Search This Blog

Thursday, July 7, 2022

Clock

From Wikipedia, the free encyclopedia

Clock face of the Elizabeth Tower in London, also known as Big Ben
 
Digital clock radio
 
Clock on the Beaux Arts façade of the Gare d'Orsay from Paris
 
24-hour clock face in Florence

A clock or a timepiece is a device used to measure and indicate time. The clock is one of the oldest human inventions, meeting the need to measure intervals of time shorter than the natural units: the day, the lunar month and the year. Devices operating on several physical processes have been used over the millennia.

Some predecessors to the modern clock may be considered as "clocks" that are based on movement in nature: A sundial shows the time by displaying the position of a shadow on a flat surface. There is a range of duration timers, a well-known example being the hourglass. Water clocks, along with the sundials, are possibly the oldest time-measuring instruments. A major advance occurred with the invention of the verge escapement, which made possible the first mechanical clocks around 1300 in Europe, which kept time with oscillating timekeepers like balance wheels.

Traditionally, in horology, the term clock was used for a striking clock, while a clock that did not strike the hours audibly was called a timepiece. This distinction is no longer made. Watches and other timepieces that can be carried on one's person are usually not referred to as clocks. Spring-driven clocks appeared during the 15th century. During the 15th and 16th centuries, clockmaking flourished. The next development in accuracy occurred after 1656 with the invention of the pendulum clock by Christiaan Huygens. A major stimulus to improving the accuracy and reliability of clocks was the importance of precise time-keeping for navigation. The mechanism of a timepiece with a series of gears driven by a spring or weights is referred to as clockwork; the term is used by extension for a similar mechanism not used in a timepiece. The electric clock was patented in 1840, and electronic clocks were introduced in the 20th century, becoming widespread with the development of small battery-powered semiconductor devices.

The timekeeping element in every modern clock is a harmonic oscillator, a physical object (resonator) that vibrates or oscillates at a particular frequency. This object can be a pendulum, a tuning fork, a quartz crystal, or the vibration of electrons in atoms as they emit microwaves.

Clocks have different ways of displaying the time. Analog clocks indicate time with a traditional clock face, with moving hands. Digital clocks display a numeric representation of time. Two numbering systems are in use: 24-hour time notation and 12-hour notation. Most digital clocks use electronic mechanisms and LCD, LED, or VFD displays. For the blind and for use over telephones, speaking clocks state the time audibly in words. There are also clocks for the blind that have displays that can be read by touch. The study of timekeeping is known as horology.

Etymology

The word clock derives from the medieval Latin word for 'bell'—clocca—and has cognates in many European languages. Clocks spread to England from the Low Countries, so the English word came from the Middle Low German and Middle Dutch Klocke. The word derives from the Middle English clokke, Old North French cloque, or Middle Dutch clocke, all of which mean 'bell', and stem from an Old Irish root.

History of time-measuring devices

Sundials

Simple horizontal sundial
 

The apparent position of the Sun in the sky moves over the course of each day, reflecting the rotation of the Earth. Shadows cast by stationary objects move correspondingly, so their positions can be used to indicate the time of day. A sundial shows the time by displaying the position of a shadow on a (usually) flat surface, which has markings that correspond to the hours. Sundials can be horizontal, vertical, or in other orientations. Sundials were widely used in ancient times. With the knowledge of latitude, a well-constructed sundial can measure local solar time with reasonable accuracy, within a minute or two. Sundials continued to be used to monitor the performance of clocks until the 1830s, with the use of the telegraph and train to standardize time and time zones between cities.

Devices that measure duration, elapsed time and intervals

The flow of sand in an hourglass can be used to keep track of elapsed time

Many devices can be used to mark the passage of time without respect to reference time (time of day, hours, minutes, etc.) and can be useful for measuring duration or intervals. Examples of such duration timers are candle clocks, incense clocks and the hourglass. Both the candle clock and the incense clock work on the same principle wherein the consumption of resources is more or less constant allowing reasonably precise and repeatable estimates of time passages. In the hourglass, fine sand pouring through a tiny hole at a constant rate indicates an arbitrary, predetermined passage of time. The resource is not consumed but re-used.

Water clocks

A water clock for goldbeating goldleaf in Mandalay (Myanmar)

Water clocks, along with the sundials, are possibly the oldest time-measuring instruments, with the only exceptions being the day counting tally stick. Given their great antiquity, where and when they first existed is not known and perhaps unknowable. The bowl-shaped outflow is the simplest form of a water clock and is known to have existed in Babylon and in Egypt around the 16th century BC. Other regions of the world, including India and China, also have early evidence of water clocks, but the earliest dates are less certain. Some authors, however, write about water clocks appearing as early as 4000 BC in these regions of the world.

Greek astronomer Andronicus of Cyrrhus supervised the construction of the Tower of the Winds in Athens in the 1st century B.C. The Greek and Roman civilizations advanced water clock design with improved accuracy. These advances were passed on through Byzantine and Islamic times, eventually making their way back to Europe. Independently, the Chinese developed their own advanced water clocks(水鐘)in 725 AD, passing their ideas on to Korea and Japan.

Some water clock designs were developed independently and some knowledge was transferred through the spread of trade. Pre-modern societies do not have the same precise timekeeping requirements that exist in modern industrial societies, where every hour of work or rest is monitored, and work may start or finish at any time regardless of external conditions. Instead, water clocks in ancient societies were used mainly for astrological reasons. These early water clocks were calibrated with a sundial. While never reaching the level of accuracy of a modern timepiece, the water clock was the most accurate and commonly used timekeeping device for millennia, until it was replaced by the more accurate pendulum clock in 17th-century Europe.

Islamic civilization is credited with further advancing the accuracy of clocks with elaborate engineering. In 797 (or possibly 801), the Abbasid caliph of Baghdad, Harun al-Rashid, presented Charlemagne with an Asian elephant named Abul-Abbas together with a "particularly elaborate example" of a water clock. Pope Sylvester II introduced clocks to northern and western Europe around 1000 AD.

Mechanical water clocks

The first known geared clock was invented by the great mathematician, physicist, and engineer Archimedes during the 3rd century BC. Archimedes created his astronomical clock that was also a cuckoo clock with birds singing and moving every hour. It is the first carillon clock as it plays music and simultaneously with a person blinking his eyes surprised by the singing birds. Archimedes clock works with a system of four weights, counter weights, and strings regulated by a system of floats in a water container with siphons that regulate the automatic continuation of the clock. The principles of this type of clocks are described by the mathematician and physicist Hero, who says that some of them work with a chain that turns a gear of the mechanism. Another Greek clock probably constructed at the time of Alexander was in Gaza, described by Procopius. The Gaza clock was probably a Meteoroskopeion, i.e. a building showing the celestial phenomena and the time. It had pointer for the time and some automations similar to the Archimedes clock. There were 12 doors opening one every hour with Hercules performing his labors, the Lion at one o'clock, etc., and at night a lamp becomes visible every hour, with 12 windows opening to show the time.

