Search This Blog

Saturday, December 15, 2018

Comet (updated)

From Wikipedia, the free encyclopedia

Comet Tempel collides with Deep Impact's impactor
Comet 67P/Churyumov–Gerasimenko orbited by Rosetta
Comet 17P/Holmes and its blue ionized tail
Comet Wild 2 visited by Stardust probe
Hale–Bopp seen from Croatia in 1997
Comet Lovejoy seen from orbit
Comets – nucleus, coma and tail:
A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena are due to the effects of solar radiation and the solar wind acting upon the nucleus of the comet. Comet nuclei range from a few hundred metres to tens of kilometres across and are composed of loose collections of ice, dust, and small rocky particles. The coma may be up to 15 times the Earth's diameter, while the tail may stretch one astronomical unit. If sufficiently bright, a comet may be seen from the Earth without the aid of a telescope and may subtend an arc of 30° (60 Moons) across the sky. Comets have been observed and recorded since ancient times by many cultures.

Comets usually have highly eccentric elliptical orbits, and they have a wide range of orbital periods, ranging from several years to potentially several millions of years. Short-period comets originate in the Kuiper belt or its associated scattered disc, which lie beyond the orbit of Neptune. Long-period comets are thought to originate in the Oort cloud, a spherical cloud of icy bodies extending from outside the Kuiper belt to halfway to the nearest star. Long-period comets are set in motion towards the Sun from the Oort cloud by gravitational perturbations caused by passing stars and the galactic tide. Hyperbolic comets may pass once through the inner Solar System before being flung to interstellar space. The appearance of a comet is called an apparition.

Comets are distinguished from asteroids by the presence of an extended, gravitationally unbound atmosphere surrounding their central nucleus. This atmosphere has parts termed the coma (the central part immediately surrounding the nucleus) and the tail (a typically linear section consisting of dust or gas blown out from the coma by the Sun's light pressure or outstreaming solar wind plasma). However, extinct comets that have passed close to the Sun many times have lost nearly all of their volatile ices and dust and may come to resemble small asteroids. Asteroids are thought to have a different origin from comets, having formed inside the orbit of Jupiter rather than in the outer Solar System. The discovery of main-belt comets and active centaur minor planets has blurred the distinction between asteroids and comets. Recent years, the discovery of some minor bodies that has a long-period comet orbit but has the characteristics of a inner solar system asteroid sometimes is called Manx Object (It will still be classified as Comet, such as C/2014 S3 (PANSTARRS)). 27 Manxes were found from 2013-2017.

As of July 2018 there are 6,339 known comets, a number that is steadily increasing as they are discovered. However, this represents only a tiny fraction of the total potential comet population, as the reservoir of comet-like bodies in the outer Solar System (in the Oort cloud) is estimated to be one trillion. Roughly one comet per year is visible to the naked eye, though many of those are faint and unspectacular. Particularly bright examples are called "great comets". Comets have been visited by unmanned probes such as the European Space Agency's Rosetta, which became the first ever to land a robotic spacecraft on a comet, and NASA's Deep Impact, which blasted a crater on Comet Tempel 1 to study its interior.

Etymology

A comet was mentioned in the Anglo-Saxon Chronicle that allegedly made an appearance in 729 AD.

The word comet derives from the Old English cometa from the Latin comēta or comētēs. That, in turn, is a latinisation of the Greek κομήτης ("wearing long hair"), and the Oxford English Dictionary notes that the term (ἀστὴρ) κομήτης already meant "long-haired star, comet" in Greek. Κομήτης was derived from κομᾶν ("to wear the hair long"), which was itself derived from κόμη ("the hair of the head") and was used to mean "the tail of a comet".

The astronomical symbol for comets is (in Unicode U+2604), consisting of a small disc with three hairlike extensions.

Physical characteristics

Nucleus

Nucleus of 103P/Hartley as imaged during a spacecraft flyby. The nucleus is about 2 km in length.
 
Comet 81P/Wild exhibits jets on light side and dark side, stark relief, and is dry.

The solid, core structure of a comet is known as the nucleus. Cometary nuclei are composed of an amalgamation of rock, dust, water ice, and frozen carbon dioxide, carbon monoxide, methane, and ammonia. As such, they are popularly described as "dirty snowballs" after Fred Whipple's model. However, some comets may have a higher dust content, leading them to be called "icy dirtballs". Research conducted in 2014 suggests that comets are like "deep fried ice cream", in that their surfaces are formed of dense crystalline ice mixed with organic compounds, while the interior ice is colder and less dense.

Comet Borrelly exhibits jets, but has no surface ice.

The surface of the nucleus is generally dry, dusty or rocky, suggesting that the ices are hidden beneath a surface crust several metres thick. In addition to the gases already mentioned, the nuclei contain a variety of organic compounds, which may include methanol, hydrogen cyanide, formaldehyde, ethanol, and ethane and perhaps more complex molecules such as long-chain hydrocarbons and amino acids. In 2009, it was confirmed that the amino acid glycine had been found in the comet dust recovered by NASA's Stardust mission. In August 2011, a report, based on NASA studies of meteorites found on Earth, was published suggesting DNA and RNA components (adenine, guanine, and related organic molecules) may have been formed on asteroids and comets.

The outer surfaces of cometary nuclei have a very low albedo, making them among the least reflective objects found in the Solar System. The Giotto space probe found that the nucleus of Halley's Comet reflects about four percent of the light that falls on it, and Deep Space 1 discovered that Comet Borrelly's surface reflects less than 3.0%; by comparison, asphalt reflects seven percent. The dark surface material of the nucleus may consist of complex organic compounds. Solar heating drives off lighter volatile compounds, leaving behind larger organic compounds that tend to be very dark, like tar or crude oil. The low reflectivity of cometary surfaces causes them to absorb the heat that drives their outgassing processes.

Comet nuclei with radii of up to 30 kilometres (19 mi) have been observed, but ascertaining their exact size is difficult. The nucleus of 322P/SOHO is probably only 100–200 metres (330–660 ft) in diameter. A lack of smaller comets being detected despite the increased sensitivity of instruments has led some to suggest that there is a real lack of comets smaller than 100 metres (330 ft) across. Known comets have been estimated to have an average density of 0.6 g/cm3 (0.35 oz/cu in). Because of their low mass, comet nuclei do not become spherical under their own gravity and therefore have irregular shapes.

Roughly six percent of the near-Earth asteroids are thought to be extinct nuclei of comets that no longer experience outgassing, including 14827 Hypnos and 3552 Don Quixote

Results from the Rosetta and Philae spacecraft show that the nucleus of 67P/Churyumov–Gerasimenko has no magnetic field, which suggests that magnetism may not have played a role in the early formation of planetesimals. Further, the ALICE spectrograph on Rosetta determined that electrons (within 1 km (0.62 mi) above the comet nucleus) produced from photoionization of water molecules by solar radiation, and not photons from the Sun as thought earlier, are responsible for the degradation of water and carbon dioxide molecules released from the comet nucleus into its coma. Instruments on the Philae lander found at least sixteen organic compounds at the comet's surface, four of which (acetamide, acetone, methyl isocyanate and propionaldehyde) have been detected for the first time on a comet.

Properties of some comets
Name Dimensions
(km)
Density
(g/cm3)
Mass
(kg)
Halley's Comet 15 × 8 × 8 0.6 3×1014
Tempel 1 7.6 × 4.9 0.62 7.9×1013
19P/Borrelly 8 × 4 × 4 0.3 2.0×1013
81P/Wild 5.5 × 4.0 × 3.3 0.6 2.3×1013
67P/Churyumov–Gerasimenko 4.1 × 3.3 × 1.8 0.47 1.0×1013

Coma

Hubble image of Comet ISON shortly before perihelion.
 
The streams of dust and gas thus released form a huge and extremely thin atmosphere around the comet called the "coma". The force exerted on the coma by the Sun's radiation pressure and solar wind cause an enormous "tail" to form pointing away from the Sun.

