Harrisiocarpus from the Jurassic of Poland.
Ginkgoales
Ginkgoales, of which the sole living species is Ginkgo biloba,
were more diverse during the Jurassic: they were among the most
important components of Eurasian Jurassic floras and were adapted to a
wide variety of climatic conditions. The earliest representatives of the genus Ginkgo, represented by ovulate and pollen organs similar to those of the modern species, are known from the Middle Jurassic in the Northern Hemisphere. Several other lineages of ginkgoaleans are known from Jurassic rocks, including Yimaia, Grenana, Nagrenia and Karkenia. These lineages are associated with Ginkgo-like leaves, but are distinguished from living and fossil representatives of Ginkgo by having differently arranged reproductive structures. Umaltolepis
from the Jurassic of Asia has strap-shaped ginkgo-like leaves with
highly distinct reproductive structures with similarities to those of
peltasperm and corystosperm seed ferns, has been suggested to be a
member of Ginkgoales sensu lato.
Bennettitales
Bennettitales,
having first become widespread during the preceding Triassic, were
diverse and abundant members of Jurassic floras across both hemispheres.
The foliage of Bennettitales bears strong similarities to those of
cycads, to such a degree that they cannot be reliably distinguished on
the basis of morphology alone. Leaves of Bennettitales can be
distinguished from those of cycads their different arrangement of stomata, and the two groups are not thought to be closely related. Jurassic Bennettitales predominantly belong to the group Williamsoniaceae, which grew as shrubs and small trees. The Williamsoniaceae are thought to have had a divaricate branching habit, similar to that of living Banksia, and adapted to growing in open habitats with poor soil nutrient conditions. Bennettitales exhibit complex, flower-like
reproductive structures some of which are thought to have been
pollinated by insects. Several groups of insects that bear long
proboscis, including extinct families such as kalligrammatid lacewings and extant ones such as acrocerid flies, are suggested to have been pollinators of bennettitales, feeding on nectar produced by bennettitalean cones.
Cycads
Cycads reached their apex of diversity during the Jurassic and Cretaceous Periods.
Despite the Mesozoic sometimes being called the "Age of Cycads", cycads
are thought to have been a relatively minor component of mid-Mesozoic
floras, with the Bennettitales and Nilssoniales, which have cycad-like foliage, being dominant.
The Nilssoniales have often been considered cycads or cycad relatives,
but have been found to be distinct on chemical grounds, and perhaps more
closely allied with Bennettitales. The relationships of most Mesozoic cycads to living groups are ambiguous, with no Jurassic cycads belonging to either of the two modern groups of cycads, though some Jurassic cycads possibly represent stem-group relatives of modern Cycadaceae, like the leaf genus Paracycas known Europe, and Zamiaceae, like some European species of the leaf genus Pseudoctenis. Also widespread during the Jurassic was the extinct Ctenis lineage. Modern cycads are pollinated by beetles, and such an association is thought to have formed by the Early Jurassic.
Other seed plants
Although there have been several claimed records, there are no widely accepted Jurassic fossil records of flowering plants,
which make up 90% of living plant species, and fossil evidence suggests
that the group diversified during the following Cretaceous.
The earliest known gnetophytes, one of the four main living groups of gymnosperms, appeared by the end of the Jurassic, with the oldest unequivocal gnetophyte being the seed Dayvaultia from the Late Jurassic of North America.
"Seed ferns" (Pteridospermatophyta)
is a collective term to refer to disparate lineages of fern like plants
that produce seeds but have uncertain affinities to living seed plant groups. A prominent group of Jurassic seed ferns is the Caytoniales,
which reached their zenith during the Jurassic, with widespread records
in the Northern Hemisphere, though records in the Southern Hemisphere
remain rare. Due to their berry-like
seed-bearing capsules, they have often been suggested to have been
closely related or perhaps ancestral to flowering plants, but the
evidence for this is inconclusive. Corystosperm-alligned seed ferns, such as Pachypteris and Komlopteris were widespread across both hemispheres during the Jurassic.
Czekanowskiales,
also known as Leptostrobales, are a group of seed plants uncertain
affinities with persistent heavily dissected leaves borne on deciduous
short shoots, subtended by scale-like leaves, known from the Late
Triassic (possibly Late Permian) to Cretaceous.
They are thought to have had a tree- or shrub-like habit and formed a
conspicuous component of Northern Hemisphere Mesozoic temperate and
warm-temperate floras. The genus Phoenicopsis was widespread in Early-Middle Jurassic floras of Eastern Asia and Siberia.