A scale model of Su Song's Astronomical Clock Tower, built in 11th-century Kaifeng, China. It was driven by a large waterwheel, chain drive, and escapement mechanism

A water-powered cogwheel clock was created in China by Yi Xing and Liang Lingzan. This is not considered an escapement mechanism clock as it was unidirectional, the Song dynasty polymath and genius Su Song (1020–1101) incorporated it into his monumental innovation of the astronomical clock-tower of Kaifeng in 1088. His astronomical clock and rotating armillary sphere still relied on the use of either flowing water during the spring, summer, autumn seasons and liquid mercury during the freezing temperature of winter (i.e. hydraulics).

In Su Song's waterwheel linkwork device, the action of the escapement's arrest and release was achieved by gravity exerted periodically as the continuous flow of liquid filled containers of a limited size. In a single line of evolution, Su Song's clock therefore united the concept of the clepsydra and the mechanical clock into one device run by mechanics and hydraulics. In his memorial, Su Song wrote about this concept:

According to your servant's opinion there have been many systems and designs for astronomical instruments during past dynasties all differing from one another in minor respects. But the principle of the use of water-power for the driving mechanism has always been the same. The heavens move without ceasing but so also does water flow (and fall). Thus if the water is made to pour with perfect evenness, then the comparison of the rotary movements (of the heavens and the machine) will show no discrepancy or contradiction; for the unresting follows the unceasing.

Song was also strongly influenced by the earlier armillary sphere created by Zhang Sixun (976 AD), who also employed the escapement mechanism and used liquid mercury instead of water in the waterwheel of his astronomical clock tower.The mechanical clockworks for Su Song's astronomical tower featured a great driving-wheel that was 11 feet in diameter, carrying 36 scoops, into each of which water poured at a uniform rate from the "constant-level tank". The main driving shaft of iron, with its cylindrical necks supported on iron crescent-shaped bearings, ended in a pinion, which engaged a gear wheel at the lower end of the main vertical transmission shaft. This great astronomical hydromechanical clock tower was about ten metres high (about 30 feet) and featured a clock escapement and was indirectly powered by a rotating wheel either with falling water and liquid mercury. A full-sized working replica of Su Song's clock exists in the Republic of China (Taiwan)'s National Museum of Natural Science, Taichung city. This full-scale, fully functional replica, approximately 12 meters (39 feet) in height, was constructed from Su Song's original descriptions and mechanical drawings.

An elephant clock in a manuscript by Al-Jazari (1206 AD) from The Book of Knowledge of Ingenious Mechanical Devices

In the 13th century, Al-Jazari, an engineer from Mesopotamia (lived 1136–1206) who worked for Artuqid king of Diyar-Bakr, Nasir al-Din, made numerous clocks of all shapes and sizes. The most reputed clocks included the elephant, scribe, and castle clocks, some of which have been successfully reconstructed. As well as telling the time, these grand clocks were symbols of status, grandeur and wealth of the Urtuq State.

Fully mechanical

The word horologia (from the Greek ὥρα—'hour', and λέγειν—'to tell') was used to describe early mechanical clocks, but the use of this word (still used in several Romance languages) for all timekeepers conceals the true nature of the mechanisms. For example, there is a record that in 1176 Sens Cathedral installed an 'horologe' but the mechanism used is unknown. According to Jocelin of Brakelond, in 1198 during a fire at the abbey of St Edmundsbury (now Bury St Edmunds), the monks "ran to the clock" to fetch water, indicating that their water clock had a reservoir large enough to help extinguish the occasional fire. The word clock (via Medieval Latin clocca from Old Irish clocc, both meaning 'bell'), which gradually supersedes "horologe", suggests that it was the sound of bells which also characterized the prototype mechanical clocks that appeared during the 13th century in Europe.

A 17th-century weight-driven clock

In Europe, between 1280 and 1320, there was an increase in the number of references to clocks and horologes in church records, and this probably indicates that a new type of clock mechanism had been devised. Existing clock mechanisms that used water power were being adapted to take their driving power from falling weights. This power was controlled by some form of oscillating mechanism, probably derived from existing bell-ringing or alarm devices. This controlled release of power – the escapement – marks the beginning of the true mechanical clock, which differed from the previously mentioned cogwheel clocks. Verge escapement mechanism derived in the surge of true mechanical clocks, which didn't need any kind of fluid power, like water or mercury, to work.

These mechanical clocks were intended for two main purposes: for signalling and notification (e.g. the timing of services and public events), and for modeling the solar system. The former purpose is administrative, the latter arises naturally given the scholarly interests in astronomy, science, astrology, and how these subjects integrated with the religious philosophy of the time. The astrolabe was used both by astronomers and astrologers, and it was natural to apply a clockwork drive to the rotating plate to produce a working model of the solar system.

Simple clocks intended mainly for notification were installed in towers, and did not always require faces or hands. They would have announced the canonical hours or intervals between set times of prayer. Canonical hours varied in length as the times of sunrise and sunset shifted. The more sophisticated astronomical clocks would have had moving dials or hands, and would have shown the time in various time systems, including Italian hours, canonical hours, and time as measured by astronomers at the time. Both styles of clock started acquiring extravagant features such as automata.

In 1283, a large clock was installed at Dunstable Priory in Bedfordshire in southern England; its location above the rood screen suggests that it was not a water clock. In 1292, Canterbury Cathedral installed a 'great horloge'. Over the next 30 years there are mentions of clocks at a number of ecclesiastical institutions in England, Italy, and France. In 1322, a new clock was installed in Norwich, an expensive replacement for an earlier clock installed in 1273. This had a large (2 metre) astronomical dial with automata and bells. The costs of the installation included the full-time employment of two clockkeepers for two years.

Astronomical

Richard of Wallingford pointing to a clock, his gift to St Albans Abbey
 
16th-century clock machine Convent of Christ, Tomar, Portugal

The world's first fully mechanical water clock the 'Cosmic Engine', was invented by Su Song, a Chinese polymath, designed and constructed in China in 1092. This great astronomical hydromechanical clock tower was about ten metres high (about 30 feet) and featured a clock escapement and was indirectly powered by a rotating wheel with falling water and liquid mercury, and used an armillary sphere capable of calculating complex astronomical problems.

In Europe, there were the clocks constructed by Richard of Wallingford in Albans by 1336, and by Giovanni de Dondi in Padua from 1348 to 1364. They no longer exist, but detailed descriptions of their design and construction survive, and modern reproductions have been made. They illustrate how quickly the theory of the mechanical clock had been translated into practical constructions, and also that one of the many impulses to their development had been the desire of astronomers to investigate celestial phenomena.

The Astrarium of Giovanni Dondi dell'Orologio was a complex astronomical clock built between 1348 and 1364 in Padua, Italy, by the doctor and clock-maker Giovanni Dondi dell'Orologio. The Astrarium had seven faces and 107 moving gears; it showed the positions of the sun, the moon and the five planets then known, as well as religious feast days. The astrarium stood about 1 metre high, and consisted of a seven-sided brass or iron framework resting on 7 decorative paw-shaped feet. The lower section provided a 24-hour dial and a large calendar drum, showing the fixed feasts of the church, the movable feasts, and the position in the zodiac of the moon's ascending node. The upper section contained 7 dials, each about 30 cm in diameter, showing the positional data for the Primum Mobile, Venus, Mercury, the moon, Saturn, Jupiter, and Mars. Directly above the 24-hour dial is the dial of the Primum Mobile, so called because it reproduces the diurnal motion of the stars and the annual motion of the sun against the background of stars. Each of the 'planetary' dials used complex clockwork to produce reasonably accurate models of the planets' motion. These agreed reasonably well both with Ptolemaic theory and with observations.