The coma is generally made of H2O and dust, with water making up to 90% of the volatiles that outflow from the nucleus when the comet is within 3 to 4 astronomical units (450,000,000 to 600,000,000 km; 280,000,000 to 370,000,000 mi) of the Sun. The H2O parent molecule is destroyed primarily through photodissociation and to a much smaller extent photoionization, with the solar wind playing a minor role in the destruction of water compared to photochemistry. Larger dust particles are left along the comet's orbital path whereas smaller particles are pushed away from the Sun into the comet's tail by light pressure.

C/2006 W3 (Chistensen) emitting carbon gas (IR image)

Although the solid nucleus of comets is generally less than 60 kilometres (37 mi) across, the coma may be thousands or millions of kilometres across, sometimes becoming larger than the Sun. For example, about a month after an outburst in October 2007, comet 17P/Holmes briefly had a tenuous dust atmosphere larger than the Sun. The Great Comet of 1811 also had a coma roughly the diameter of the Sun. Even though the coma can become quite large, its size can decrease about the time it crosses the orbit of Mars around 1.5 astronomical units (220,000,000 km; 140,000,000 mi) from the Sun. At this distance the solar wind becomes strong enough to blow the gas and dust away from the coma, and in doing so enlarging the tail. Ion tails have been observed to extend one astronomical unit (150 million km) or more.

Both the coma and tail are illuminated by the Sun and may become visible when a comet passes through the inner Solar System, the dust reflects sunlight directly while the gases glow from ionisation. Most comets are too faint to be visible without the aid of a telescope, but a few each decade become bright enough to be visible to the naked eye. Occasionally a comet may experience a huge and sudden outburst of gas and dust, during which the size of the coma greatly increases for a period of time. This happened in 2007 to Comet Holmes.

In 1996, comets were found to emit X-rays. This greatly surprised astronomers because X-ray emission is usually associated with very high-temperature bodies. The X-rays are generated by the interaction between comets and the solar wind: when highly charged solar wind ions fly through a cometary atmosphere, they collide with cometary atoms and molecules, "stealing" one or more electrons from the atom in a process called "charge exchange". This exchange or transfer of an electron to the solar wind ion is followed by its de-excitation into the ground state of the ion by the emission of X-rays and far ultraviolet photons.

Bow shock

Bow shocks form at as a result of the interaction between the solar wind and the cometary ionosphere, which is created by ionization of gases in the coma. As the comet approaches the Sun, increasing outgassing rates cause the coma to expand, and the sunlight ionizes gases in the coma. When the solar wind passes through this ion coma, the bow shock appears. 

The first observations were made in the 1980s and 90s as several spacecraft flew by comets 21P/Giacobini–Zinner, 1P/Halley, and 26P/Grigg–Skjellerup. It was then found that the bow shocks at comets are wider and more gradual than the sharp planetary bow shocks seen at, for example, Earth. These observations were all made near perihelion when the bow shocks already were fully developed. 

The Rosetta spacecraft observed the bow shock at comet 67P/Churyumov–Gerasimenko at an early stage of bow shock development when the outgassing increased during the comet's journey toward the Sun. This young bow shock was called the "infant bow shock". The infant bow shock is asymmetric and, relative to the distance to the nucleus, wider than fully developed bow shocks.

Tails

Diagram of a comet showing the dust trail (or antitail), the dust tail, and the ion gas tail, which is formed by the solar wind flow.
 
In the outer Solar System, comets remain frozen and inactive and are extremely difficult or impossible to detect from Earth due to their small size. Statistical detections of inactive comet nuclei in the Kuiper belt have been reported from observations by the Hubble Space Telescope but these detections have been questioned. As a comet approaches the inner Solar System, solar radiation causes the volatile materials within the comet to vaporize and stream out of the nucleus, carrying dust away with them. 

Typical direction of tails over a comet's orbit near the Sun
 
The streams of dust and gas each form their own distinct tail, pointing in slightly different directions. The tail of dust is left behind in the comet's orbit in such a manner that it often forms a curved tail called the type II or dust tail. At the same time, the ion or type I tail, made of gases, always points directly away from the Sun because this gas is more strongly affected by the solar wind than is dust, following magnetic field lines rather than an orbital trajectory. On occasions - such as when the Earth passes through a comet's orbital plane, a tail pointing in the opposite direction to the ion and dust tails called the antitail may be seen.

The observation of antitails contributed significantly to the discovery of solar wind. The ion tail is formed as a result of the ionisation by solar ultra-violet radiation of particles in the coma. Once the particles have been ionized, they attain a net positive electrical charge, which in turn gives rise to an "induced magnetosphere" around the comet. The comet and its induced magnetic field form an obstacle to outward flowing solar wind particles. Because the relative orbital speed of the comet and the solar wind is supersonic, a bow shock is formed upstream of the comet in the flow direction of the solar wind. In this bow shock, large concentrations of cometary ions (called "pick-up ions") congregate and act to "load" the solar magnetic field with plasma, such that the field lines "drape" around the comet forming the ion tail.

If the ion tail loading is sufficient, the magnetic field lines are squeezed together to the point where, at some distance along the ion tail, magnetic reconnection occurs. This leads to a "tail disconnection event". This has been observed on a number of occasions, one notable event being recorded on 20 April 2007, when the ion tail of Encke's Comet was completely severed while the comet passed through a coronal mass ejection. This event was observed by the STEREO space probe.

In 2013, ESA scientists reported that the ionosphere of the planet Venus streams outwards in a manner similar to the ion tail seen streaming from a comet under similar conditions."

Jets

Gas and snow jets of 103P/Hartley

Uneven heating can cause newly generated gases to break out of a weak spot on the surface of comet's nucleus, like a geyser. These streams of gas and dust can cause the nucleus to spin, and even split apart. In 2010 it was revealed dry ice (frozen carbon dioxide) can power jets of material flowing out of a comet nucleus. Infrared imaging of Hartley 2 shows such jets exiting and carrying with it dust grains into the coma.

Orbital characteristics

Most comets are small Solar System bodies with elongated elliptical orbits that take them close to the Sun for a part of their orbit and then out into the further reaches of the Solar System for the remainder. Comets are often classified according to the length of their orbital periods: The longer the period the more elongated the ellipse.

Short period

Periodic comets or short-period comets are generally defined as those having orbital periods of less than 200 years. They usually orbit more-or-less in the ecliptic plane in the same direction as the planets. Their orbits typically take them out to the region of the outer planets (Jupiter and beyond) at aphelion; for example, the aphelion of Halley's Comet is a little beyond the orbit of Neptune. Comets whose aphelia are near a major planet's orbit are called its "family". Such families are thought to arise from the planet capturing formerly long-period comets into shorter orbits.

At the shorter orbital period extreme, Encke's Comet has an orbit that does not reach the orbit of Jupiter, and is known as an Encke-type comet. Short-period comets with orbital periods less than 20 years and low inclinations (up to 30 degrees) to the ecliptic are called traditional Jupiter-family comets (JFCs). Those like Halley, with orbital periods of between 20 and 200 years and inclinations extending from zero to more than 90 degrees, are called Halley-type comets (HTCs). As of 2018, only 83 HTCs have been observed, compared with 660 identified JFCs.

Recently discovered main-belt comets form a distinct class, orbiting in more circular orbits within the asteroid belt.

Because their elliptical orbits frequently take them close to the giant planets, comets are subject to further gravitational perturbations. Short-period comets have a tendency for their aphelia to coincide with a giant planet's semi-major axis, with the JFCs being the largest group. It is clear that comets coming in from the Oort cloud often have their orbits strongly influenced by the gravity of giant planets as a result of a close encounter. Jupiter is the source of the greatest perturbations, being more than twice as massive as all the other planets combined. These perturbations can deflect long-period comets into shorter orbital periods.

