Search This Blog

Thursday, October 5, 2023

Asteroid belt

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Asteroid_belt
The asteroids of the inner Solar System and Jupiter: The belt is located between the orbits of Jupiter and Mars.
  Sun
  Jupiter trojans
  Orbits of planets
  Asteroid belt
  Hilda asteroids (Hildas)
  Near-Earth objects (selection)
By far the largest object within the belt is the dwarf planet Ceres. The total mass of the asteroid belt is significantly less than Pluto's, and roughly twice that of Pluto's moon Charon.

The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids or minor planets. The identified objects are of many sizes, but much smaller than planets, and, on average, are about one million kilometers (or six hundred thousand miles) apart. This asteroid belt is also called the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System.

The asteroid belt is the smallest and innermost known circumstellar disc in the Solar System. Classes of small Solar System bodies in other regions are the near-Earth objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids, and the Oort cloud objects. About 60% of the main belt mass is contained in the four largest asteroids: Ceres, Vesta, Pallas, and Hygiea. The total mass of the asteroid belt is estimated to be 3% that of the Moon.

Ceres, the only object in the asteroid belt large enough to be a dwarf planet, is about 950 km in diameter, whereas Vesta, Pallas, and Hygiea have mean diameters less than 600 km. The remaining bodies range down to the size of a dust particle. The asteroid material is so thinly distributed that numerous uncrewed spacecraft have traversed it without incident. Nonetheless, collisions between large asteroids occur and can produce an asteroid family, whose members have similar orbital characteristics and compositions. Individual asteroids within the belt are categorized by their spectra, with most falling into three basic groups: carbonaceous (C-type), silicate (S-type), and metal-rich (M-type).

The asteroid belt formed from the primordial solar nebula as a group of planetesimals, the smaller precursors of the protoplanets. Between Mars and Jupiter, however, gravitational perturbations from Jupiter disrupted their accretion into a planet, imparting excess kinetic energy which shattered colliding planetesimals and most of the incipient protoplanets. As a result, 99.9% of the asteroid belt's original mass was lost in the first 100 million years of the Solar System's history. Some fragments eventually found their way into the inner Solar System, leading to meteorite impacts with the inner planets. Asteroid orbits continue to be appreciably perturbed whenever their period of revolution about the Sun forms an orbital resonance with Jupiter. At these orbital distances, a Kirkwood gap occurs as they are swept into other orbits.

History of observation

In 1596, Johannes Kepler's sense of proportion for the planetary orbits led him to believe that an invisible planet lay between the orbits of Mars and Jupiter.

In 1596, Johannes Kepler wrote, "Between Mars and Jupiter, I place a planet," in his Mysterium Cosmographicum, stating his prediction that a planet would be found there. While analyzing Tycho Brahe's data, Kepler thought that too large a gap existed between the orbits of Mars and Jupiter to fit Kepler's then-current model of where planetary orbits should be found.

In an anonymous footnote to his 1766 translation of Charles Bonnet's Contemplation de la Nature, the astronomer Johann Daniel Titius of Wittenberg noted an apparent pattern in the layout of the planets, now known as the Titius-Bode Law. If one began a numerical sequence at 0, then included 3, 6, 12, 24, 48, etc., doubling each time, and added four to each number and divided by 10, this produced a remarkably close approximation to the radii of the orbits of the known planets as measured in astronomical units, provided one allowed for a "missing planet" (equivalent to 24 in the sequence) between the orbits of Mars (12) and Jupiter (48). In his footnote, Titius declared, "But should the Lord Architect have left that space empty? Not at all." When William Herschel discovered Uranus in 1781, the planet's orbit matched the law almost perfectly, leading some astronomers to conclude that a planet had to be between the orbits of Mars and Jupiter.

Giuseppe Piazzi, discoverer of Ceres, the largest object in the asteroid belt: Ceres was known as a planet, but later reclassified as an asteroid and from 2006 as a dwarf planet.