Wallingford's clock had a large astrolabe-type dial, showing the sun, the moon's age, phase, and node, a star map, and possibly the planets. In addition, it had a wheel of fortune and an indicator of the state of the tide at London Bridge. Bells rang every hour, the number of strokes indicating the time. Dondi's clock was a seven-sided construction, 1 metre high, with dials showing the time of day, including minutes, the motions of all the known planets, an automatic calendar of fixed and movable feasts, and an eclipse prediction hand rotating once every 18 years. It is not known how accurate or reliable these clocks would have been. They were probably adjusted manually every day to compensate for errors caused by wear and imprecise manufacture. Water clocks are sometimes still used today, and can be examined in places such as ancient castles and museums. The Salisbury Cathedral clock, built in 1386, is considered to be the world's oldest surviving mechanical clock that strikes the hours.

Spring-driven

Clockmakers developed their art in various ways. Building smaller clocks was a technical challenge, as was improving accuracy and reliability. Clocks could be impressive showpieces to demonstrate skilled craftsmanship, or less expensive, mass-produced items for domestic use. The escapement in particular was an important factor affecting the clock's accuracy, so many different mechanisms were tried.

Spring-driven clocks appeared during the 15th century, although they are often erroneously credited to Nuremberg watchmaker Peter Henlein (or Henle, or Hele) around 1511. The earliest existing spring driven clock is the chamber clock given to Phillip the Good, Duke of Burgundy, around 1430, now in the Germanisches Nationalmuseum. Spring power presented clockmakers with a new problem: how to keep the clock movement running at a constant rate as the spring ran down. This resulted in the invention of the stackfreed and the fusee in the 15th century, and many other innovations, down to the invention of the modern going barrel in 1760.

Early clock dials did not indicate minutes and seconds. A clock with a dial indicating minutes was illustrated in a 1475 manuscript by Paulus Almanus, and some 15th-century clocks in Germany indicated minutes and seconds. An early record of a seconds hand on a clock dates back to about 1560 on a clock now in the Fremersdorf collection.

During the 15th and 16th centuries, clockmaking flourished, particularly in the metalworking towns of Nuremberg and Augsburg, and in Blois, France. Some of the more basic table clocks have only one time-keeping hand, with the dial between the hour markers being divided into four equal parts making the clocks readable to the nearest 15 minutes. Other clocks were exhibitions of craftsmanship and skill, incorporating astronomical indicators and musical movements. The cross-beat escapement was invented in 1584 by Jost Bürgi, who also developed the remontoire. Bürgi's clocks were a great improvement in accuracy as they were correct to within a minute a day. These clocks helped the 16th-century astronomer Tycho Brahe to observe astronomical events with much greater precision than before.

Lantern clock, German, c. 1570

Pendulum

The first pendulum clock, designed by Christiaan Huygens in 1656

The next development in accuracy occurred after 1656 with the invention of the pendulum clock. Galileo had the idea to use a swinging bob to regulate the motion of a time-telling device earlier in the 17th century. Christiaan Huygens, however, is usually credited as the inventor. He determined the mathematical formula that related pendulum length to time (about 99.4 cm or 39.1 inches for the one second movement) and had the first pendulum-driven clock made. The first model clock was built in 1657 in the Hague, but it was in England that the idea was taken up. The longcase clock (also known as the grandfather clock) was created to house the pendulum and works by the English clockmaker William Clement in 1670 or 1671. It was also at this time that clock cases began to be made of wood and clock faces to use enamel as well as hand-painted ceramics.

In 1670, William Clement created the anchor escapement, an improvement over Huygens' crown escapement. Clement also introduced the pendulum suspension spring in 1671. The concentric minute hand was added to the clock by Daniel Quare, a London clockmaker and others, and the second hand was first introduced.

Hairspring

In 1675, Huygens and Robert Hooke invented the spiral balance spring, or the hairspring, designed to control the oscillating speed of the balance wheel. This crucial advance finally made accurate pocket watches possible. The great English clockmaker Thomas Tompion, was one of the first to use this mechanism successfully in his pocket watches, and he adopted the minute hand which, after a variety of designs were trialled, eventually stabilised into the modern-day configuration. The rack and snail striking mechanism for striking clocks, was introduced during the 17th century and had distinct advantages over the 'countwheel' (or 'locking plate') mechanism. During the 20th century there was a common misconception that Edward Barlow invented rack and snail striking. In fact, his invention was connected with a repeating mechanism employing the rack and snail. The repeating clock, that chimes the number of hours (or even minutes) on demand was invented by either Quare or Barlow in 1676. George Graham invented the deadbeat escapement for clocks in 1720.

Marine chronometer

A major stimulus to improving the accuracy and reliability of clocks was the importance of precise time-keeping for navigation. The position of a ship at sea could be determined with reasonable accuracy if a navigator could refer to a clock that lost or gained less than about 10 seconds per day. This clock could not contain a pendulum, which would be virtually useless on a rocking ship. In 1714, the British government offered large financial rewards to the value of 20,000 pounds for anyone who could determine longitude accurately. John Harrison, who dedicated his life to improving the accuracy of his clocks, later received considerable sums under the Longitude Act.

In 1735, Harrison built his first chronometer, which he steadily improved on over the next thirty years before submitting it for examination. The clock had many innovations, including the use of bearings to reduce friction, weighted balances to compensate for the ship's pitch and roll in the sea and the use of two different metals to reduce the problem of expansion from heat. The chronometer was tested in 1761 by Harrison's son and by the end of 10 weeks the clock was in error by less than 5 seconds.

Opened-up pocket watch

Mass production

The British had dominated watch manufacture for much of the 17th and 18th centuries, but maintained a system of production that was geared towards high quality products for the elite. Although there was an attempt to modernise clock manufacture with mass-production techniques and the application of duplicating tools and machinery by the British Watch Company in 1843, it was in the United States that this system took off. In 1816, Eli Terry and some other Connecticut clockmakers developed a way of mass-producing clocks by using interchangeable parts. Aaron Lufkin Dennison started a factory in 1851 in Massachusetts that also used interchangeable parts, and by 1861 was running a successful enterprise incorporated as the Waltham Watch Company.

Early electric

Early French electromagnetic clock

In 1815, Francis Ronalds published the first electric clock powered by dry pile batteries. Alexander Bain, Scottish clockmaker, patented the electric clock in 1840. The electric clock's mainspring is wound either with an electric motor or with an electromagnet and armature. In 1841, he first patented the electromagnetic pendulum. By the end of the nineteenth century, the advent of the dry cell battery made it feasible to use electric power in clocks. Spring or weight driven clocks that use electricity, either alternating current (AC) or direct current (DC), to rewind the spring or raise the weight of a mechanical clock would be classified as an electromechanical clock. This classification would also apply to clocks that employ an electrical impulse to propel the pendulum. In electromechanical clocks the electricity serves no time keeping function. These types of clocks were made as individual timepieces but more commonly used in synchronized time installations in schools, businesses, factories, railroads and government facilities as a master clock and slave clocks.