Based on their orbital characteristics, short-period comets are thought to originate from the centaurs and the Kuiper belt/scattered disc —a disk of objects in the trans-Neptunian region—whereas the source of long-period comets is thought to be the far more distant spherical Oort cloud (after the Dutch astronomer Jan Hendrik Oort who hypothesised its existence). Vast swarms of comet-like bodies are thought to orbit the Sun in these distant regions in roughly circular orbits. Occasionally the gravitational influence of the outer planets (in the case of Kuiper belt objects) or nearby stars (in the case of Oort cloud objects) may throw one of these bodies into an elliptical orbit that takes it inwards toward the Sun to form a visible comet. Unlike the return of periodic comets, whose orbits have been established by previous observations, the appearance of new comets by this mechanism is unpredictable.

Long period

Orbits of Comet Kohoutek (red) and the Earth (blue), illustrating the high eccentricity of its orbit and its rapid motion when close to the Sun.

Long-period comets have highly eccentric orbits and periods ranging from 200 years to thousands of years. An eccentricity greater than 1 when near perihelion does not necessarily mean that a comet will leave the Solar System. For example, Comet McNaught had a heliocentric osculating eccentricity of 1.000019 near its perihelion passage epoch in January 2007 but is bound to the Sun with roughly a 92,600-year orbit because the eccentricity drops below 1 as it moves farther from the Sun. The future orbit of a long-period comet is properly obtained when the osculating orbit is computed at an epoch after leaving the planetary region and is calculated with respect to the center of mass of the Solar System. By definition long-period comets remain gravitationally bound to the Sun; those comets that are ejected from the Solar System due to close passes by major planets are no longer properly considered as having "periods". The orbits of long-period comets take them far beyond the outer planets at aphelia, and the plane of their orbits need not lie near the ecliptic. Long-period comets such as Comet West and C/1999 F1 can have aphelion distances of nearly 70,000 AU with orbital periods estimated around 6 million years. 

Single-apparition or non-periodic comets are similar to long-period comets because they also have parabolic or slightly hyperbolic trajectories when near perihelion in the inner Solar System. However, gravitational perturbations from giant planets cause their orbits to change. Single-apparition comets have a hyperbolic or parabolic osculating orbit which allows them to permanently exit the Solar System after a single pass of the Sun. The Sun's Hill sphere has an unstable maximum boundary of 230,000 AU (1.1 parsecs (3.6 light-years)). Only a few hundred comets have been seen to reach a hyperbolic orbit (e > 1) when near perihelion that using a heliocentric unperturbed two-body best-fit suggests they may escape the Solar System. 

As of 2018, 1I/ʻOumuamua is the only object with an eccentricity significantly greater than one that has been detected, indicating an origin outside the Solar System. While ʻOumuamua showed no optical signs of cometary activity during its passage through the inner Solar System in October 2017, changes to its trajectory—which suggests outgassing—indicate that it is indeed a comet. Comet C/1980 E1 had an orbital period of roughly 7.1 million years before the 1982 perihelion passage, but a 1980 encounter with Jupiter accelerated the comet giving it the largest eccentricity (1.057) of any known hyperbolic comet. Comets not expected to return to the inner Solar System include C/1980 E1, C/2000 U5, C/2001 Q4 (NEAT), C/2009 R1, C/1956 R1, and C/2007 F1 (LONEOS). 

Some authorities use the term "periodic comet" to refer to any comet with a periodic orbit (that is, all short-period comets plus all long-period comets), whereas others use it to mean exclusively short-period comets. Similarly, although the literal meaning of "non-periodic comet" is the same as "single-apparition comet", some use it to mean all comets that are not "periodic" in the second sense (that is, to also include all comets with a period greater than 200 years). 

Early observations have revealed a few genuinely hyperbolic (i.e. non-periodic) trajectories, but no more than could be accounted for by perturbations from Jupiter. If comets pervaded interstellar space, they would be moving with velocities of the same order as the relative velocities of stars near the Sun (a few tens of km per second). If such objects entered the Solar System, they would have positive specific orbital energy and would be observed to have genuinely hyperbolic trajectories. A rough calculation shows that there might be four hyperbolic comets per century within Jupiter's orbit, give or take one and perhaps two orders of magnitude.
 
Hyperbolic comet discoveries
Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Number 12 7 8 4 13 10 16 9 16 5 18 3

Oort cloud and Hills cloud

The Oort cloud thought to surround the Solar System

The Oort cloud is thought to occupy a vast space starting from between 2,000 and 5,000 AU (0.03 and 0.08 ly) to as far as 50,000 AU (0.79 ly) from the Sun. Some estimates place the outer edge at between 100,000 and 200,000 AU (1.58 and 3.16 ly). The region can be subdivided into a spherical outer Oort cloud of 20,000–50,000 AU (0.32–0.79 ly), and a doughnut-shaped inner cloud, the Hills cloud, of 2,000–20,000 AU (0.03–0.32 ly). The outer cloud is only weakly bound to the Sun and supplies the long-period (and possibly Halley-type) comets that fall to inside the orbit of Neptune. The inner Oort cloud is also known as the Hills cloud, named after J. G. Hills, who proposed its existence in 1981. Models predict that the inner cloud should have tens or hundreds of times as many cometary nuclei as the outer halo; it is seen as a possible source of new comets that resupply the relatively tenuous outer cloud as the latter's numbers are gradually depleted. The Hills cloud explains the continued existence of the Oort cloud after billions of years.

Exocomets

Exocomets beyond the Solar System have also been detected and may be common in the Milky Way. The first exocomet system detected was around Beta Pictoris, a very young A-type main-sequence star, in 1987. A total of 10 such exocomet systems have been identified as of 2013, using the absorption spectrum caused by the large clouds of gas emitted by comets when passing close to their star.

Effects of comets

Connection to meteor showers

Diagram of Perseids meteors

As a result of outgassing, comets leave in their wake a trail of solid debris too large to be swept away by radiation pressure and the solar wind. If the Earth's orbit sends it through that debris, there are likely to be meteor showers as Earth passes through. The Perseid meteor shower, for example, occurs every year between 9 and 13 August, when Earth passes through the orbit of Comet Swift–Tuttle. Halley's Comet is the source of the Orionid shower in October.

Comets and impact on life

Many comets and asteroids collided with Earth in its early stages. Many scientists think that comets bombarding the young Earth about 4 billion years ago brought the vast quantities of water that now fill the Earth's oceans, or at least a significant portion of it. Others have cast doubt on this idea. The detection of organic molecules, including polycyclic aromatic hydrocarbons, in significant quantities in comets has led to speculation that comets or meteorites may have brought the precursors of life—or even life itself—to Earth. In 2013 it was suggested that impacts between rocky and icy surfaces, such as comets, had the potential to create the amino acids that make up proteins through shock synthesis. In 2015, scientists found significant amounts of molecular oxygen in the outgassings of comet 67P, suggesting that the molecule may occur more often than had been thought, and thus less an indicator of life as has been supposed.

It is suspected that comet impacts have, over long timescales, also delivered significant quantities of water to the Earth's Moon, some of which may have survived as lunar ice. Comet and meteoroid impacts are also thought to be responsible for the existence of tektites and australites.

Fear of comets

Fear of comets as acts of God and signs of impending doom was highest in Europe from AD 1200 to 1650. The year after the Great Comet of 1618, for example, Gotthard Arthusius published a pamphlet stating that it was a sign that the Day of Judgment was near. He listed ten pages of comet-related disasters, including "earthquakes, floods, changes in river courses, hail storms, hot and dry weather, poor harvests, epidemics, war and treason and high prices". By 1700 most scholars concluded that such events occurred whether a comet was seen or not. Using Edmund Halley's records of comet sightings, however, William Whiston in 1711 wrote that the Great Comet of 1680 had a periodicity of 574 years and was responsible for the worldwide flood in the Book of Genesis, by pouring water on the Earth. His announcement revived for another century fear of comets, now as direct threats to the world instead of signs of disasters. Spectroscopic analysis in 1910 found the toxic gas cyanogen in the tail of Halley's Comet, causing panicked buying of gas masks and quack "anti-comet pills" and "anti-comet umbrellas" by the public.

