Technical definition
A hierarchy problem occurs when the fundamental value of some physical parameter, such as a coupling constant or a mass, in some Lagrangian is vastly different from its effective value, which is the value that gets measured in an experiment. This happens because the effective value is related to the fundamental value by a prescription known as renormalization, which applies corrections to it. Typically the renormalized value of parameters are close to their fundamental values, but in some cases, it appears that there has been a delicate cancellation between the fundamental quantity and the quantum corrections. Hierarchy problems are related to fine-tuning problems and problems of naturalness and over the past decade many scientists[2][3][4][5][6] argued that the hierarchy problem is a specific application of Bayesian statistics.Studying renormalization in hierarchy problems is difficult, because such quantum corrections are usually power-law divergent, which means that the shortest-distance physics are most important. Because we do not know the precise details of the shortest-distance theory of physics, we cannot even address how this delicate cancellation between two large terms occurs. Therefore, researchers are led to postulate new physical phenomena that resolve hierarchy problems without fine tuning.
Overview
A simple example:Suppose a physics model requires four parameters which allow it to produce a very high quality working model, calculations, and predictions of some aspect of our physical universe. Suppose we find through experiments that the parameters have values:
- 1.2
- 1.31
- 0.9 and
- 404,331,557,902,116,024,553,602,703,216.58 (roughly 4 x 1029).
One answer given by physicists is the anthropic principle. If the universe came to exist by chance, and perhaps vast numbers of other universes exist or have existed, then life capable of physics experiments only arose in universes that by chance had very balanced forces. All the universes where the forces were not balanced, didn't develop life capable of the question. So if a lifeform like human beings asks such a question, it must have arisen in a universe having balanced forces, however rare that might be. So when we look, that is what we would expect to find, and what we do find.
A second answer is that perhaps there is a deeper understanding of physics, which, if we discovered and understood it, would make clear these aren't really fundamental parameters and there is a good reason why they have the exact values we have found, because they all derive from other more fundamental parameters that are not so unbalanced.
Examples in particle physics
The Higgs mass
In particle physics, the most important hierarchy problem is the question that asks why the weak force is 1024 times as strong as gravity.[7] Both of these forces involve constants of nature, Fermi's constant for the weak force and Newton's constant for gravity. Furthermore, if the Standard Model is used to calculate the quantum corrections to Fermi's constant, it appears that Fermi's constant is surprisingly large and is expected to be closer to Newton's constant, unless there is a delicate cancellation between the bare value of Fermi's constant and the quantum corrections to it.More technically, the question is why the Higgs boson is so much lighter than the Planck mass (or the grand unification energy, or a heavy neutrino mass scale): one would expect that the large quantum contributions to the square of the Higgs boson mass would inevitably make the mass huge, comparable to the scale at which new physics appears, unless there is an incredible fine-tuning cancellation between the quadratic radiative corrections and the bare mass.
It should be remarked that the problem cannot even be formulated in the strict context of the Standard Model, for the Higgs mass cannot be calculated. In a sense, the problem amounts to the worry that a future theory of fundamental particles, in which the Higgs boson mass will be calculable, should not have excessive fine-tunings.
One proposed solution, popular amongst many physicists, is that one may solve the hierarchy problem via supersymmetry. Supersymmetry can explain how a tiny Higgs mass can be protected from quantum corrections. Supersymmetry removes the power-law divergences of the radiative corrections to the Higgs mass and solves the hierarchy problem as long as the supersymmetric particles are light enough to satisfy the Barbieri–Giudice criterion.[8] This still leaves open the mu problem, however. Currently the tenets of supersymmetry are being tested at the LHC, although no evidence has been found so far for supersymmetry.
Theoretical solutions
Supersymmetric solution
Each particle that couples to the Higgs field has a Yukawa coupling λf. The coupling with the Higgs field for fermions gives an interaction term , with being the Dirac field and the Higgs field. Also, the mass of a fermion is proportional to its Yukawa coupling, meaning that the Higgs boson will couple most to the most massive particle. This means that the most significant corrections to the Higgs mass will originate from the heaviest particles, most prominently the top quark. By applying the Feynman rules, one gets the quantum corrections to the Higgs mass squared from a fermion to be:λS= |λf|2 (the couplings to the Higgs are exactly the same).
Then by the Feynman rules, the correction (from both scalars) is:
This gives a total contribution to the Higgs mass to be zero if we include both the fermionic and bosonic particles. Supersymmetry is an extension of this that creates 'superpartners' for all Standard Model particles.[9]
Conformal solution
Without supersymmetry, a solution to the hierarchy problem has been proposed using just the Standard Model. The idea can be traced back to the fact that the term in the Higgs field that produces the uncontrolled quadratic correction upon renormalization is the quadratic one. If the Higgs field had no mass term, then no hierarchy problem arises. But by missing a quadratic term in the Higgs field, one must find a way to recover the breaking of electroweak symmetry through a non-null vacuum expectation value. This can be obtained using the Weinberg–Coleman mechanism with terms in the Higgs potential arising from quantum corrections. Mass obtained in this way is far too small with respect to what is seen in accelerator facilities and so a conformal Standard Model needs more than one Higgs particle. This proposal has been put forward in 2006 by Krzysztof Antoni Meissner and Hermann Nicolai[10] and is currently under scrutiny. But if no further excitation is observed beyond the one seen so far at LHC, this model would have to be abandoned.Solution via extra dimensions
If we live in a 3+1 dimensional world, then we calculate the Gravitational Force via Gauss' law for gravity:- (1)
- (2)
This section adapted from "Quantum Field Theory in a Nutshell" by A. Zee.[11]
Braneworld models
In 1998 Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali proposed the ADD model, also known as the model with large extra dimensions, an alternative scenario to explain the weakness of gravity relative to the other forces.[12][13] This theory requires that the fields of the Standard Model are confined to a four-dimensional membrane, while gravity propagates in several additional spatial dimensions that are large compared to the Planck scale.[14]In 1998/99 Merab Gogberashvili published on arXiv (and subsequently in peer-reviewed journals) a number of articles where he showed that if the Universe is considered as a thin shell (a mathematical synonym for "brane") expanding in 5-dimensional space then it is possible to obtain one scale for particle theory corresponding to the 5-dimensional cosmological constant and Universe thickness, and thus to solve the hierarchy problem.[15][16][17] It was also shown that four-dimensionality of the Universe is the result of stability requirement since the extra component of the Einstein field equations giving the localized solution for matter fields coincides with one of the conditions of stability.
Subsequently, there were proposed the closely related Randall–Sundrum scenarios which offered their solution to the hierarchy problem.