Where an AC electrical supply of stable frequency is available, timekeeping can be maintained very reliably by using a synchronous motor, essentially counting the cycles. The supply current alternates with an accurate frequency of 50 hertz in many countries, and 60 hertz in others. While the frequency may vary slightly during the day as the load changes, generators are designed to maintain an accurate number of cycles over a day, so the clock may be a fraction of a second slow or fast at any time, but will be perfectly accurate over a long time. The rotor of the motor rotates at a speed that is related to the alternation frequency. Appropriate gearing converts this rotation speed to the correct ones for the hands of the analog clock. Time in these cases is measured in several ways, such as by counting the cycles of the AC supply, vibration of a tuning fork, the behaviour of quartz crystals, or the quantum vibrations of atoms. Electronic circuits divide these high-frequency oscillations to slower ones that drive the time display.

Quartz

Picture of a quartz crystal resonator, used as the timekeeping component in quartz watches and clocks, with the case removed. It is formed in the shape of a tuning fork. Most such quartz clock crystals vibrate at a frequency of 32768 Hz

The piezoelectric properties of crystalline quartz were discovered by Jacques and Pierre Curie in 1880. The first crystal oscillator was invented in 1917 by Alexander M. Nicholson, after which the first quartz crystal oscillator was built by Walter G. Cady in 1921. In 1927 the first quartz clock was built by Warren Marrison and J.W. Horton at Bell Telephone Laboratories in Canada. The following decades saw the development of quartz clocks as precision time measurement devices in laboratory settings—the bulky and delicate counting electronics, built with vacuum tubes at the time, limited their practical use elsewhere. The National Bureau of Standards (now NIST) based the time standard of the United States on quartz clocks from late 1929 until the 1960s, when it changed to atomic clocks. In 1969, Seiko produced the world's first quartz wristwatch, the Astron. Their inherent accuracy and low cost of production resulted in the subsequent proliferation of quartz clocks and watches.

Atomic

Currently, atomic clocks are the most accurate clocks in existence. They are considerably more accurate than quartz clocks as they can be accurate to within a few seconds over trillions of years. Atomic clocks were first theorized by Lord Kelvin in 1879. In the 1930s the development of magnetic resonance created practical method for doing this. A prototype ammonia maser device was built in 1949 at the U.S. National Bureau of Standards (NBS, now NIST). Although it was less accurate than existing quartz clocks, it served to demonstrate the concept. The first accurate atomic clock, a caesium standard based on a certain transition of the caesium-133 atom, was built by Louis Essen in 1955 at the National Physical Laboratory in the UK. Calibration of the caesium standard atomic clock was carried out by the use of the astronomical time scale ephemeris time (ET). As of 2013, the most stable atomic clocks are ytterbium clocks, which are stable to within less than two parts in 1 quintillion (2×10−18).

Operation

The invention of the mechanical clock in the 13th century initiated a change in timekeeping methods from continuous processes, such as the motion of the gnomon's shadow on a sundial or the flow of liquid in a water clock, to periodic oscillatory processes, such as the swing of a pendulum or the vibration of a quartz crystal, which had the potential for more accuracy. All modern clocks use oscillation.

Although the mechanisms they use vary, all oscillating clocks, mechanical, electric, and atomic, work similarly and can be divided into analogous parts. They consist of an object that repeats the same motion over and over again, an oscillator, with a precisely constant time interval between each repetition, or 'beat'. Attached to the oscillator is a controller device, which sustains the oscillator's motion by replacing the energy it loses to friction, and converts its oscillations into a series of pulses. The pulses are then counted by some type of counter, and the number of counts is converted into convenient units, usually seconds, minutes, hours, etc. Finally some kind of indicator displays the result in human readable form.

Power source

  • In mechanical clocks, the power source is typically either a weight suspended from a cord or chain wrapped around a pulley, sprocket or drum; or a spiral spring called a mainspring. Mechanical clocks must be wound periodically, usually by turning a knob or key or by pulling on the free end of the chain, to store energy in the weight or spring to keep the clock running.
  • In electric clocks, the power source is either a battery or the AC power line. In clocks that use AC power, a small backup battery is often included to keep the clock running if it is unplugged temporarily from the wall or during a power outage. Battery-powered analog wall clocks are available that operate over 15 years between battery changes.

Oscillator

Balance wheel, the oscillator in a mechanical mantel clock.

The timekeeping element in every modern clock is a harmonic oscillator, a physical object (resonator) that vibrates or oscillates repetitively at a precisely constant frequency.

  • In mechanical clocks, this is either a pendulum or a balance wheel.
  • In some early electronic clocks and watches such as the Accutron, it is a tuning fork.
  • In quartz clocks and watches, it is a quartz crystal.
  • In atomic clocks, it is the vibration of electrons in atoms as they emit microwaves.
  • In early mechanical clocks before 1657, it was a crude balance wheel or foliot which was not a harmonic oscillator because it lacked a balance spring. As a result, they were very inaccurate, with errors of perhaps an hour a day.

The advantage of a harmonic oscillator over other forms of oscillator is that it employs resonance to vibrate at a precise natural resonant frequency or "beat" dependent only on its physical characteristics, and resists vibrating at other rates. The possible precision achievable by a harmonic oscillator is measured by a parameter called its Q, or quality factor, which increases (other things being equal) with its resonant frequency. This is why there has been a long-term trend toward higher frequency oscillators in clocks. Balance wheels and pendulums always include a means of adjusting the rate of the timepiece. Quartz timepieces sometimes include a rate screw that adjusts a capacitor for that purpose. Atomic clocks are primary standards, and their rate cannot be adjusted.

Synchronized or slave clocks

The Shepherd Gate Clock receives its timing signal from within the Royal Observatory, Greenwich.

Some clocks rely for their accuracy on an external oscillator; that is, they are automatically synchronized to a more accurate clock:

  • Bibb County, Macon GA Courthouse, clock tower, c. 1876

    Slave clocks, used in large institutions and schools from the 1860s to the 1970s, kept time with a pendulum, but were wired to a master clock in the building, and periodically received a signal to synchronize them with the master, often on the hour. Later versions without pendulums were triggered by a pulse from the master clock and certain sequences used to force rapid synchronization following a power failure.
Synchronous electric clock, around 1940. By 1940 the synchronous clock became the most common type of clock in the U.S.
  • Synchronous electric clocks do not have an internal oscillator, but count cycles of the 50 or 60 Hz oscillation of the AC power line, which is synchronized by the utility to a precision oscillator. The counting may be done electronically, usually in clocks with digital displays, or, in analog clocks, the AC may drive a synchronous motor which rotates an exact fraction of a revolution for every cycle of the line voltage, and drives the gear train. Although changes in the grid line frequency due to load variations may cause the clock to temporarily gain or lose several seconds during the course of a day, the total number of cycles per 24 hours is maintained extremely accurately by the utility company, so that the clock keeps time accurately over long periods.
  • Computer real time clocks keep time with a quartz crystal, but can be periodically (usually weekly) synchronized over the Internet to atomic clocks (UTC), using the Network Time Protocol (NTP).
  • Radio clocks keep time with a quartz crystal, but are periodically synchronized to time signals transmitted from dedicated standard time radio stations or satellite navigation signals, which are set by atomic clocks.