Fate of comets

Departure (ejection) from Solar System

If a comet is traveling fast enough, it may leave the Solar System. Such comets follow the open path of a hyperbola, and as such they are called hyperbolic comets. To date, comets are only known to be ejected by interacting with another object in the Solar System, such as Jupiter. An example of this is thought to be Comet C/1980 E1, which was shifted from a predicted orbit of 7.1 million years around the Sun, to a hyperbolic trajectory, after a 1980 close pass by the planet Jupiter.

Volatiles exhausted

Jupiter-family comets and long-period comets appear to follow very different fading laws. The JFCs are active over a lifetime of about 10,000 years or ~1,000 orbits whereas long-period comets fade much faster. Only 10% of the long-period comets survive more than 50 passages to small perihelion and only 1% of them survive more than 2,000 passages. Eventually most of the volatile material contained in a comet nucleus evaporates, and the comet becomes a small, dark, inert lump of rock or rubble that can resemble an asteroid. Some asteroids in elliptical orbits are now identified as extinct comets. Roughly six percent of the near-Earth asteroids are thought to be extinct comet nuclei.

Breakup and collisions

The nucleus of some comets may be fragile, a conclusion supported by the observation of comets splitting apart. A significant cometary disruption was that of Comet Shoemaker–Levy 9, which was discovered in 1993. A close encounter in July 1992 had broken it into pieces, and over a period of six days in July 1994, these pieces fell into Jupiter's atmosphere—the first time astronomers had observed a collision between two objects in the Solar System. Other splitting comets include 3D/Biela in 1846 and 73P/Schwassmann–Wachmann from 1995 to 2006. Greek historian Ephorus reported that a comet split apart as far back as the winter of 372–373 BC. Comets are suspected of splitting due to thermal stress, internal gas pressure, or impact.

Comets 42P/Neujmin and 53P/Van Biesbroeck appear to be fragments of a parent comet. Numerical integrations have shown that both comets had a rather close approach to Jupiter in January 1850, and that, before 1850, the two orbits were nearly identical.

Some comets have been observed to break up during their perihelion passage, including great comets West and Ikeya–Seki. Biela's Comet was one significant example, when it broke into two pieces during its passage through the perihelion in 1846. These two comets were seen separately in 1852, but never again afterward. Instead, spectacular meteor showers were seen in 1872 and 1885 when the comet should have been visible. A minor meteor shower, the Andromedids, occurs annually in November, and it is caused when the Earth crosses the orbit of Biela's Comet.

Some comets meet a more spectacular end – either falling into the Sun or smashing into a planet or other body. Collisions between comets and planets or moons were common in the early Solar System: some of the many craters on the Moon, for example, may have been caused by comets. A recent collision of a comet with a planet occurred in July 1994 when Comet Shoemaker–Levy 9 broke up into pieces and collided with Jupiter.

Brown spots mark impact sites of Comet Shoemaker–Levy 9 on Jupiter
 
The break up of 73P/Schwassmann–Wachmann within three days (1995)
 
Ghost tail of C/2015 D1 (SOHO) after passage at the sun
 
Disintegration of P/2013 R3 (2014)

Nomenclature


The names given to comets have followed several different conventions over the past two centuries. Prior to the early 20th century, most comets were simply referred to by the year when they appeared, sometimes with additional adjectives for particularly bright comets; thus, the "Great Comet of 1680", the "Great Comet of 1882", and the "Great January Comet of 1910". 

After Edmund Halley demonstrated that the comets of 1531, 1607, and 1682 were the same body and successfully predicted its return in 1759 by calculating its orbit, that comet became known as Halley's Comet. Similarly, the second and third known periodic comets, Encke's Comet and Biela's Comet, were named after the astronomers who calculated their orbits rather than their original discoverers. Later, periodic comets were usually named after their discoverers, but comets that had appeared only once continued to be referred to by the year of their appearance.

In the early 20th century, the convention of naming comets after their discoverers became common, and this remains so today. A comet can be named after its discoverers, or an instrument or program that helped to find it.

History of study

Early observations and thought

Halley's Comet appeared in 1066, prior to the Battle of Hastings (Bayeux Tapestry).

From ancient sources, such as Chinese oracle bones, it is known that comets have been noticed by humans for millennia. Until the sixteenth century, comets were usually considered bad omens of deaths of kings or noble men, or coming catastrophes, or even interpreted as attacks by heavenly beings against terrestrial inhabitants.

Aristotle believed that comets were atmospheric phenomena, due to the fact that they could appear outside of the Zodiac and vary in brightness over the course of a few days. Pliny the Elder believed that comets were connected with political unrest and death.

In India, by the 6th century astronomers believed that comets were celestial bodies that re-appeared periodically. This was the view expressed in the 6th century by the astronomers Varāhamihira and Bhadrabahu, and the 10th-century astronomer Bhaṭṭotpala listed the names and estimated periods of certain comets, but it is not known how these figures were calculated or how accurate they were.

In the 16th century Tycho Brahe demonstrated that comets must exist outside the Earth's atmosphere by measuring the parallax of the Great Comet of 1577 from observations collected by geographically separated observers. Within the precision of the measurements, this implied the comet must be at least four times more distant than from the Earth to the Moon.

Orbital studies

The orbit of the comet of 1680, fitted to a parabola, as shown in Isaac Newton's Principia

Isaac Newton, in his Principia Mathematica of 1687, proved that an object moving under the influence of gravity must trace out an orbit shaped like one of the conic sections, and he demonstrated how to fit a comet's path through the sky to a parabolic orbit, using the comet of 1680 as an example.

In 1705, Edmond Halley (1656–1742) applied Newton's method to twenty-three cometary apparitions that had occurred between 1337 and 1698. He noted that three of these, the comets of 1531, 1607, and 1682, had very similar orbital elements, and he was further able to account for the slight differences in their orbits in terms of gravitational perturbation caused by Jupiter and Saturn. Confident that these three apparitions had been three appearances of the same comet, he predicted that it would appear again in 1758–9. Halley's predicted return date was later refined by a team of three French mathematicians: Alexis Clairaut, Joseph Lalande, and Nicole-Reine Lepaute, who predicted the date of the comet's 1759 perihelion to within one month's accuracy. When the comet returned as predicted, it became known as Halley's Comet (with the latter-day designation of 1P/Halley). It will next appear in 2061.

Studies of physical characteristics

From his huge vapouring train perhaps to shake
Reviving moisture on the numerous orbs,
Thro' which his long ellipsis winds; perhaps
To lend new fuel to declining suns,
To light up worlds, and feed th' ethereal fire.
James Thomson The Seasons (1730; 1748)

Isaac Newton described comets as compact and durable solid bodies moving in oblique orbit and their tails as thin streams of vapor emitted by their nuclei, ignited or heated by the Sun. Newton suspected that comets were the origin of the life-supporting component of air. 

As early as the 18th century, some scientists had made correct hypotheses as to comets' physical composition. In 1755, Immanuel Kant hypothesized that comets are composed of some volatile substance, whose vaporization gives rise to their brilliant displays near perihelion. In 1836, the German mathematician Friedrich Wilhelm Bessel, after observing streams of vapor during the appearance of Halley's Comet in 1835, proposed that the jet forces of evaporating material could be great enough to significantly alter a comet's orbit, and he argued that the non-gravitational movements of Encke's Comet resulted from this phenomenon.