On January 1, 1801, Giuseppe Piazzi, chairman of astronomy at the University of Palermo, Sicily, found a tiny moving object in an orbit with exactly the radius predicted by this pattern. He dubbed it "Ceres", after the Roman goddess of the harvest and patron of Sicily. Piazzi initially believed it to be a comet, but its lack of a coma suggested it was a planet. Thus, the aforementioned pattern predicted the semimajor axes of all eight planets of the time (Mercury, Venus, Earth, Mars, Ceres, Jupiter, Saturn, and Uranus). Concurrent with the discovery of Ceres, an informal group of 24 astronomers dubbed the "celestial police" was formed under the invitation of Franz Xaver von Zach with the express purpose of finding additional planets; they focused their search for them in the region between Mars and Jupiter where the Titius–Bode law predicted there should be a planet.

About 15 months later, Heinrich Olbers, a member of the celestial police, discovered a second object in the same region, Pallas. Unlike the other known planets, Ceres and Pallas remained points of light even under the highest telescope magnifications instead of resolving into discs. Apart from their rapid movement, they appeared indistinguishable from stars.

Accordingly, in 1802, William Herschel suggested they be placed into a separate category, named "asteroids", after the Greek asteroeides, meaning "star-like". Upon completing a series of observations of Ceres and Pallas, he concluded,

Neither the appellation of planets nor that of comets can with any propriety of language be given to these two stars ... They resemble small stars so much as hardly to be distinguished from them. From this, their asteroidal appearance, if I take my name, and call them Asteroids; reserving for myself, however, the liberty of changing that name, if another, more expressive of their nature, should occur.

By 1807, further investigation revealed two new objects in the region: Juno and Vesta. The burning of Lilienthal in the Napoleonic wars, where the main body of work had been done, brought this first period of discovery to a close.

Despite Herschel's coinage, for several decades it remained common practice to refer to these objects as planets and to prefix their names with numbers representing their sequence of discovery: 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta. In 1845, though, astronomers detected a fifth object (5 Astraea) and, shortly thereafter, new objects were found at an accelerating rate. Counting them among the planets became increasingly cumbersome. Eventually, they were dropped from the planet list (as first suggested by Alexander von Humboldt in the early 1850s) and Herschel's coinage, "asteroids", gradually came into common use.

The discovery of Neptune in 1846 led to the discrediting of the Titius–Bode law in the eyes of scientists because its orbit was nowhere near the predicted position. To date, no scientific explanation for the law has been given, and astronomers' consensus regards it as a coincidence.

951 Gaspra, the first asteroid imaged by a spacecraft, as viewed during Galileo's 1991 flyby; colors are exaggerated

The expression "asteroid belt" came into use in the early 1850s, although pinpointing who coined the term is difficult. The first English use seems to be in the 1850 translation (by Elise Otté) of Alexander von Humboldt's Cosmos: "[...] and the regular appearance, about the 13th of November and the 11th of August, of shooting stars, which probably form part of a belt of asteroids intersecting the Earth's orbit and moving with planetary velocity". Another early appearance occurred in Robert James Mann's A Guide to the Knowledge of the Heavens: "The orbits of the asteroids are placed in a wide belt of space, extending between the extremes of [...]". The American astronomer Benjamin Peirce seems to have adopted that terminology and to have been one of its promoters.

Over 100 asteroids had been located by mid-1868, and in 1891, the introduction of astrophotography by Max Wolf accelerated the rate of discovery still further. A total of 1,000 asteroids had been found by 1921, 10,000 by 1981, and 100,000 by 2000. Modern asteroid survey systems now use automated means to locate new minor planets in ever-increasing numbers.

On 22 January 2014, European Space Agency (ESA) scientists reported the detection, for the first definitive time, of water vapor on Ceres, the largest object in the asteroid belt. The detection was made by using the far-infrared abilities of the Herschel Space Observatory. The finding was unexpected because comets, not asteroids, are typically considered to "sprout jets and plumes". According to one of the scientists, "The lines are becoming more and more blurred between comets and asteroids".