Controller

This has the dual function of keeping the oscillator running by giving it 'pushes' to replace the energy lost to friction, and converting its vibrations into a series of pulses that serve to measure the time.

  • In mechanical clocks, this is the escapement, which gives precise pushes to the swinging pendulum or balance wheel, and releases one gear tooth of the escape wheel at each swing, allowing all the clock's wheels to move forward a fixed amount with each swing.
  • In electronic clocks this is an electronic oscillator circuit that gives the vibrating quartz crystal or tuning fork tiny 'pushes', and generates a series of electrical pulses, one for each vibration of the crystal, which is called the clock signal.
  • In atomic clocks the controller is an evacuated microwave cavity attached to a microwave oscillator controlled by a microprocessor. A thin gas of caesium atoms is released into the cavity where they are exposed to microwaves. A laser measures how many atoms have absorbed the microwaves, and an electronic feedback control system called a phase-locked loop tunes the microwave oscillator until it is at the frequency that causes the atoms to vibrate and absorb the microwaves. Then the microwave signal is divided by digital counters to become the clock signal.

In mechanical clocks, the low Q of the balance wheel or pendulum oscillator made them very sensitive to the disturbing effect of the impulses of the escapement, so the escapement had a great effect on the accuracy of the clock, and many escapement designs were tried. The higher Q of resonators in electronic clocks makes them relatively insensitive to the disturbing effects of the drive power, so the driving oscillator circuit is a much less critical component.

Counter chain

This counts the pulses and adds them up to get traditional time units of seconds, minutes, hours, etc. It usually has a provision for setting the clock by manually entering the correct time into the counter.

  • In mechanical clocks this is done mechanically by a gear train, known as the wheel train. The gear train also has a second function; to transmit mechanical power from the power source to run the oscillator. There is a friction coupling called the 'cannon pinion' between the gears driving the hands and the rest of the clock, allowing the hands to be turned to set the time.
  • In digital clocks a series of integrated circuit counters or dividers add the pulses up digitally, using binary logic. Often pushbuttons on the case allow the hour and minute counters to be incremented and decremented to set the time.

Indicator

This displays the count of seconds, minutes, hours, etc. in a human readable form.

  • The earliest mechanical clocks in the 13th century did not have a visual indicator and signalled the time audibly by striking bells. Many clocks to this day are striking clocks which strike the hour.
  • Analog clocks display time with an analog clock face, which consists of a dial with the numbers 1 through 12 or 24, the hours in the day, around the outside. The hours are indicated with an hour hand, which makes one or two revolutions in a day, while the minutes are indicated by a minute hand, which makes one revolution per hour. In mechanical clocks a gear train drives the hands; in electronic clocks the circuit produces pulses every second which drive a stepper motor and gear train, which move the hands.
  • Digital clocks display the time in periodically changing digits on a digital display. A common misconception is that a digital clock is more accurate than an analog wall clock, but the indicator type is separate and apart from the accuracy of the timing source.
  • Talking clocks and the speaking clock services provided by telephone companies speak the time audibly, using either recorded or digitally synthesized voices.

Types

Clocks can be classified by the type of time display, as well as by the method of timekeeping.

Time display methods

Analog

A modern quartz clock with a 24-hour face
 
A linear clock at London's Piccadilly Circus tube station. The 24 hour band moves across the static map, keeping pace with the apparent movement of the sun above ground, and a pointer fixed on London points to the current time.

Analog clocks usually use a clock face which indicates time using rotating pointers called "hands" on a fixed numbered dial or dials. The standard clock face, known universally throughout the world, has a short "hour hand" which indicates the hour on a circular dial of 12 hours, making two revolutions per day, and a longer "minute hand" which indicates the minutes in the current hour on the same dial, which is also divided into 60 minutes. It may also have a "second hand" which indicates the seconds in the current minute. The only other widely used clock face today is the 24 hour analog dial, because of the use of 24 hour time in military organizations and timetables. Before the modern clock face was standardized during the Industrial Revolution, many other face designs were used throughout the years, including dials divided into 6, 8, 10, and 24 hours. During the French Revolution the French government tried to introduce a 10-hour clock, as part of their decimal-based metric system of measurement, but it did not achieve widespread use. An Italian 6 hour clock was developed in the 18th century, presumably to save power (a clock or watch striking 24 times uses more power).

Another type of analog clock is the sundial, which tracks the sun continuously, registering the time by the shadow position of its gnomon. Because the sun does not adjust to daylight saving time, users must add an hour during that time. Corrections must also be made for the equation of time, and for the difference between the longitudes of the sundial and of the central meridian of the time zone that is being used (i.e. 15 degrees east of the prime meridian for each hour that the time zone is ahead of GMT). Sundials use some or part of the 24 hour analog dial. There also exist clocks which use a digital display despite having an analog mechanism—these are commonly referred to as flip clocks. Alternative systems have been proposed. For example, the "Twelv" clock indicates the current hour using one of twelve colors, and indicates the minute by showing a proportion of a circular disk, similar to a moon phase.

Digital

Digital clocks display a numeric representation of time. Two numeric display formats are commonly used on digital clocks:

  • the 24-hour notation with hours ranging 00–23;
  • the 12-hour notation with AM/PM indicator, with hours indicated as 12AM, followed by 1AM–11AM, followed by 12PM, followed by 1PM–11PM (a notation mostly used in domestic environments).

Most digital clocks use electronic mechanisms and LCD, LED, or VFD displays; many other display technologies are used as well (cathode ray tubes, nixie tubes, etc.). After a reset, battery change or power failure, these clocks without a backup battery or capacitor either start counting from 12:00, or stay at 12:00, often with blinking digits indicating that the time needs to be set. Some newer clocks will reset themselves based on radio or Internet time servers that are tuned to national atomic clocks. Since the advent of digital clocks in the 1960s, the use of analog clocks has declined significantly.

Some clocks, called 'flip clocks', have digital displays that work mechanically. The digits are painted on sheets of material which are mounted like the pages of a book. Once a minute, a page is turned over to reveal the next digit. These displays are usually easier to read in brightly lit conditions than LCDs or LEDs. Also, they do not go back to 12:00 after a power interruption. Flip clocks generally do not have electronic mechanisms. Usually, they are driven by AC-synchronous motors.

Hybrid (analog-digital)

Clocks with analog quadrants, with a digital component, usually minutes and hours displayed analogously and seconds displayed in digital mode.

Auditory

For convenience, distance, telephony or blindness, auditory clocks present the time as sounds. The sound is either spoken natural language, (e.g. "The time is twelve thirty-five"), or as auditory codes (e.g. number of sequential bell rings on the hour represents the number of the hour like the bell, Big Ben). Most telecommunication companies also provide a speaking clock service as well.

Word

Software word clock

Word clocks are clocks that display the time visually using sentences. E.g.: "It's about three o'clock." These clocks can be implemented in hardware or software.