In 1950, Fred Lawrence Whipple proposed that rather than being rocky objects containing some ice, comets were icy objects containing some dust and rock. This "dirty snowball" model soon became accepted and appeared to be supported by the observations of an armada of spacecraft (including the European Space Agency's Giotto probe and the Soviet Union's Vega 1 and Vega 2) that flew through the coma of Halley's Comet in 1986, photographed the nucleus, and observed jets of evaporating material.

On 22 January 2014, ESA scientists reported the detection, for the first definitive time, of water vapor on the dwarf planet Ceres, the largest object in the asteroid belt. The detection was made by using the far-infrared abilities of the Herschel Space Observatory. The finding is unexpected because comets, not asteroids, are typically considered to "sprout jets and plumes". According to one of the scientists, "The lines are becoming more and more blurred between comets and asteroids." On 11 August 2014, astronomers released studies, using the Atacama Large Millimeter/Submillimeter Array (ALMA) for the first time, that detailed the distribution of HCN, HNC, H
2
CO
, and dust inside the comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON).

Spacecraft missions

  • The Halley Armada describes the collection of spacecraft missions that visited and/or made observations of Halley's Comet 1980s perihelion.
  • Deep Impact. Debate continues about how much ice is in a comet. In 2001, the Deep Space 1 spacecraft obtained high-resolution images of the surface of Comet Borrelly. It was found that the surface of comet Borrelly is hot and dry, with a temperature of between 26 to 71 °C (79 to 160 °F), and extremely dark, suggesting that the ice has been removed by solar heating and maturation, or is hidden by the soot-like material that covers Borrelly. In July 2005, the Deep Impact probe blasted a crater on Comet Tempel 1 to study its interior. The mission yielded results suggesting that the majority of a comet's water ice is below the surface and that these reservoirs feed the jets of vaporised water that form the coma of Tempel 1. Renamed EPOXI, it made a flyby of Comet Hartley 2 on 4 November 2010.
  • Stardust. Data from the Stardust mission show that materials retrieved from the tail of Wild 2 were crystalline and could only have been "born in fire," at extremely high temperatures of over 1,000 °C (1,830 °F). Although comets formed in the outer Solar System, radial mixing of material during the early formation of the Solar System is thought to have redistributed material throughout the proto-planetary disk. As a result, comets also contain crystalline grains that formed in the early, hot inner Solar System. This is seen in comet spectra as well as in sample return missions. More recent still, the materials retrieved demonstrate that the "comet dust resembles asteroid materials". These new results have forced scientists to rethink the nature of comets and their distinction from asteroids.
  • Rosetta. The Rosetta probe orbited Comet Churyumov–Gerasimenko. On 12 November 2014, its lander Philae successfully landed on the comet's surface, the first time a spacecraft has ever landed on such an object in history.

Great comets

Woodcut of the Great Comet of 1577

Approximately once a decade, a comet becomes bright enough to be noticed by a casual observer, leading such comets to be designated as great comets. Predicting whether a comet will become a great comet is notoriously difficult, as many factors may cause a comet's brightness to depart drastically from predictions. Broadly speaking, if a comet has a large and active nucleus, will pass close to the Sun, and is not obscured by the Sun as seen from the Earth when at its brightest, it has a chance of becoming a great comet. However, Comet Kohoutek in 1973 fulfilled all the criteria and was expected to become spectacular but failed to do so. Comet West, which appeared three years later, had much lower expectations but became an extremely impressive comet.

The late 20th century saw a lengthy gap without the appearance of any great comets, followed by the arrival of two in quick succession—Comet Hyakutake in 1996, followed by Hale–Bopp, which reached maximum brightness in 1997 having been discovered two years earlier. The first great comet of the 21st century was C/2006 P1 (McNaught), which became visible to naked eye observers in January 2007. It was the brightest in over 40 years.

Sungrazing comets

A sungrazing comet is a comet that passes extremely close to the Sun at perihelion, generally within a few million kilometres. Although small sungrazers can be completely evaporated during such a close approach to the Sun, larger sungrazers can survive many perihelion passages. However, the strong tidal forces they experience often lead to their fragmentation.

About 90% of the sungrazers observed with SOHO are members of the Kreutz group, which all originate from one giant comet that broke up into many smaller comets during its first passage through the inner Solar System. The remainder contains some sporadic sungrazers, but four other related groups of comets have been identified among them: the Kracht, Kracht 2a, Marsden, and Meyer groups. The Marsden and Kracht groups both appear to be related to Comet 96P/Machholz, which is also the parent of two meteor streams, the Quadrantids and the Arietids.

Unusual comets

Euler diagram showing the types of bodies in the Solar System.

Of the thousands of known comets, some exhibit unusual properties. Comet Encke (2P/Encke) orbits from outside the asteroid belt to just inside the orbit of the planet Mercury whereas the Comet 29P/Schwassmann–Wachmann currently travels in a nearly circular orbit entirely between the orbits of Jupiter and Saturn. 2060 Chiron, whose unstable orbit is between Saturn and Uranus, was originally classified as an asteroid until a faint coma was noticed. Similarly, Comet Shoemaker–Levy 2 was originally designated asteroid 1990 UL3.

Centaurs

Centaurs typically behave with characteristics of both asteroids and comets. Centaurs can be classified as comets such as 60558 Echeclus, and 166P/NEAT. 166P/NEAT was discovered while it exhibited a coma, and so is classified as a comet despite its orbit, and 60558 Echeclus was discovered without a coma but later became active, and was then classified as both a comet and an asteroid (174P/Echeclus). One plan for Cassini involved sending it to a centaur, but NASA decided to destroy it instead.

Observation

A comet may be discovered photographically using a wide-field telescope or visually with binoculars. However, even without access to optical equipment, it is still possible for the amateur astronomer to discover a sungrazing comet online by downloading images accumulated by some satellite observatories such as SOHO. SOHO's 2000th comet was discovered by Polish amateur astronomer Michał Kusiak on 26 December 2010 and both discoverers of Hale-Bopp used amateur equipment (although Hale was not an amateur).

Lost

A number of periodic comets discovered in earlier decades or previous centuries are now lost comets. Their orbits were never known well enough to predict future appearances or the comets have disintegrated. However, occasionally a "new" comet is discovered, and calculation of its orbit shows it to be an old "lost" comet. An example is Comet 11P/Tempel–Swift–LINEAR, discovered in 1869 but unobservable after 1908 because of perturbations by Jupiter. It was not found again until accidentally rediscovered by LINEAR in 2001. There are at least 18 comets that fit this category.

In popular culture

The depiction of comets in popular culture is firmly rooted in the long Western tradition of seeing comets as harbingers of doom and as omens of world-altering change. Halley's Comet alone has caused a slew of sensationalist publications of all sorts at each of its reappearances. It was especially noted that the birth and death of some notable persons coincided with separate appearances of the comet, such as with writers Mark Twain (who correctly speculated that he'd "go out with the comet" in 1910) and Eudora Welty, to whose life Mary Chapin Carpenter dedicated the song "Halley Came to Jackson".

In times past, bright comets often inspired panic and hysteria in the general population, being thought of as bad omens. More recently, during the passage of Halley's Comet in 1910, the Earth passed through the comet's tail, and erroneous newspaper reports inspired a fear that cyanogen in the tail might poison millions, whereas the appearance of Comet Hale–Bopp in 1997 triggered the mass suicide of the Heaven's Gate cult.

In science fiction, the impact of comets has been depicted as a threat overcome by technology and heroism (as in the 1998 films Deep Impact and Armageddon), or as a trigger of global apocalypse (Lucifer's Hammer, 1979) or zombies (Night of the Comet, 1984). In Jules Verne's Off on a Comet a group of people are stranded on a comet orbiting the Sun, while a large manned space expedition visits Halley's Comet in Sir Arthur C. Clarke's novel 2061: Odyssey Three.

