Search This Blog

Tuesday, July 2, 2024

Sequential space

From Wikipedia, the free encyclopedia

In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces (especially metric spaces) are sequential.

In any topological space if a convergent sequence is contained in a closed set then the limit of that sequence must be contained in as well. Sets with this property are known as sequentially closed. Sequential spaces are precisely those topological spaces for which sequentially closed sets are in fact closed. (These definitions can also be rephrased in terms of sequentially open sets; see below.) Said differently, any topology can be described in terms of nets (also known as Moore–Smith sequences), but those sequences may be "too long" (indexed by too large an ordinal) to compress into a sequence. Sequential spaces are those topological spaces for which nets of countable length (i.e., sequences) suffice to describe the topology.

Any topology can be refined (that is, made finer) to a sequential topology, called the sequential coreflection of

The related concepts of Fréchet–Urysohn spaces, T-sequential spaces, and -sequential spaces are also defined in terms of how a space's topology interacts with sequences, but have subtly different properties.

Sequential spaces and -sequential spaces were introduced by S. P. Franklin.

History

Although spaces satisfying such properties had implicitly been studied for several years, the first formal definition is due to S. P. Franklin in 1965. Franklin wanted to determine "the classes of topological spaces that can be specified completely by the knowledge of their convergent sequences", and began by investigating the first-countable spaces, for which it was already known that sequences sufficed. Franklin then arrived at the modern definition by abstracting the necessary properties of first-countable spaces.

Preliminary definitions

Let be a set and let be a sequence in ; that is, a family of elements of , indexed by the natural numbers. In this article, means that each element in the sequence is an element of and, if is a map, then For any index the tail of starting at is the sequence A sequence is eventually in if some tail of satisfies

Let be a topology on and a sequence therein. The sequence converges to a point written (when context allows, ), if, for every neighborhood of eventually is in is then called a limit point of

A function between topological spaces is sequentially continuous if implies

Sequential closure/interior

Let be a topological space and let be a subset. The topological closure (resp. topological interior) of in is denoted by (resp. ).

The sequential closure of in is the setwhich defines a map, the sequential closure operator, on the power set of If necessary for clarity, this set may also be written or It is always the case that but the reverse may fail.

The sequential interior of in is the set(the topological space again indicated with a subscript if necessary).

Sequential closure and interior satisfy many of the nice properties of topological closure and interior: for all subsets

  • and ;
  • and ;
  • ;
  • ; and

That is, sequential closure is a preclosure operator. Unlike topological closure, sequential closure is not idempotent: the last containment may be strict. Thus sequential closure is not a (Kuratowski) closure operator.

Sequentially closed and open sets

A set is sequentially closed if ; equivalently, for all and such that we must have

A set is defined to be sequentially open if its complement is sequentially closed. Equivalent conditions include:

  • or
  • For all and such that eventually is in (that is, there exists some integer such that the tail ).

A set is a sequential neighborhood of a point if it contains in its sequential interior; sequential neighborhoods need not be sequentially open (see § T- and N-sequential spaces below).

It is possible for a subset of to be sequentially open but not open. Similarly, it is possible for there to exist a sequentially closed subset that is not closed.

Sequential spaces and coreflection

As discussed above, sequential closure is not in general idempotent, and so not the closure operator of a topology. One can obtain an idempotent sequential closure via transfinite iteration: for a successor ordinal define (as usual)and, for a limit ordinal defineThis process gives an ordinal-indexed increasing sequence of sets; as it turns out, that sequence always stabilizes by index (the first uncountable ordinal). Conversely, the sequential order of is the minimal ordinal at which, for any choice of the above sequence will stabilize.

The transfinite sequential closure of is the terminal set in the above sequence: The operator is idempotent and thus a closure operator. In particular, it defines a topology, the sequential coreflection. In the sequential coreflection, every sequentially-closed set is closed (and every sequentially-open set is open).

Sequential spaces

A topological space is sequential if it satisfies any of the following equivalent conditions:

  • is its own sequential coreflection.
  • Every sequentially open subset of is open.
  • Every sequentially closed subset of is closed.
  • For any subset that is not closed in there exists some and a sequence in that converges to
  • (Universal Property) For every topological space a map is continuous if and only if it is sequentially continuous (if then ).
  • is the quotient of a first-countable space.
  • is the quotient of a metric space.

By taking and to be the identity map on in the universal property, it follows that the class of sequential spaces consists precisely of those spaces whose topological structure is determined by convergent sequences. If two topologies agree on convergent sequences, then they necessarily have the same sequential coreflection. Moreover, a function from is sequentially continuous if and only if it is continuous on the sequential coreflection (that is, when pre-composed with ).