Projection

Some clocks, usually digital ones, include an optical projector that shines a magnified image of the time display onto a screen or onto a surface such as an indoor ceiling or wall. The digits are large enough to be easily read, without using glasses, by persons with moderately imperfect vision, so the clocks are convenient for use in their bedrooms. Usually, the timekeeping circuitry has a battery as a backup source for an uninterrupted power supply to keep the clock on time, while the projection light only works when the unit is connected to an A.C. supply. Completely battery-powered portable versions resembling flashlights are also available.

Tactile

Auditory and projection clocks can be used by people who are blind or have limited vision. There are also clocks for the blind that have displays that can be read by using the sense of touch. Some of these are similar to normal analog displays, but are constructed so the hands can be felt without damaging them. Another type is essentially digital, and uses devices that use a code such as Braille to show the digits so that they can be felt with the fingertips.

Multi-display

Some clocks have several displays driven by a single mechanism, and some others have several completely separate mechanisms in a single case. Clocks in public places often have several faces visible from different directions, so that the clock can be read from anywhere in the vicinity; all the faces show the same time. Other clocks show the current time in several time-zones. Watches that are intended to be carried by travellers often have two displays, one for the local time and the other for the time at home, which is useful for making pre-arranged phone calls. Some equation clocks have two displays, one showing mean time and the other solar time, as would be shown by a sundial. Some clocks have both analog and digital displays. Clocks with Braille displays usually also have conventional digits so they can be read by sighted people.

Purposes

Many cities and towns traditionally have public clocks in a prominent location, such as a town square or city center. This one is on display at the center of the town of Robbins, North Carolina
 
A Napoleon III mantel clock, from the third quarter of the 19th century, in the Museu de Belles Arts de València from Spain

Clocks are in homes, offices and many other places; smaller ones (watches) are carried on the wrist or in a pocket; larger ones are in public places, e.g. a railway station or church. A small clock is often shown in a corner of computer displays, mobile phones and many MP3 players.

The primary purpose of a clock is to display the time. Clocks may also have the facility to make a loud alert signal at a specified time, typically to waken a sleeper at a preset time; they are referred to as alarm clocks. The alarm may start at a low volume and become louder, or have the facility to be switched off for a few minutes then resume. Alarm clocks with visible indicators are sometimes used to indicate to children too young to read the time that the time for sleep has finished; they are sometimes called training clocks.

A clock mechanism may be used to control a device according to time, e.g. a central heating system, a VCR, or a time bomb (see: digital counter). Such mechanisms are usually called timers. Clock mechanisms are also used to drive devices such as solar trackers and astronomical telescopes, which have to turn at accurately controlled speeds to counteract the rotation of the Earth.

Most digital computers depend on an internal signal at constant frequency to synchronize processing; this is referred to as a clock signal. (A few research projects are developing CPUs based on asynchronous circuits.) Some equipment, including computers, also maintains time and date for use as required; this is referred to as time-of-day clock, and is distinct from the system clock signal, although possibly based on counting its cycles.

In Chinese culture, giving a clock (traditional Chinese: 送鐘; simplified Chinese: 送钟; pinyin: sòng zhōng) is often taboo, especially to the elderly as the term for this act is a homophone with the term for the act of attending another's funeral (traditional Chinese: 送終; simplified Chinese: 送终; pinyin: sòngzhōng).

This homonymic pair works in both Mandarin and Cantonese, although in most parts of China only clocks and large bells, and not watches, are called "zhong", and watches are commonly given as gifts in China.

However, should such a gift be given, the "unluckiness" of the gift can be countered by exacting a small monetary payment so the recipient is buying the clock and thereby counteracting the '送' ("give") expression of the phrase.

Time standards

For some scientific work timing of the utmost accuracy is essential. It is also necessary to have a standard of the maximum accuracy against which working clocks can be calibrated. An ideal clock would give the time to unlimited accuracy, but this is not realisable. Many physical processes, in particular including some transitions between atomic energy levels, occur at exceedingly stable frequency; counting cycles of such a process can give a very accurate and consistent time—clocks which work this way are usually called atomic clocks. Such clocks are typically large, very expensive, require a controlled environment, and are far more accurate than required for most purposes; they are typically used in a standards laboratory.

Navigation

Until advances in the late twentieth century, navigation depended on the ability to measure latitude and longitude. Latitude can be determined through celestial navigation; the measurement of longitude requires accurate knowledge of time. This need was a major motivation for the development of accurate mechanical clocks. John Harrison created the first highly accurate marine chronometer in the mid-18th century. The Noon gun in Cape Town still fires an accurate signal to allow ships to check their chronometers. Many buildings near major ports used to have (some still do) a large ball mounted on a tower or mast arranged to drop at a pre-determined time, for the same purpose. While satellite navigation systems such as GPS require unprecedentedly accurate knowledge of time, this is supplied by equipment on the satellites; vehicles no longer need timekeeping equipment.

Specific types

A monumental conical pendulum clock by Eugène Farcot, 1867. Drexel University, Philadelphia, USA
 
By mechanism By function By style

Tabula rasa

From Wikipedia, the free encyclopedia

Roman tabula or wax tablet with stylus

Tabula rasa (/ˈtæbjələ ˈrɑːsə, -zə, ˈr-/; "blank slate") is the theory that individuals are born without built-in mental content, and therefore all knowledge comes from experience or perception. Epistemological proponents of tabula rasa disagree with the doctrine of innatism, which holds that the mind is born already in possession of certain knowledge. Proponents of the tabula rasa theory also favour the "nurture" side of the nature versus nurture debate when it comes to aspects of one's personality, social and emotional behaviour, knowledge, and sapience.

Etymology

Tabula rasa is a Latin phrase often translated as clean slate in English and originates from the Roman tabula, a wax-covered tablet used for notes, which was blanked (rasa) by heating the wax and then smoothing it. This roughly equates to the English term "blank slate" (or, more literally, "erased slate") which refers to the emptiness of a slate prior to it being written on with chalk. Both may be renewed repeatedly, by melting the wax of the tablet or by erasing the chalk on the slate.

Philosophy

Ancient Greek philosophy

In Western philosophy, the concept of tabula rasa can be traced back to the writings of Aristotle who writes in his treatise De Anima (Περί Ψυχῆς, 'On the Soul') of the "unscribed tablet." In one of the more well-known passages of this treatise, he writes that:

Haven't we already disposed of the difficulty about interaction involving a common element, when we said that mind is in a sense potentially whatever is thinkable, though actually it is nothing until it has thought? What it thinks must be in it just as characters may be said to be on a writing-tablet on which as yet nothing stands written: this is exactly what happens with mind.

This idea was further evolved in Ancient Greek philosophy by the Stoic school. Stoic epistemology emphasizes that the mind starts blank, but acquires knowledge as the outside world is impressed upon it. The doxographer Aetius summarizes this view as "When a man is born, the Stoics say, he has the commanding part of his soul like a sheet of paper ready for writing upon." Diogenes Laërtius attributes a similar belief to the Stoic Zeno of Citium when he writes in Lives and Opinions of Eminent Philosophers that:

Perception, again, is an impression produced on the mind, its name being appropriately borrowed from impressions on wax made by a seal; and perception they divide into, comprehensible and incomprehensible: Comprehensible, which they call the criterion of facts, and which is produced by a real object, and is, therefore, at the same time conformable to that object; Incomprehensible, which has no relation to any real object, or else, if it has any such relation, does not correspond to it, being but a vague and indistinct representation.