The Pentoxylales, a small but clearly distinct group of liana-like
seed plants of obscure affinities, first appeared during the Jurassic.
Their distribution appears to have been confined to Eastern Gondwana.
Ferns and allies
Living families of ferns widespread during the Jurassic include Dipteridaceae, Matoniaceae, Gleicheniaceae, Osmundaceae and Marattiaceae. Polypodiales,
which make up 80% of living fern diversity, have no record from the
Jurassic and are thought to have diversified in the Cretaceous, though the widespread Jurassic herbaceous fern genus Coniopteris, historically interpreted as a close relative of tree ferns of the family Dicksoniaceae, has recently been reinterpreted as an early relative of the group.
The Cyatheales, the group containing most modern tree ferns, appeared during the Late Jurassic, represented by members of the genus Cyathocaulis, which are suggested to be early members of Cyatheaceae on the basis of cladistic analysis. Only a handful of possible records exist of the Hymenophyllaceae from the Jurassic, including Hymenophyllites macrosporangiatus from the Russian Jurassic.
The oldest remains of modern horsetails of the genus Equisetum first appear in the Early Jurassic, represented by Equisetum dimorphum from the Early Jurassic of Patagonia and Equisetum laterale from the Early to Middle Jurassic of Australia. Silicified remains of Equisetum thermale from the Late Jurassic of Argentina exhibit all the morphological characters of modern members of the genus. The estimated split between Equisetum bogotense and all other living Equisetum is estimated to have occurred no later than the Early Jurassic.
Lower plants
Quillworts virtually identical to modern species are known from the Jurassic onwards. Isoetites rolandii from the Middle Jurassic of Oregon is the earliest known species to represent all major morphological features of modern Isoetes. More primitive forms such as Nathorstiana, which retain an elongated stem, persisted into the Early Cretaceous.
The moss Kulindobryum from the Middle Jurassic of Russia, which was found associated with dinosaur bones, is thought to be related to the Splachnaceae, which grow on animal caracasses. Bryokhutuliinia from the same region is thought to be related to Dicranales. Heinrichsiella from the Jurassic of Patagonia is thought to belong to either Polytrichaceae or Timmiellaceae.
The Triassic–Jurassic extinction decimated pseudosuchian diversity, with crocodylomorphs,
which originated during the early Late Triassic, being the only group
of pseudosuchians to survive, with all others, including the herbivorous
aetosaurs and carnivorous "rauisuchians" becoming extinct.
The morphological diversity of crocodylomorphs during the Early
Jurassic was around the same as those of Late Triassic pseudosuchians,
but they occupied different areas of morphospace, suggesting that they
occupied different ecological niches to their Triassic counterparts and that there was an extensive and rapid radiation of crocodylomorphs during this interval. While living crocodilians
are confined to an aquatic ambush predator lifestyle, Jurassic
crocodylomorphs exhibited a wide variety of life habits. An unnamed protosuchid
known from teeth from the Early Jurassic of Arizona represents the
earliest known herbivorous crocodylomorph, an adaptation that appeared
several times during the Mesozoic.
The Thalattosuchia,
a clade of predominantly marine crocodylomorphs, first appeared during
the Early Jurassic and became a prominent part of marine ecosystems. Within Thalattosuchia, the Metriorhynchidae
became highly adapted for life in the open ocean, including the
transformation of limbs into flippers, the development of a tail fluke,
and smooth, scaleless skin.
The morphological diversity of crocodylomorphs during the Early and
Middle Jurassic was relatively low compared to that in later time
periods and was dominated by terrestrial small-bodied, long-legged sphenosuchians, early crocodyliforms and thalattosuchians. The Neosuchia,
a major group of crocodylomorphs, first appeared during the Early to
Middle Jurassic. The Neosuchia represents the transition from an
ancestrally terrestrial lifestyle to a freshwater aquatic ecology
similar to that occupied by modern crocodilians. The timing of the origin of Neosuchia is disputed. The oldest record of Neosuchians has been suggested to be Calsoyasuchus,
from the Early Jurassic of Arizona, which in many analyses has been
recovered as the earliest branching member of the neosuchian family Goniopholididae,
which radically alters times of diversification for crocodylomorphs.
However, this placement has been disputed, with some analyses finding it
outside Neosuchia, which would place the oldest records of Neosuchia in
the Middle Jurassic. Razanandrongobe from the Middle Jurassic of Madagascar has been suggested the represent the oldest record of Notosuchia, a primarily Gondwanan clade of mostly terrestrial crocodylomorphs, otherwise known from the Cretaceous and Cenozoic.