Nuclear propulsion

From Wikipedia, the free encyclopedia

Nuclear propulsion includes a wide variety of propulsion methods that fulfill the promise of the Atomic Age by using some form of nuclear reaction as their primary power source. The idea of using nuclear material for propulsion dates back to the beginning of the 20th century. In 1903 it was hypothesised that radioactive material, radium, might be a suitable fuel for engines to propel cars, boats, and planes. H. G. Wells picked up this idea in his 1914 fiction work The World Set Free
 
Pressurised water reactors are the most common reactors used in ships and submarines. The pictorial diagram shows the operating principles. Primary coolant is in orange and the secondary coolant (steam and later feedwater) is in blue.

Surface ships, submarines, and torpedoes

Nuclear-powered vessels are mainly military submarines, and aircraft carriers. Russia and America are the only countries that currently have nuclear-powered civilian surface ships, including icebreakers and Aircraft carriers. America currently (as of July 2018) has 11 Aircraft carriers in service, and all are powered by nuclear reactors. They use nuclear reactors as their power plants.

A Delta-class Nuclear-powered submarine.

Civilian maritime use

Military maritime use

Torpedo

Russia's Channel One Television news broadcast a picture and details of a nuclear-powered torpedo called Status-6 on about 12 November 2015. The torpedo was stated as having a range of up to 10,000 km, a cruising speed of 100 knots, and operational depth of up to 1000 metres below the surface. The torpedo carried a 100-megaton nuclear warhead.

One of the suggestions emerging in the summer of 1958 from the first meeting of the scientific advisory group that became JASON was for "a nuclear-powered torpedo that could roam the seas almost indefinitely"

Aircraft and missiles

A picture of an Aircraft Nuclear Propulsion system, known as HTRE-3(Heat Transfer Reactor Experiment no. 3). The central EBR-1 based reactor took the place of chemical fuel combustion to heat the air. The reactor rapidly raised the temperature via an air heat exchanger and powered the dual J47 engines in a number of ground tests.
 
Research into nuclear-powered aircraft was pursued during the Cold War by the United States and the Soviet Union as they would presumably allow a country to keep nuclear bombers in the air for extremely long periods of time, a useful tactic for nuclear deterrence. Neither country created any operational nuclear aircraft. One design problem, never adequately solved, was the need for heavy shielding to protect the crew from radiation sickness. Since the advent of ICBMs in the 1960s the tactical advantage of such aircraft was greatly diminished and respective projects were cancelled. Because the technology was inherently dangerous it was not considered in non-military contexts. Nuclear-powered missiles were also researched and discounted during the same period. 

Aircraft
Missiles

Spacecraft

Many types of nuclear propulsion have been proposed, and some of them (e.g. NERVA) tested for spacecraft applications.

Nuclear pulse propulsion

Nuclear thermal rocket

Bimodal Nuclear Thermal Rockets - conduct nuclear fission reactions similar to those employed at nuclear power plants including submarines. The energy is used to heat the liquid hydrogen propellant. The vehicle depicted is the "Copernicus" an upper stage assembly being designed for the Space Launch System (2010).
  • Bimodal Nuclear Thermal Rockets conduct nuclear fission reactions similar to those safely employed at nuclear power plants including submarines. The energy is used to heat the liquid hydrogen propellant. Advocates of nuclear-powered spacecraft point out that at the time of launch, there is almost no radiation released from the nuclear reactors. The nuclear-powered rockets are not used to lift off the Earth. Nuclear thermal rockets can provide great performance advantages compared to chemical propulsion systems. Nuclear power sources could also be used to provide the spacecraft with electrical power for operations and scientific instrumentation.
  • NERVA - NASA's Nuclear Energy for Rocket Vehicle Applications, a US nuclear thermal rocket program
  • Project Rover - an American project to develop a nuclear thermal rocket. The program ran at the Los Alamos Scientific Laboratory from 1955 through 1972.
  • Project Timberwind 1987-1991

Ramjet

Direct nuclear

Nuclear electric

Russian Federal Space Agency development

Anatolij Perminov, head of the Russian Federal Space Agency, announced that it is going to develop a nuclear-powered spacecraft for deep space travel. Preliminary design was done by 2013, and 9 more years are planned for development (in space assembly). The price is set at 17 billion rubles (600 million dollars). The nuclear propulsion would have mega-watt class, provided necessary funding, Roscosmos Head stated. 

This system would consist of a space nuclear power and a matrix of ion engines.
...hot inert gas temperature of 1500 °C from the reactor turns turbines. The turbine turns the generator and compressor, which circulates the working fluid in a closed circuit. The working fluid is cooled in the radiator. The generator produces electricity for the same ion (plasma) engine...
According to him, the propulsion will be able to support human mission to Mars, with cosmonauts staying on the Red planet for 30 days. This journey to Mars with nuclear propulsion and a steady acceleration would take six weeks, instead of eight months by using chemical propulsion – assuming thrust of 300 times higher than that of chemical propulsion.

Vehicles

Cars

The idea of making cars that used radioactive material, radium, for fuel dates back to at least 1903. Analysis of the concept in 1937 indicated that the driver of such a vehicle might need a 50-ton lead barrier to shield them from radiation.

In 1941 Dr R M Langer, a Caltech physicist, espoused the idea of a car powered by uranium-235 in the January edition of Popular Mechanics. He was followed by William Bushnell Stout, designer of the Stout Scarab and former Society of Engineers president, on 7 August 1945 in the New York Times. The problem of shielding the reactor continued to render the idea impractical. In December 1945, a John Wilson of London, announced he had created an atomic car. This created considerable interest. The Minister of Fuel and Power along with a large press contingent turned out to view it. The car did not show and Wilson claimed that it had been sabotaged. A later court case found that he was a fraud and there was no nuclear-powered car.

Despite the shielding problem, through the late 1940s and early 1950s debate continued around the possibility of nuclear-powered cars. The development of nuclear-powered submarines and ships, and experiments to develop a nuclear-powered aircraft at that time kept the idea alive. Russian papers in the mid-1950s reported the development of a nuclear-powered car by Professor V P Romadin, but again shielding proved to be a problem. It was claimed that its laboratories had overcome the shielding problem with a new alloy that absorbed the rays.

In 1958 at the height of the 1950s American automobile culture there were at least four theoretical nuclear-powered concept cars proposed, the American Ford Nucleon and Studebaker Packard Astral, as well as the French Simca Fulgur designed by Robert Opron and the Arbel Symetric. Apart from these concept models, none were built and no automotive nuclear power plants ever made. Chrysler engineer C R Lewis had discounted the idea in 1957 because of estimates that an 80,000 lb (36,000 kg) engine would be required by a 3,000 lb (1,400 kg) car. His view was that an efficient means of storing energy was required for nuclear power to be practical. Despite this, Chrysler's stylists in 1958 drew up some possible designs. 

In 1959 it was reported that Goodyear Tire and Rubber Company had developed a new rubber compound that was light and absorbed radiation, obviating the need for heavy shielding. A reporter at the time considered it might make nuclear-powered cars and aircraft a possibility.

Ford made another potentially nuclear-powered model in 1962 for the Seattle World's Fair, the Ford Seattle-ite XXI. This also never went beyond the initial concept.

In 2009, for the hundredth anniversary of General Motors' acquisition of Cadillac, Loren Kulesus created concept art depicting a car powered by thorium.

Other

The Chrysler TV-8 was an experimental concept tank designed by Chrysler in the 1950s. The tank was intended to be a nuclear-powered medium tank capable of land and amphibious warfare. The design was never mass-produced. The Mars rover Curiosity is powered by a radioisotope thermoelectric generator (RTG), like the successful Viking 1 and Viking 2 Mars landers in 1976.

Interstellar probe

From Wikipedia, the free encyclopedia
Spacecraft that have left or are about to leave the Solar System (not including New Horizons)

An interstellar probe is a space probe that has left—or is expected to leave—the Solar System and enter interstellar space, which is typically defined as the region beyond the heliopause. It also refers to probes capable of reaching other star systems.