Avicenna (11th century)

In the 11th century, the theory of tabula rasa was developed more clearly by Avicenna. He argued that the "human intellect at birth resembled a tabula rasa, a pure potentiality that is actualized through education and comes to know." Thus, according to Avicenna, knowledge is attained through "empirical familiarity with objects in this world from which one abstracts universal concepts," which develops through a "syllogistic method of reasoning; observations lead to propositional statements, which when compounded lead to further abstract concepts." He further argued that the intellect itself "possesses levels of development from the static/material intellect, that potentiality can acquire knowledge to the active intellect, the state of the human intellect at conjunction with the perfect source of knowledge."

Ibn Tufail (12th century)

In the 12th century, the Andalusian-Islamic philosopher and novelist, Ibn Tufail (known as Abubacer or Ebn Tophail in the West) demonstrated the theory of tabula rasa as a thought experiment through his Arabic philosophical novel, Hayy ibn Yaqdhan, in which he depicts the development of the mind of a feral child "from a tabula rasa to that of an adult, in complete isolation from society" on a desert island, through experience alone.

The Latin translation of his philosophical novel, entitled Philosophus Autodidactus, published by Edward Pococke the Younger in 1671, had an influence on John Locke's formulation of tabula rasa in An Essay Concerning Human Understanding.

Aquinas (13th century)

In the 13th century, St. Thomas Aquinas brought the Aristotelian and Avicennian notions to the forefront of Christian thought. These notions sharply contrasted with the previously-held Platonic notions of the human mind as an entity that pre-existed somewhere in the heavens, before being sent down to join a body here on Earth (cf. Plato's Phaedo and Apology, as well as others). St. Bonaventure (also 13th century) was one of the fiercest intellectual opponents of Aquinas, offering some of the strongest arguments toward the Platonic idea of the mind.

Descartes (17th century)

Descartes, in his work The Search for Truth by Natural Light, summarizes an empiricist view in which he uses the words table rase, in French; in the following English translation, this was rendered tabula rasa:

All that seems to me to explain itself very clearly if we compare the imagination of children to a tabula rasa on which our ideas, which resemble portraits of each object taken from nature, should depict themselves. The senses, the inclinations, our masters and our intelligence, are the various painters who have the power of executing this work; and amongst them, those who are least adapted to succeed in it, i.e. the imperfect senses, blind instinct, and foolish nurses, are the first to mingle themselves with it. There finally comes the best of all, intelligence, and yet it is still requisite for it to have an apprenticeship of several years, and to follow the example of its masters for long, before daring to rectify a single one of their errors. In my opinion this is one of the principal causes of the difficulty we experience in attaining to true knowledge. For our senses really perceive that alone which is most coarse and common; our natural instinct is entirely corrupted; and as to our masters, although there may no doubt be very perfect ones found amongst them, they yet cannot force our minds to accept their reasoning before our understanding has examined it, for the accomplishment of this end pertains to it alone. But it is like a clever painter who might have been called upon to put the last touches on a bad picture sketched out by prentice hands, and who would probably have to employ all the rules of his art in correcting little by little first a trait here, then a trait there, and finally be required to add to it from his own hand all that was lacking, and who yet could not prevent great faults from remaining in it, because from the beginning the picture would have been badly conceived, the figures badly placed, and the proportions badly observed.

Locke (17th century)

The modern idea of the theory is attributed mostly to John Locke's expression of the idea in Essay Concerning Human Understanding, particularly using the term "white paper" in Book II, Chap. I, 2. In Locke's philosophy, tabula rasa was the theory that at birth the (human) mind is a "blank slate" without rules for processing data, and that data is added and rules for processing are formed solely by one's sensory experiences. The notion is central to Lockean empiricism; it serves as the starting point for Locke's subsequent explication (in Book II) of simple ideas and complex ideas.

As understood by Locke, tabula rasa meant that the mind of the individual was born blank, and it also emphasized the freedom of individuals to author their own soul. Individuals are free to define the content of their character—but basic identity as a member of the human species cannot be altered. This presumption of a free, self-authored mind combined with an immutable human nature leads to the Lockean doctrine of "natural" rights. Locke's idea of tabula rasa is frequently compared with Thomas Hobbes's viewpoint of human nature, in which humans are endowed with inherent mental content—particularly with selfishness.

Freud (19th century)

Tabula rasa also features in Sigmund Freud's psychoanalysis. Freud depicted personality traits as being formed by family dynamics (see Oedipus complex). Freud's theories imply that humans lack free will, but also that genetic influences on human personality are minimal. In Freudian psychoanalysis, one is largely determined by one's upbringing.

Science

Psychology and neurobiology

Psychologists and neurobiologists have shown evidence that initially, the entire cerebral cortex is programmed and organized to process sensory input, control motor actions, regulate emotion, and respond reflexively (under predetermined conditions). These programmed mechanisms in the brain subsequently act to learn and refine the ability of the organism. For example, psychologist Steven Pinker showed that—in contrast to written language—the brain is "hard-wired" at birth to acquire spoken language.

There have been claims by a minority in psychology and neurobiology, however, that the brain is tabula rasa only for certain behaviours. For instance, with respect to one's ability to acquire both general and special types of knowledge or skills, Michael Howe argued against the existence of innate talent. There also have been neurological investigations into specific learning and memory functions, such as Karl Lashley's study on mass action and serial interaction mechanisms.

Important evidence against the tabula rasa model of the mind comes from behavioural genetics, especially twin and adoption studies (see below). These indicate strong genetic influences on personal characteristics such as IQ, alcoholism, gender identity, and other traits. Critically, multivariate studies show that the distinct faculties of the mind, such as memory and reason, fractionate along genetic boundaries. Cultural universals such as emotion and the relative resilience of psychological adaptation to accidental biological changes also support basic biological mechanisms in the mind.

Social pre-wiring hypothesis

Twin studies have resulted in important evidence against the tabula rasa model of the mind, specifically, of social behaviour. The social pre-wiring hypothesis (also informally known as "wired to be social") refers to the ontogeny of social interaction. The theory questions whether there is a propensity to socially oriented action already present before birth. Research in the theory concludes that newborns are born into the world with a unique genetic wiring to be social.

Circumstantial evidence supporting the social pre-wiring hypothesis can be revealed when examining newborns' behaviour. Newborns, not even hours after birth, have been found to display a preparedness for social interaction. This preparedness is expressed in ways such as their imitation of facial gestures. This observed behaviour cannot be attributed to any current form of socialization or social construction. Rather, newborns most likely inherit to some extent social behaviour and identity through genetics.

Principal evidence of this theory is uncovered by examining twin pregnancies. The main argument is, if there are social behaviours that are inherited and developed before birth, then one should expect twin fetuses to engage in some form of social interaction before they are born. Thus, ten fetuses were analyzed over a period of time using ultrasound techniques. Using kinematic analysis, the results of the experiment were that the twin fetuses would interact with each other for longer periods and more often as the pregnancies went on. Researchers were able to conclude that the performance of movements between the co-twins were not accidental but specifically aimed.