Turtles
Stem-group turtles (Testudinata) diversified during the Jurassic. Jurassic stem-turtles belong to two progressively more advanced clades, the Mesochelydia and Perichelydia. It is thought that the ancestral condition for mesochelydians is aquatic, as opposed to terrestrial for testudinates. The two modern groups of turtles (Testudines), Pleurodira and Cryptodira, diverged by the beginning of the Late Jurassic. The oldest known pleurodires, the Platychelyidae, are known from the Late Jurassic of Europe and the Americas, while the oldest unambiguous cryptodire, Sinaspideretes, an early relative of softshell turtles, is known from the Late Jurassic of China. The Thalassochelydia, a diverse lineage of marine turtles unrelated to modern sea turtles, are known from the Late Jurassic of Europe and South America.
Lepidosaurs
Rhynchocephalians (the sole living representative being the tuatara) had achieved a global distribution by the beginning of the Jurassic.
Rhynchocephalians reached their highest morphological diversity in
their evolutionary history during the Jurassic, occupying a wide range
of lifestyles, including the aquatic pleurosaurs with long snake-like bodies and reduced limbs, the specialized herbivorous eilenodontines, as well as Oenosaurus, which had broad tooth plates indicative of durophagy. Rhynchocephalians disappeared from Asia after the Early Jurassic. The last common ancestor of living squamates (which includes lizards and snakes)
is estimated to have lived around 190 million years ago during the
Early Jurassic, with the major divergences between modern squamate
lineages estimated to have occurred during the Early to Middle Jurassic. Squamates first appear in the fossil record during the Middle Jurassic including members of modern clades such as Scincomorpha, though many Jurassic squamates have unclear relationships to living groups. Eichstaettisaurus from the Late Jurassic of Germany has been suggested to be an early relative of geckos and displays adaptations for climbing. Dorsetisaurus from the Late Jurassic of North America and Europe represents the oldest widely accepted record of Anguimorpha. Tamaulipasaurus from Early Jurassic of Mexico and Marmoretta from the Middle Jurassic of Britain represents late surviving lepidosauromorphs outside both Rhynchocephalia and Squamata.
The earliest known remains of Choristodera,
a group of freshwater aquatic reptiles with uncertain affinities to
other reptile groups, are found in the Middle Jurassic. Only two genera
of choristodere are known from the Jurassic. One is the small
lizard-like Cteniogenys,
thought to be the most basal known choristodere; it is known from the
Middle to Late Jurassic of Europe and Late Jurassic of North America,
with similar remains also known from the upper Middle Jurassic of
Kyrgyzstan and western Siberia. The other is Coeruleodraco from the Late Jurassic of China, which is a more advanced choristodere, though still small and lizard-like in morphology.
Ichthyosaurs
Ichthyosaurs suffered an evolutionary bottleneck during the end-Triassic extinction, with all non-neoichthyosaurians
becoming extinct. Ichthyosaurs reached their apex of species diversity
during the Early Jurassic, with an array of morphologies including the
huge apex predatorTemnodontosaurus and swordfish-like Eurhinosaurus, though Early Jurassic ichthyosaurs were significantly less morphologically diverse than their Triassic counterparts.
At the Early–Middle Jurassic boundary, between the end of the Toarcian
and the beginning of the Bajocian, most lineages of ichythosaur appear
to have become extinct, with the first appearance of the Ophthalmosauridae, the clade that would encompass almost all ichthyosaurs from then on, during the early Bajocian.
Ophthalmosaurids were diverse by the Late Jurassic, but failed to fill
many of the niches that had been occupied by ichthyosaurs during the
Early Jurassic.
Plesiosaurs
Plesiosaurs originated at the end of the Triassic (Rhaetian). By the end of the Triassic, all other sauropterygians, including placodonts and nothosaurs, had become extinct. At least six lineages of plesiosaur crossed the Triassic–Jurassic boundary.
Plesiosaurs were already diverse in the earliest Jurassic, with the
majority of plesiosaurs in the Hettangian-aged Blue Lias belonging to
the Rhomaleosauridae. Early plesiosaurs were generally small-bodied, with body size increasing into the Toarcian. There appears to have been a strong turnover around the Early–Middle Jurassic boundary, with microcleidids
and rhomaleosaurids becoming extinct and nearly extinct respectively
after the end of the Toarcian with the first appearance of the dominant
clade of plesiosaurs of the latter half of the Jurassic, the Cryptoclididae during the Bajocian. The Middle Jurassic saw the evolution of short-necked and large-headed thalassophonean pliosaurs from ancestrally small-headed, long-necked forms. Some thalassophonean pliosaurs, such as some species of Pliosaurus,
had skulls up to two metres in length with body lengths estimated
around 10–12 metres, making them the apex predators of Late Jurassic
oceans.