There are five interstellar probes: Voyager 1, Voyager 2, Pioneer 10, Pioneer 11 and New Horizons. As of 2018, Voyager 1 and Voyager 2 are only probes to have actually reached interstellar space. The other three are on interstellar trajectories. 

The termination shock is the point in the heliosphere where the solar wind slows down to subsonic speed. Even though the termination shock happens as close as 80–100 AU, the maximum extent of the region in which the Sun's gravitational field is dominant (the Hill sphere) is thought to be at around 230,000 astronomical units (3.6 light-years). This point is close to the nearest known star system, Alpha Centauri, located 4.36 light years away. Although the probes will be under the influence of the Sun for a long time, their velocities far exceed the Sun's escape velocity, so they will eventually leave forever. 

Interstellar space is defined as that which lies beyond a magnetic region that extends about 122 AU from the sun, as detected by Voyager 1, and the equivalent region of influence surrounding other stars. Voyager 1 entered interstellar space in 2013.

Interstellar Probe is also the name of a proposed NASA space probe intended to travel out 200 AU in 15 years, studied in 1999.

In April 2016, scientists announced Breakthrough Starshot, a Breakthrough Initiatives program, to develop a proof-of-concept fleet of small centimeter-sized light sail spacecraft, named StarChip, capable of making the journey to Alpha Centauri, the nearest extrasolar star system, at speeds of 20% and 15% of the speed of light, taking between 20 and 30 years to reach the star system, respectively, and about 4 years to notify Earth of a successful arrival.

Overview

Planetary scientist G. Laughlin noted that with current technology a probe sent to Alpha Centauri would take 40,000 years to arrive, but expressed hope for new technology to be developed to make the trip within a human lifetime. On that timescale the stars move notably. As an example, in 40,000 years Ross 248 will be closer to Earth than Alpha Centauri.

Stars are literally moving targets on the time scales current technology might reach them

One technology that has been proposed to achieve higher speeds is an E-sail. By harnessing solar wind, it might be possible to achieve 20-30 AU per year without even using propellant.

Existing interstellar probes

Functional spacecraft

Artists view of a Voyager spacecraft in outer space.

Voyager 1 (1977+)

Voyager 1 is a space probe launched by NASA on September 5, 1977. At a distance of about 139.114 AU (2.081×1010 km) as of 10 December 2018, it is the farthest manmade object from Earth.

It was later estimated that Voyager 1 crossed the termination shock on December 15, 2004 at a distance of 94 AU from the Sun.

At the end of 2011, Voyager 1 entered and discovered a stagnation region where charged particles streaming from the Sun slow and turn inward, and the Solar System's magnetic field is doubled in strength as interstellar space appears to be applying pressure. Energetic particles originating in the Solar System declined by nearly half, while the detection of high-energy electrons from outside increases 100-fold. The inner edge of the stagnation region is located approximately 113 astronomical units from the Sun.

In 2013 it was thought Voyager 1 crossed the heliopause and entered interstellar space on August 25, 2012 at distance of 121 AU from the Sun, making it the first known human-manufactured object to do so.

As of 2017, the probe was moving with a relative velocity to the Sun of about 16.95 km/s (3.58 AU/year).

If it does not hit anything, Voyager 1 could reach the Oort cloud in about 300 years.

Voyager 2 (1977+)

Plot of Voyager 2's heliocentric velocity against its distance from the sun, illustrating the use of gravity assist to accelerate the spacecraft by Jupiter, Saturn and Uranus. The spacecraft's encounter with Neptune actually decelerated the probe because of the way it encountered the planet.
Voyager 2 crossed the heliopause and entered interstellar space on November 5, 2018. It had previously passed the termination shock into the heliosheath on October 30, 2007. As of 10 December 2018 Voyager 2 is at a distance of 114.45 AU (1.712×1010 km) from Earth. The probe was moving at a velocity of 3.25 AU/year (15.428 km/s) relative to the Sun on its way to interstellar space in 2013.

It's moving at a velocity of 15.4 km/s (55,000 km/h) relative to the Sun as of December 2014. Voyager 2 is expected to provide the first direct measurements of the density and temperature of the interstellar plasma.

New Horizons (2006+)

New Horizons was launched directly into a hyperbolic escape trajectory, getting a gravitational assist from Jupiter en route. By March 7, 2008, New Horizons was 9.37 AU from the Sun and traveling outward at 3.9 AU per year. It will, however, slow to an escape velocity of only 2.5 AU per year as it moves away from the Sun, so it will never catch up to either Voyager. As of early 2011, it was traveling at 3.356 AU/year (15.91 km/s) relative to the Sun. On July 14, 2015, it completed a flyby of Pluto at a distance of about 33 AU from the Sun. New Horizons is expected to encounter 2014 MU69 on January 1, 2019, at about 43.4 AU from the Sun.

The Heliosphere's termination shock was crossed by Voyager 1 at 94 astronomical units (AU) and Voyager 2 at 84 AU according to the IBEX mission.

If New Horizons can reach the distance of 100 AU, it will be traveling at about 13 km/s (29,000 mph), around 4 km/s (8,900 mph) slower than Voyager 1 at that distance.

Inactive missions

Pioneer 10 (1972–2003)

The last successful reception of telemetry from Pioneer 10 was on April 27, 2002, when it was at a distance of 80.22 AU, traveling at about 2.54 AU/year (12 km/s).

Pioneer 11 (1973–1995)

Routine mission operations for Pioneer 11 were stopped September 30, 1995, when it was 6.5 billion km (approx 43.4 AU) from Earth, traveling at about 2.4 AU/year (11.4 km/s).

Probe debris

New Horizons' third stage, a STAR-48 booster, is on a similar escape trajectory out of the Solar System as New Horizons, but will pass millions of kilometers from Pluto. It crossed Pluto's orbit in October 2015.

The third stage rocket boosters for Pioneer 10, and for Voyager 1 and 2 are also on escape trajectories out of the Solar System.

Trans-Neptunian probes at precursor distances

Sedna art, more distant than Pluto and coming in for its perihelion

In the early 2000s many new, relatively large planetary bodies were found beyond Pluto, and with orbits extending hundreds of AU out past the heliosheath (90–1000 AU). The NASA probe New Horizons may explore this area now that it has performed its Pluto flyby in 2015 (Pluto's orbit ranges from about 29–49 AU). Some of these large objects past Pluto include 136199 Eris, 136108 Haumea, 136472 Makemake, and 90377 Sedna. Sedna comes as close as 76 AU, but travels out as far as 961 AU at aphelion, and minor planet (87269) 2000 OO67 goes out past 1060 AU at aphelion. Bodies like these affect how the Solar System is understood, and traverse an area previously only in the domain of interstellar missions or precursor probes. After the discoveries, the area is also in the domain of interplanetary probes; some of the discovered bodies may become targets for exploration missions, an example of which is preliminary work on a probe to Haumea and its moons (at 35–51 AU). Probe mass, power source, and propulsion systems are key technology areas for this type of mission. In addition, a probe beyond 550 AU could use the Sun itself as a gravitational lens to observe targets outside the Solar System, such as planetary systems around other nearby stars, although many challenges to this mission have been noted.

Proposed interstellar probes

Missions that reach the interstellar medium or leave the heliosphere.
Interstellar Heliopause Probe (IHP) (2006)
A technology reference study published in 2006 with the ESA proposed an interstellar probe focused on leaving the heliosphere. The goal would be 200 AU in 25 years, with traditional launch but acceleration by a solar sail. The roughly 200–300 kg probe would carry a suite of several instruments including a Plasma Analyzer, Plasma radio wave experiment, Magnetometer, Neutral and charged atom detector, Dust analyzer, and a UV-photometer. Electrical power would come from an RTG.