T- and N-sequential spaces

A T-sequential space is a topological space with sequential order 1, which is equivalent to any of the following conditions:

  • The sequential closure (or interior) of every subset of is sequentially closed (resp. open).
  • or are idempotent.
  • or
  • Any sequential neighborhood of can be shrunk to a sequentially-open set that contains ; formally, sequentially-open neighborhoods are a neighborhood basis for the sequential neighborhoods.
  • For any and any sequential neighborhood of there exists a sequential neighborhood of such that, for every the set is a sequential neighborhood of

Being a T-sequential space is incomparable with being a sequential space; there are sequential spaces that are not T-sequential and vice-versa. However, a topological space is called a -sequential (or neighborhood-sequential) if it is both sequential and T-sequential. An equivalent condition is that every sequential neighborhood contains an open (classical) neighborhood.

Every first-countable space (and thus every metrizable space) is -sequential. There exist topological vector spaces that are sequential but not -sequential (and thus not T-sequential).

Fréchet–Urysohn spaces

A topological space is called Fréchet–Urysohn if it satisfies any of the following equivalent conditions:

  • is hereditarily sequential; that is, every topological subspace is sequential.
  • For every subset
  • For any subset that is not closed in and every there exists a sequence in that converges to

Fréchet–Urysohn spaces are also sometimes said to be "Fréchet," but should be confused with neither Fréchet spaces in functional analysis nor the T1 condition.

Examples and sufficient conditions

Every CW-complex is sequential, as it can be considered as a quotient of a metric space.

The prime spectrum of a commutative Noetherian ring with the Zariski topology is sequential.

Take the real line and identify the set of integers to a point. As a quotient of a metric space, the result is sequential, but it is not first countable.

Every first-countable space is Fréchet–Urysohn and every Fréchet-Urysohn space is sequential. Thus every metrizable or pseudometrizable space — in particular, every second-countable space, metric space, or discrete space — is sequential.

Let be a set of maps from Fréchet–Urysohn spaces to Then the final topology that induces on is sequential.

A Hausdorff topological vector space is sequential if and only if there exists no strictly finer topology with the same convergent sequences.

Spaces that are sequential but not Fréchet-Urysohn

Schwartz space and the space of smooth functions, as discussed in the article on distributions, are both widely-used sequential spaces, but are not Fréchet-Urysohn. Indeed the strong dual spaces of both these of spaces are not Fréchet-Urysohn either.

More generally, every infinite-dimensional Montel DF-space is sequential but not Fréchet–Urysohn.

Arens' space is sequential, but not Fréchet–Urysohn.

Non-examples (spaces that are not sequential)

The simplest space that is not sequential is the cocountable topology on an uncountable set. Every convergent sequence in such a space is eventually constant; hence every set is sequentially open. But the cocountable topology is not discrete. (One could call the topology "sequentially discrete".)

Let denote the space of -smooth test functions with its canonical topology and let denote the space of distributions, the strong dual space of ; neither are sequential (nor even an Ascoli space). On the other hand, both and are Montel spaces and, in the dual space of any Montel space, a sequence of continuous linear functionals converges in the strong dual topology if and only if it converges in the weak* topology (that is, converges pointwise).

Consequences

Every sequential space has countable tightness and is compactly generated.

If is a continuous open surjection between two Hausdorff sequential spaces then the set of points with unique preimage is closed. (By continuity, so is its preimage in the set of all points on which is injective.)

If is a surjective map (not necessarily continuous) onto a Hausdorff sequential space and bases for the topology on then is an open map if and only if, for every basic neighborhood of and sequence in there is a subsequence of that is eventually in 

Categorical properties

The full subcategory Seq of all sequential spaces is closed under the following operations in the category Top of topological spaces:

The category Seq is not closed under the following operations in Top:

  • Continuous images
  • Subspaces
  • Finite products

Since they are closed under topological sums and quotients, the sequential spaces form a coreflective subcategory of the category of topological spaces. In fact, they are the coreflective hull of metrizable spaces (that is, the smallest class of topological spaces closed under sums and quotients and containing the metrizable spaces).

The subcategory Seq is a Cartesian closed category with respect to its own product (not that of Top). The exponential objects are equipped with the (convergent sequence)-open topology.

P.I. Booth and A. Tillotson have shown that Seq is the smallest Cartesian closed subcategory of Top containing the underlying topological spaces of all metric spaces, CW-complexes, and differentiable manifolds and that is closed under colimits, quotients, and other "certain reasonable identities" that Norman Steenrod described as "convenient".

Every sequential space is compactly generated, and finite products in Seq coincide with those for compactly generated spaces, since products in the category of compactly generated spaces preserve quotients of metric spaces.

Distance education

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Distance_...