Plesiosaurs invaded freshwater environments during the Jurassic, with
indeterminate remains of small-bodied pleisosaurs known from freshwater
sediments from the Jurassic of China and Australia.
Pterosaurs
Pterosaurs first appeared in the Late Triassic. A major radiation of Jurassic pterosaurs is the Rhamphorhynchidae, which first appeared in the late Early Jurassic (Toarcian); they are thought to been piscivorous. Anurognathids,
which first appeared in the Middle Jurassic, possessed short heads and
densely furred bodies, and are thought to have been insectivores. Derived monofenestratan pterosaurs such as wukongopterids appeared in the late Middle Jurassic. Advanced short-tailed pterodactyloids first appeared at the Middle–Late Jurassic boundary. Jurassic pterodactyloids include the ctenochasmatids, like Ctenochasma, which have closely spaced needle-like teeth that were presumably used for filter feeding. The bizarre Late Jurassic ctenochasmatoidCycnorhamphus had a jaw with teeth only at the tips, with bent jaws like those of living openbill storks that may have been used to hold and crush hard invertebrates.
Dinosaurs
Dinosaurs,
which had morphologically diversified in the Late Triassic, experienced
a major increase in diversity and abundance during the Early Jurassic
in the aftermath of the end-Triassic extinction and the extinction of
other reptile groups, becoming the dominant vertebrates in terrestrial
ecosystems. Chilesaurus,
a morphologically aberrant herbivorous dinosaur from the Late Jurassic
of South America, has uncertain relationships to the three main groups
of dinosaurs, having been recovered as a member of all three in
different analyses.
Theropods
Advanced theropods belonging to Neotheropoda first appeared in the Late Triassic. Basal neotheropods, such as coelophysoids and dilophosaurs, persisted into the Early Jurassic, but became extinct by the Middle Jurassic. The earliest averostrans appear during the Early Jurassic, with the earliest known member of Ceratosauria being Saltriovenator from the early Sinemurian (199.3–197.5 million years ago) of Italy. The unusual ceratosaur Limusaurus from the Late Jurassic of China had a herbivorous diet, with adults having edentulous beaked jaws, making it the earliest known theropod to have converted from an ancestrally carnivorous diet. The earliest members of the Tetanurae appeared during the late Early Jurassic or early Middle Jurassic. The Megalosauridae represent the oldest radiation of the Tetanurae, first appearing in Europe during the Bajocian. The oldest member of Allosauroidea has been suggested to be Asfaltovenator from the Middle Jurassic of South America. Coelurosaurs first appeared during the Middle Jurassic, including early tyrannosaurs such as Proceratosaurus from the Bathonian of Britain. Some coelurosaurs from the Late Jurassic of China including Shishugounykus and Haplocheirus are suggested to represent early alvarezsaurs, however, this has been questioned. Scansoriopterygids,
a group of small feathered coelurosaurs with membraneous, bat-like
wings for gliding, are known from the Middle to Late Jurassic of China. The oldest record of troodontids is suggested to be Hesperornithoides from the Late Jurassic of North America. Tooth remains suggested to represent those of dromaeosaurs are known from the Jurassic, but no body remains are known until the Cretaceous.
Skeleton of Ceratosaurus, a ceratosaurid from the Late Jurassic of North America
Skeleton of Monolophosaurus, a basal tetanuran from the Middle Jurassic of China
Restoration of Yi qi, a scansoriopterygid from the Middle to Late Jurassic of China
Birds
The earliest avialans, which include birds and their ancestors, appear during the Middle to Late Jurassic, definitively represented by Archaeopteryx from the Late Jurassic of Germany. Avialans belong to the clade Paraves within Coelurosauria, which also includes dromaeosaurs and troodontids. The Anchiornithidae
from the Middle-Late Jurassic of Eurasia have frequently suggested to
be avialans, but have also alternatively found as a separate lineage of
paravians.
Sauropods became the dominant large herbivores in terrestrial ecosystems during the Jurassic. Some Jurassic sauropods reached gigantic sizes, becoming the largest organisms to have ever lived on land.