NASA's Vision Mission; an early concept for the Innovative Interstellar Explorer
Solar frontier as envisioned at the turn of century, on a logarithmic scale (1999)
Innovative Interstellar Explorer (2003)
NASA proposal to send a 35 kg science payload out to at least 200 AU. It would achieve a top speed of 7.8 AU per year using a combination of a heavy lift rocket, Jupiter gravitational assistance, and an ion engine powered by standard radioisotope thermal generators. The probe suggested a launch in 2014 (to take advantage of Jupiter gravitational assist), to reach 200 AU around 2044.
Realistic Interstellar Explorer and Interstellar Explorer (2000–2002)
Studies suggesting various technologies including Am-241-based RTG, optical communication (as opposed to radio), and low-power semi-autonomous electronics. Trajectory uses a Jupiter and Sun gravity assist to achieve 20 AU/year, allowing 1000 AU within 50 years, and a mission extension up to 20,000 AU and 1000 years. Needed technology included advanced propulsion and solar shield for perihelion burn around the Sun. Solar thermal (STP), nuclear fission thermal (NTP), and nuclear fission pulse, as well as various RTG isotopes were examined. The studies also included recommendations for a solar probe (see also Parker Solar Probe), nuclear thermal technology, solar sail probe, 20 AU/year probe, and a long term vision of a 200 AU/year probe to the star Epsilon Eridani.

The "next step" interstellar probe in this study suggested a 5 megawatt fission reactor utilizing 16 metric tonnes of H2 propellant. Targeting a launch in the mid-21st century, it would accelerate to 200 AU/year over 4200 AU and reach the star Epsilon Eridani after 3400 years of travel in the year 5500 AD. However, this was a second-generation vision for a probe and the study acknowledged that even 20 AU/year might not be possible with then current (2002) technology. For comparison, the fastest probe at the time of the study was Voyager 1 at about 3.6 AU/year (17 km/s), relative to the Sun.
Interstellar Probe (1999)
Interstellar Probe was a proposed solar sail propulsion spacecraft planned by NASA Jet Propulsion Laboratory. It was planned to reach as far as 200 AU within 10 years at a speed of 14 AU/year (about 70 km/s, and function up to 400+ AU. A critical technology for the mission is a large 1 g/m2 solar sail. 

TAU concept art
TAU mission (1987)
TAU mission (Thousand Astronomical Units) was a proposed nuclear electric rocket craft that used a 1 MW fission reactor and an ion drive with a burn time of about 10 years to reach a speed of 106 km/s (about 20 AU/year) to achieve a distance of 1000 AU in 50 years. The primary goal of the mission was to improve parallax measurements of the distances to stars inside and outside our galaxy, with secondary goals being the study of the heliopause, measurements of conditions in the interstellar medium, and (via communications with Earth) tests of general relativity.

Interstellar concepts

Project Orion (1958–1965)
Project Orion was a proposed nuclear pulse propulsion craft that would have used fission or fusion bombs to apply motive force. The design was studied during the 1950s and 1960s in the United States of America, with one variant of the craft capable of interstellar travel.
Bracewell probe (1960)
Interstellar communication via a probe, as opposed to sending an electromagnetic signal.
Sanger Photon Rocket (1950s-1964)
Eugene Sanger proposed a spacecraft powered by antimatter in the 1950s. Thrust was intended to come from reflected gamma-rays produced by electron-positron annihilation.
Enzmann Starship (1964/1973)
Proposed by 1964 and examined in an October 1973 issue of Analog, the Enzmann Starship proposed using a 12,000 ton ball of frozen deuterium to power thermonuclear powered pulse propulsion. About twice as long as the Empire State Building and assembled in-orbit, the spacecraft was part of a larger project preceded by large interstellar probes and telescopic observation of target star systems.
Project Daedalus (1973–1978)
Project Daedalus was a proposed nuclear pulse propulsion craft that used inertial confinement fusion of small pellets within a magnetic field nozzle to provide motive force. The design was studied during the 1970s by the British Interplanetary Society, and was meant to flyby Barnard's Star in under a century from launch. Plans included mining Helium-3 from Jupiter and a pre-launch mass of over 50 thousand metric tonnes from orbit.
Project Longshot (1987–1988)
Project Longshot was a proposed nuclear pulse propulsion craft that used inertial confinement fusion of small pellets within a magnetic field nozzle to provide motive force, in a manner similar to that of Project Daedalus. The design was studied during the 1990s by NASA and the US Naval Academy. The craft was designed to reach and study Alpha Centauri.
Starwisp (1985)
Starwisp is a hypothetical unmanned interstellar probe design proposed by Robert L. Forward. It is propelled by a microwave sail, similar to a solar sail in concept, but powered by microwaves from an artificial source.
Medusa (1990s)
Medusa was a novel spacecraft design, proposed by Johndale C. Solem, using a large lightweight sail (spinnaker) driven by pressure pulses from a series of nuclear explosions. The design, published by the British Interplanetary Society, was studied during the 1990s as a means of interplanetary travel.
Starseed launcher (1996)
Starseed launcher was concept for launching microgram interstellar probes at up to 1/3 light speed.
AIMStar (1990s-2000s)
AIMStar was a proposed antimatter catalyzed nuclear pulse propulsion craft that would use clouds of antiprotons to initiate fission and fusion within fuel pellets. A magnetic nozzle derived motive force from the resulting explosions. The design was studied during the 1990s by Penn State University. The craft was designed to reach a distance of 10,000 AU from the Sun in 50 years. 

NASA 2004 artist concept of an Interstellar Bussard ramjet engine
Project Icarus (2009+)
Project Icarus is a theoretical study for an interstellar probe and is being run under the guidance of the Tau Zero Foundation (TZF) and the British Interplanetary Society (BIS), and was motivated by Project Daedalus, a similar study that was conducted between 1973 and 1978 by the BIS. The project is planned to take five years and began on September 30, 2009.
Project Dragonfly (2014+)
The Initiative for Interstellar Studies (i4is) has initiated a project working on small interstellar spacecraft, propelled by a laser sail in 2014 under the name of Project Dragonfly. Four student teams worked on concepts for such a mission in 2014 and 2015 in the context of a design competition.

Geoffrey A. Landis proposed for interstellar travel future-technology project interstellar probe with supplying the energy from an external source (laser of base station) and ion thruster.

Other interplanetary probes of interest

Other probes of interest to suggested interstellar missions. 

the Ulysses has been referenced in regard to interstellar precursors
  • NASA Dawn (launched 2007), using solar-powered xenon-ion thrusters, achieving a velocity change of over 10 km/s 
  • Parker Solar Probe, planned probe approaches Sun within about 8-9 solar radii. (Interstellar probes using a solar gravity assist need to survive Sun perihelion)
  • Deep Space 1 (1999–2001), demonstrated ion engines and Ka-band radio communications.
  • Ulysses (1990–2009), Out-Of-The-Ecliptic mission meant large velocity change of 15.4 km/s (IUS & Pam-S booster) and Jupiter gravity assist. Used RTG for power.
  • IKAROS (2010), NanoSail-D2 (2010), LightSail-1 (2016), solar sail tests

Technologies

Some technologies that have been discussed in relation to making an interstellar probe.

Gravity assist

A traditional gravity assist can be compared to throwing a tennis ball at a train (it rebounds not just with incoming velocity, but is accelerated by the train), it uses the gravity of a planet and its relative motion around the Sun compared to the spacecraft. For example, Voyager 2 increased its velocity by performing gravity assists at Jupiter, Saturn, and Uranus.

RTGs

An example of RTG used on a probe leaving the Solar system is the Voyagers. Typically these have used Plutonium but an RTG using 241Am was proposed for an interstellar type mission in 2002. This could support mission extensions up to 1000 years on the interstellar probe, because the power output would be more stable in the long-term than plutonium. Other isotopes for RTG were also examined in the study, looking at traits such as watt/gram, half-life, and decay products. An interstellar probe proposal from 1999 suggested using three advanced radioisotope power source. An RTG using 241Am was also studied as RTG fuel by the ESA.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...