The social pre-wiring hypothesis was proven correct:

The central advance of this study is the demonstration that 'social actions' are already performed in the second trimester of gestation. Starting from the 14th week of gestation twin fetuses plan and execute movements specifically aimed at the co-twin. These findings force us to predate the emergence of social behaviour: when the context enables it, as in the case of twin fetuses, other-directed actions are not only possible but predominant over self-directed actions.

Computer science

In artificial intelligence, tabula rasa refers to the development of autonomous agents with a mechanism to reason and plan toward their goal, but no "built-in" knowledge-base of their environment. Thus, they truly are a blank slate.

In reality, autonomous agents possess an initial data-set or knowledge-base, but this cannot be immutable or it would hamper autonomy and heuristic ability. Even if the data-set is empty, it usually may be argued that there is a built-in bias in the reasoning and planning mechanisms. Either intentionally or unintentionally placed there by the human designer, it thus negates the true spirit of tabula rasa.

A synthetic (programming) language parser (LR(1), LALR(1) or SLR(1), for example) could be considered a special case of a tabula rasa, as it is designed to accept any of a possibly infinite set of source language programs, within a single programming language, and to output either a good parse of the program, or a good machine language translation of the program, either of which represents a success, or, alternately, a failure, and nothing else. The "initial data-set" is a set of tables which are generally produced mechanically by a parser table generator, usually from a BNF representation of the source language, and represents a "table representation" of that single programming language.

AlphaZero achieved superhuman performance in various board games using self-play and tabula rasa reinforcement learning, meaning it had no access to human games or hard-coded human knowledge about either game, only being given the rules of the games.

Systems science

From Wikipedia, the free encyclopedia
 
Impression of systems thinking about society
 

Systems Science, also referred to as Systems Research, or, simply, Systems, is an interdisciplinary field concerned with understanding systems—from simple to complex—in nature, society, cognition, engineering, technology and science itself. The field is diverse, spanning the formal, natural, social, and applied sciences.

To systems scientists, the world can be understood as a system of systems. The field aims to develop interdisciplinary foundations that are applicable in a variety of areas, such as psychology, biology, medicine, communication, business management, technology, computer science, engineering, and social sciences.

Systems science covers formal sciences such as complex systems, cybernetics, dynamical systems theory, information theory, linguistics or systems theory. It has applications in the field of the natural and social sciences and engineering, such as control theory, systems design, operations research, social systems theory, systems biology, system dynamics, human factors, systems ecology, computer science, systems engineering and systems psychology. Themes commonly stressed in system science are (a) holistic view, (b) interaction between a system and its embedding environment, and (c) complex (often subtle) trajectories of dynamic behavior that sometimes are stable (and thus reinforcing), while at various 'boundary conditions' can become wildly unstable (and thus destructive). Concerns about Earth-scale biosphere/geosphere dynamics is an example of the nature of problems to which systems science seeks to contribute meaningful insights.

Associated fields

Systems notes of Henk Bikker, TU Delft, 1991

The systems sciences are a broad array of fields. One way of conceiving of these is in three groups: fields that have developed systems ideas primarily through theory; those that have done so primarily through practical engagements with problem situations; and those that have applied systems ideas in the context of other disciplines.

Theoretical fields

Chaos and dynamical systems

Complexity

Control theory

Cybernetics

Information theory

General systems theory

Hierarchy Theory

Practical fields

Critical systems thinking

Operations research and management science

Soft systems methodology

The soft systems methodology was developed in England by academics at the University of Lancaster Systems Department through a ten-year action research programme. The main contributor is Peter Checkland (born 18 December 1930, in Birmingham, UK), a British management scientist and emeritus professor of systems at Lancaster University.

Systems analysis

Systems analysis branch of systems science that analyzes systems, the interactions within those systems, or interaction with its environment, often prior to their automation as computer models. Systems analysis is closely associated with the RAND corporation.

Systemic design

Systemic design integrates methodologies from systems thinking with advanced design practices to address complex, multi-stakeholder situations.

Systems dynamics

System dynamics is an approach to understanding the behavior of complex systems over time. It offers "simulation technique for modeling business and social systems", which deals with internal feedback loops and time delays that affect the behavior of the entire system. What makes using system dynamics different from other approaches to studying complex systems is the use of feedback loops and stocks and flows.

Systems engineering

Systems engineering (SE) is an interdisciplinary field of engineering, that focuses on the development and organization of complex systems. It is the "art and science of creating whole solutions to complex problems", for example: signal processing systems, control systems and communication system, or other forms of high-level modelling and design in specific fields of engineering.

Applications in other disciplines

Earth system science

Systems biology

Systems chemistry

Systems ecology

Systems psychology

Systems scientists

General systems scientists can be divided into different generations. The founders of the systems movement like Ludwig von Bertalanffy, Kenneth Boulding, Ralph Gerard, James Grier Miller, George J. Klir, and Anatol Rapoport were all born between 1900 and 1920. They came from different natural and social science disciplines and joined forces in the 1950s to establish the general systems theory paradigm. Along with the organization of their efforts a first generation of systems scientists rose.

Among them were other scientists like Ackoff, Ashby, Margaret Mead and Churchman, who popularized the systems concept in the 1950s and 1960s. These scientists inspired and educated a second generation with more notable scientists like Ervin Laszlo (1932) and Fritjof Capra (1939), who wrote about systems theory in the 1970s and 1980s. Others got acquainted and started studying these works in the 1980s and started writing about it since the 1990s. Debora Hammond can be seen as a typical representative of these third generation of general systems scientists.

Organizations

The International Society for the Systems Sciences (ISSS) is an organisation for interdisciplinary collaboration and synthesis of systems sciences. The ISSS is unique among systems-oriented institutions in terms of the breadth of its scope, bringing together scholars and practitioners from academic, business, government, and non-profit organizations. Based on fifty years of tremendous interdisciplinary research from the scientific study of complex systems to interactive approaches in management and community development. This society was initially conceived in 1954 at the Stanford Center for Advanced Study in the Behavioral Sciences by Ludwig von Bertalanffy, Kenneth Boulding, Ralph Gerard, and Anatol Rapoport.

In the field of systems science the International Federation for Systems Research (IFSR) is an international federation for global and local societies in the field of systems science. This federation is a non-profit, scientific and educational agency founded in 1981, and constituted of some thirty member organizations from various countries. The overall purpose of this Federation is to advance cybernetic and systems research and systems applications and to serve the international systems community.

The best known research institute in the field is the Santa Fe Institute (SFI) located in Santa Fe, New Mexico, United States, dedicated to the study of complex systems. This institute was founded in 1984 by George Cowan, David Pines, Stirling Colgate, Murray Gell-Mann, Nick Metropolis, Herb Anderson, Peter A. Carruthers, and Richard Slansky. All but Pines and Gell-Mann were scientists with Los Alamos National Laboratory. SFI's original mission was to disseminate the notion of a separate interdisciplinary research area, complexity theory referred to at SFI as complexity science. Recently, IIT Jodhpur in Rajasthan, India started inculcating system science and engineering to its students through Bachelors, Masters and Doctorate programs. This makes it the first institution to offer system science education to students in India.

Entropy (information theory)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Entropy_(information_theory) In info...