Basal bipedal sauropodomorphs, such as massospondylids, continued to exist into the Early Jurassic, but became extinct by the beginning of the Middle Jurassic. Quadrupedal sauropomorphs appeared during the Late Triassic. The quadrupedal Ledumahadi
from the earliest Jurassic of South Africa reached an estimated weight
of 12 tons, far in excess of other known basal sauropodomorphs. Gravisauriansauropods first appeared during the Early Jurassic, with the oldest definitive record being Vulcanodon from Zimbabwe, likely of Sinemurian age. Eusauropods first appeared during the late Early Jurassic (Toarcian) and diversified during the Middle Jurassic; these included cetiosaurids, turiasaurs, and mamenchisaurs. Neosauropods such as macronarians and diplodocoids first appeared during the Middle Jurassic, before becoming abundant and globally distributed during the Late Jurassic.
Amphibians
The diversity of temnospondyls had progressively declined through the Late Triassic, with only brachyopoids surviving into the Jurassic and beyond. Members of the family Brachyopidae are known from Jurassic deposits in Asia, while the chigutisauridSiderops is known from the Early Jurassic of Australia. Modern lissamphibians began to diversify during the Jurassic. The Early Jurassic Prosalirus thought to represent the first frog relative with a morphology capable of hopping like living frogs. Morphologically recognisable stem-frogs like the South American Notobatrachus are known from the Middle Jurassic, with modern crown-group frogs like Enneabatrachus and Rhadinosteus appearing by the Late Jurassic. While the earliest salamander-line amphibians are known from the Triassic, crown group
salamanders first appear during the Middle to Late Jurassic in Eurasia,
alongside stem-group relatives. Many Jurassic stem-group salamanders,
such as Marmorerpeton and Kokartus, are thought to have been neotenic. Early representatives of crown group salamanders include Chunerpeton, Pangerpeton and Linglongtriton from the Middle to Late Jurassic Yanliao Biota of China. These belong to the Cryptobranchoidea, which contains living Asiatic and giant salamanders. Beiyanerpeton, and Qinglongtriton from the same biota are thought to be early members of Salamandroidea, the group which contains all other living salamanders. Salamanders dispersed into North America by the end of the Jurassic, as evidenced by Iridotriton, found in the Late Jurassic Morrison Formation. The oldest undisputed stem-caecilian is the Early Jurassic Eocaecilia from Arizona. The fourth group of lissamphibians, the extinct albanerpetontids, first appeared in the Middle Jurassic, represented by Anoualerpeton priscus from the Bathonian of Britain, as well as indeterminate remains from equivalently aged sediments in France and the Anoual Formation of Morocco.
Mammaliaformes
Mammaliaformes, having originated from cynodonts at the end of the Triassic, diversified extensively during the Jurassic. Important groups of Jurassic Mammaliaformes include Morganucodonta, Docodonta, Eutriconodonta, Dryolestida, Haramiyida and Multituberculata.
While most Jurassic mammalaliaformes are solely known from isolated
teeth and jaw fragments, exceptionally preserved remains have revealed a
variety of lifestyles. The docodontan Castorocauda was adapted to aquatic life, similarly to the platypus and otters. Some members of Haramiyida and the eutriconodontan tribe Volaticotherini had a patagium akin to those of flying squirrels, allowing them to glide through the air. The aardvark-like mammal Fruitafossor, of uncertain taxonomy, was likely a specialist on colonial insects, similarly to living anteaters. Australosphenida, a group of mammals possibly related to monotremes, first appeared in the Middle Jurassic of Gondwana. Therian mammals, represented today by living placentals and marsupials, appear during the early Late Jurassic, represented by Juramaia, a eutherian mammal closer to the ancestry of placentals than marsupials. Juramaia is much more advanced than expected for its age, as other therian mammals are not known until the Early Cretaceous. Two groups of non-mammalian cynodonts persisted beyond the end of the Triassic. The insectiviorous Tritheledontidae has a few records from the Early Jurassic. The Tritylodontidae,
a herbiviorous group of cynodonts that first appeared during the
Rhaetian, has abundant records from the Jurassic, overwhelmingly from
the Northern Hemisphere.
Fish
Conodonts
The last known species of conodont, a class of jawless fish
whose hard, tooth-like elements are key index fossils, finally became
extinct during the earliest Jurassic after over 300 million years of
evolutionary history, with an asynchronous extinction occurring first in
the Tethys and eastern Panthalassa and survivors persisting into the
earliest Hettangian of Hungary and central Panthalassa.
End-Triassic conodonts were represented by only a handful of species
and had been progressively declining through the Middle and Late
Triassic.
Sarcopterygii
Lungfish (Dipnoi) were present in freshwater environments of both hemispheres during the Jurassic. Genera include Ceratodus and Ptychoceratodus, which are more closely related to living South American and African lungfish than Queensland lungfish, and Ferganoceratodus from the Jurassic of Asia, which is not closely related to either group of living lungfish. Mawsoniids, a marine and freshwater/brackish group of coelacanths, which first appeared in North America during the Triassic, expanded into Europe and South America by the end of the Jurassic. The marine Latimeriidae, which contains the living coelacanths of the genus Latimeria, were also present in the Jurassic, having originated in the Triassic.
Actinopterygii
Ray-finned fish (Actinopterygii) were major components of Jurassic freshwater and marine ecosystems. Archaic "palaeoniscoid"
fish, which were common in both marine and freshwater habitats during
the preceding Triassic declined during the Jurassic, being largely
replaced by more derived actinopterygian lineages. The oldest known Acipenseriformes, the group that contains living sturgeon and paddlefish, are from the Early Jurassic. Amiiform fish (which today only includes the bowfin) first appeared during the Early Jurassic, represented by Caturus
from the Pliensbachian of Britain; after their appearance in the
western Tethys, they expanded to Africa, North America and Southeast and
East Asia by the end of the Jurassic. Pycnodontiformes,
which first appeared in the western Tethys during the Late Triassic,
expanded to South America and Southeast Asia by the end of the Jurassic,
having a high diversity in Europe during the Late Jurassic. During the Jurassic, the Ginglymodi, the only living representatives being gars
(Lepisosteidae) were diverse in both freshwater and marine
environments. The oldest known representatives of anatomically modern
gars appeared during the Upper Jurassic. Stem-group teleosts,
which make up over 99% of living Actinopterygii, had first appeared
during the Triassic in the western Tethys; they underwent a major
diversification beginning in the Late Jurassic, with early
representatives of modern teleost clades such as Elopomorpha and Osteoglossoidei appearing during this time. The Pachycormiformes, a group of marine stem-teleosts, first appeared in the Early Jurassic and included both tuna-like predatory and filter-feeding forms, the latter included the largest bony fish known to have existed: Leedsichthys, with an estimated maximum length of over 15 metres, known from the late Middle to Late Jurassic.
Chondrichthyes
During the Early Jurassic, the shark-like hybodonts, which represented the dominant group of chondrichthyans
during the preceding Triassic, were common in both marine and
freshwater settings; however, by the Late Jurassic, hybodonts had become
minor components of most marine communities, having been largely
replaced by modern neoselachians, but remained common in freshwater and restricted marine environments. The Neoselachii, which contains all living sharks and rays, radiated beginning in the Early Jurassic. The oldest known ray (Batoidea) is Antiquaobatis from the Pliensbachian of Germany. Jurassic batoids known from complete remains retain a conservative, guitarfish-like morphology. The oldest known Hexanchiformes and carpet sharks (Orectolobiformes) are from the Early Jurassic (Pliensbachian & Toarcian, respectively) of Europe. The oldest known members of the Heterodontiformes, the only living member of which is the bullhead shark (Heterodontus), first appeared in the Early Jurassic, with representatives of the living genus appearing during the Late Jurassic. The oldest known mackerel sharks (Lamniformes) are from the Middle Jurassic, represented by the genus Palaeocarcharias, which has an orectolobiform-like body but shares key similarities in tooth histology with lamniformes, including the absence of orthodentine. The oldest record of angelsharks (Squatiniformes) is Pseudorhina from the Late Jurassic (Oxfordian–Tithonian) of Europe, which already has a bodyform similar to living members of the order. The oldest known remains of Carcharhiniformes,
the largest order of living sharks, first appear in the late Middle
Jurassic (Bathonian) of the western Tethys (England and Morocco). Known
dental and exceptionally preserved body remains of Jurassic
Carchariniformes are similar to those of living catsharks. Synechodontiformes, an extinct group of sharks closely related to Neoselachii, were also widespread during the Jurassic. The oldest remains of modern chimaeras are from the Early Jurassic of Europe, with members of the living family Callorhinchidae appearing during the Middle Jurassic. Unlike living chimaeras, these were found in shallow water settings. The closely related Squaloraja and myriacanthoids are also known from the Jurassic of Europe.
Insects and arachnids
There appears to have been no major extinction of insects at the Triassic–Jurassic boundary. Many important insect fossil localities are known from the Jurassic of Eurasia, the most important being the Karabastau Formation
of Kazakhstan and the various Yanliao Biota deposits in Inner Mongolia,
China, such as the Daohugou Bed, dating to the Callovian–Oxfordian. The
diversity of insects stagnated throughout the Early and Middle
Jurassic, but during the latter third of the Jurassic origination rates
increased substantially while extinction rates remained flat. The increasing diversity of insects in the Middle–Late Jurassic corresponds with a substantial increase in the diversity of insect mouthparts. The Middle to Late Jurassic was a time of major diversification for beetles. Weevils
first appear in the fossil record during the Middle to Late Jurassic,
but are suspected to have originated during the Late Triassic to Early
Jurassic. The oldest known lepidopterans
(the group containing butterflies and moths) are known from the
Triassic–Jurassic boundary, with wing scales belonging to the suborder Glossata and Micropterigidae-grade moths from the deposits of this age in Germany. Modern representatives of both dragonflies and damselflies also first appeared during the Jurassic. Although modern representatives are not known until the Cenozoic, ectoparasitic insects thought to represent primitive fleas, belonging to the family Pseudopulicidae,
are known from the Middle Jurassic of Asia. These insects are
substantially different from modern fleas, lacking the specialised
morphology of the latter and being larger. Parasitoid wasps (Apocrita) first appeared during the Early Jurassic and subsequently became widespread, reshaping terrestrial food webs. The Jurassic saw also saw the first appearances of several other groups of insects, including Phasmatodea (stick insects), Mantophasmatidae, Embioptera (webspinners), and Raphidioptera (snakeflies).
Only a handful of records of mites are known from the Jurassic, including Jureremus, an oribatid mite belonging to the family Cymbaeremaeidae known from the Late Jurassic of Britain and Russia, and a member of the still living orbatid genus Hydrozetes from the Early Jurassic of Sweden. Spiders diversified through the Jurassic. The Early Jurassic Seppo koponeni may represent a stem group to Palpimanoidea. Eoplectreurys from the Middle Jurassic of China is considered a stem lineage of Synspermiata. The oldest member of the family Archaeidae, Patarchaea, is known from the Middle Jurassic of China. Mongolarachne from the Middle Jurassic of China is among the largest known fossil spiders, with legs over 5 centimetres long. The only scorpion known from the Jurassic is Liassoscorpionides from the Early Jurassic of Germany, of uncertain placement. Eupnoi harvestmen (Opiliones) are known from the Middle Jurassic of China, including members of the family Sclerosomatidae.
Marine invertebrates
End-Triassic extinction
During
the end-Triassic extinction, 46%–72% of all marine genera became
extinct. The effects of the end Triassic extinction were greatest at
tropical latitudes and were more severe in Panthalassa than the Tethys
or Boreal oceans. Tropical reef ecosystems collapsed during the event,
and would not fully recover until much later in the Jurassic. Sessilefilter feeders and photosymbiotic organisms were among most severely affected.
Marine ecosystems
Having declined at the Triassic–Jurassic boundary, reefs substantially expanded during the Late Jurassic, including both sponge reefs and scleractiniancoral reefs. Late Jurassic reefs were similar in form to modern reefs but had more microbial carbonates and hypercalcified sponges, and had weak biogenic binding. Reefs sharply declined at the close of the Jurassic, which caused an associated drop in diversity in decapod crustaceans. The earliest planktonic foraminifera, which constitute the suborder Globigerinina,
are known from the late Early Jurassic (mid-Toarcian) of the western
Tethys, expanding across the whole Tethys by the Middle Jurassic and
becoming globally distributed in tropical latitudes by the Late
Jurassic. Coccolithophores and dinoflagellates, which had first appeared during the Triassic, radiated during the Early to Middle Jurassic, becoming prominent members of the phytoplankton. Microconchid tube worms, the last remaining order of Tentaculita, a group of animals of uncertain affinities that were convergent on Spirorbis tube worms, were rare after the Triassic and had become reduced to the single genus Punctaconchus, which became extinct in the late Bathonian. The oldest known diatom is from Late Jurassic–aged amber from Thailand, assigned to the living genus Hemiaulus.
Echinoderms
Crinoids
diversified throughout the Jurassic, reaching their peak Mesozoic
diversity during the Late Jurassic, primarily due to the radiation of
sessile forms belonging to the orders Cyrtocrinida and Millericrinida. Echinoids
(sea urchins) underwent substantial diversification beginning in the
Early Jurassic, primarily driven by the radiation of irregular
(asymmetrical) forms, which were adapting to deposit feeding. Rates of
diversification sharply dropped during the Late Jurassic.
Crustaceans
The Jurassic was a significant time for the evolution of decapods. The first true crabs (Brachyura) are known from the Early Jurassic, with the earliest being Eocarcinus praecursor from the early Pliensbachian of England, which lacked the crab-like morphology (carcinisation) of modern crabs, and Eoprosopon klugi from the late Pliensbachian of Germany, which may belong to the living family Homolodromiidae. Most Jurassic crabs are known only from carapace pieces, which makes it difficult to determine their relationships.
While rare in the Early and Middle Jurassic, crabs became abundant
during the Late Jurassic as they expanded from their ancestral silty sea
floor habitat into hard substrate habitats like reefs, with crevices in
reefs providing refuge from predators. Hermit crabs also first appeared during the Jurassic, with the earliest known being Schobertella hoelderi from the late Hettangian of Germany. Early hermit crabs are associated with ammonite shells rather than those of gastropods. Glypheids,
which today are only known from two species, reached their peak
diversity during the Jurassic, with around 150 species out of a total
fossil record of 250 known from the period. Jurassic barnacles were of low diversity compared to present,
but several important evolutionary innovations are known, including the
first appearances of calcite shelled forms and species with an
epiplanktonic mode of life.
Brachiopods
Brachiopod diversity declined during the Triassic–Jurassic extinction. Spire-bearing brachiopods (Spiriferinida and Athyridida) did not recover their biodiversity, becoming extinct in the TOAE. Rhynchonellida and Terebratulida
also declined during the Triassic–Jurassic extinction but rebounded
during the Early Jurassic; neither clade underwent much morphological
variation.
Brachiopods substantially declined in the Late Jurassic; the causes are
poorly understood. Proposed reasons include increased predation,
competition with bivalves, enhanced bioturbation or increased grazing pressure.
Bryozoans
Like the preceding Triassic, bryozoan diversity was relatively low compared to the Paleozoic. The vast majority of Jurassic bryozoans are members of Cyclostomatida, which experienced a radiation during the Middle Jurassic, with all Jurassic representatives belonging to the suborders Tubuliporina and Cerioporina. Cheilostomata, the dominant group of modern bryozoans, first appeared during the Late Jurassic.
Molluscs
Bivalves
The
end-Triassic extinction had a severe impact on bivalve diversity,
though it had little impact on bivalve ecological diversity. The
extinction was selective, having less of an impact on deep burrowers,
but there is no evidence of a differential impact between surface-living
(epifaunal) and burrowing (infaunal) bivalves.
Bivalve family level diversity after the Early Jurassic was static,
though genus diversity experienced a gradual increase throughout the
period. Rudists,
the dominant reef-building organisms of the Cretaceous, first appeared
in the Late Jurassic (mid-Oxfordian) in the northern margin of the
western Tethys, expanding to the eastern Tethys by the end of the
Jurassic.
Cephalopods
Ammonites were devastated by the end-Triassic extinction, with only a handful of genera belonging to the family Psiloceratidae of the suborder Phylloceratina
surviving and becoming ancestral to all later Jurassic and Cretaceous
ammonites. Ammonites explosively diversified during the Early Jurassic,
with the orders Psiloceratina, Ammonitina, Lytoceratina, Haploceratina, Perisphinctina and Ancyloceratina
all appearing during the Jurassic. Ammonite faunas during the Jurassic
were regional, being divided into around 20 distinguishable provinces
and subprovinces in two realms, the northern high latitude Pan-Boreal
realm, consisting of the Arctic, northern Panthalassa and northern
Atlantic regions, and the equatorial–southern Pan-Tethyan realm, which
included the Tethys and most of Panthalassa.
The oldest definitive records of the squid-like belemnites are from the earliest Jurassic (Hettangian–Sinemurian) of Europe and Japan; they expanded worldwide during the Jurassic. Belemnites were shallow-water dwellers, inhabiting the upper 200 metres of the water column on the continental shelves and in the littoral zone.
They were key components of Jurassic ecosystems, both as predators and
prey, as evidenced by the abundance of belemnite guards in Jurassic
rocks.
The earliest vampyromorphs, of which the only living member is the vampire squid, first appeared during the Early Jurassic. The earliest octopuses
appeared during the Middle Jurassic, having split from their closest
living relatives, the vampyromorphs, during the Triassic to Early
Jurassic. All Jurassic octopuses are solely known from the hard gladius. Octopuses likely originated from bottom-dwelling (benthic) ancestors which lived in shallow environments. Proteroctopus from the late Middle Jurassic La Voulte-sur-Rhône lagerstätte,
previously interpreted as an early octopus, is now thought to be a
basal taxon outside the clade containing vampyromorphs and octopuses.