Origin

The asteroid belt showing the orbital inclinations versus distances from the Sun, with asteroids in the core region of the asteroid belt in red and other asteroids in blue

Formation

In 1802, shortly after discovering Pallas, Olbers suggested to Herschel that Ceres and Pallas were fragments of a much larger planet that once occupied the Mars–Jupiter region, with this planet having suffered an internal explosion or a cometary impact many million years before, while Odesan astronomer K. N. Savchenko suggested that Ceres, Pallas, Juno, and Vesta were escaped moons rather than fragments of the exploded planet. The large amount of energy required to destroy a planet, combined with the belt's low combined mass, which is only about 4% of the mass of Earth's Moon, does not support these hypotheses. Further, the significant chemical differences between the asteroids become difficult to explain if they come from the same planet.

A modern hypothesis for the asteroid belt's creation relates to how, in general for the Solar System, planetary formation is thought to have occurred via a process comparable to the long-standing nebular hypothesis; a cloud of interstellar dust and gas collapsed under the influence of gravity to form a rotating disc of material that then conglomerated to form the Sun and planets. During the first few million years of the Solar System's history, an accretion process of sticky collisions caused the clumping of small particles, which gradually increased in size. Once the clumps reached sufficient mass, they could draw in other bodies through gravitational attraction and become planetesimals. This gravitational accretion led to the formation of the planets.

Planetesimals within the region that would become the asteroid belt were strongly perturbed by Jupiter's gravity. Orbital resonances occurred where the orbital period of an object in the belt formed an integer fraction of the orbital period of Jupiter, perturbing the object into a different orbit; the region lying between the orbits of Mars and Jupiter contains many such orbital resonances. As Jupiter migrated inward following its formation, these resonances would have swept across the asteroid belt, dynamically exciting the region's population and increasing their velocities relative to each other. In regions where the average velocity of the collisions was too high, the shattering of planetesimals tended to dominate over accretion, preventing the formation of a planet. Instead, they continued to orbit the Sun as before, occasionally colliding.

During the early history of the Solar System, the asteroids melted to some degree, allowing elements within them to be partially or completely differentiated by mass. Some of the progenitor bodies may even have undergone periods of explosive volcanism and formed magma oceans. Because of the relatively small size of the bodies, though, the period of melting was necessarily brief compared to the much larger planets, and had generally ended about 4.5 billion years ago, in the first tens of millions of years of formation. In August 2007, a study of zircon crystals in an Antarctic meteorite believed to have originated from Vesta suggested that it, and by extension the rest of the asteroid belt, had formed rather quickly, within 10 million years of the Solar System's origin.

Evolution

Large main belt asteroid 4 Vesta

The asteroids are not pristine samples of the primordial Solar System. They have undergone considerable evolution since their formation, including internal heating (in the first few tens of millions of years), surface melting from impacts, space weathering from radiation, and bombardment by micrometeorites. Although some scientists refer to the asteroids as residual planetesimals, other scientists consider them distinct.

The current asteroid belt is believed to contain only a small fraction of the mass of the primordial belt. Computer simulations suggest that the original asteroid belt may have contained mass equivalent to the Earth's. Primarily because of gravitational perturbations, most of the material was ejected from the belt within about 1 million years of formation, leaving behind less than 0.1% of the original mass. Since its formation, the size distribution of the asteroid belt has remained relatively stable; no significant increase or decrease in the typical dimensions of the main-belt asteroids has occurred.

The 4:1 orbital resonance with Jupiter, at a radius 2.06 astronomical units (AUs), can be considered the inner boundary of the asteroid belt. Perturbations by Jupiter send bodies straying there into unstable orbits. Most bodies formed within the radius of this gap were swept up by Mars (which has an aphelion at 1.67 AU) or ejected by its gravitational perturbations in the early history of the Solar System. The Hungaria asteroids lie closer to the Sun than the 4:1 resonance, but are protected from disruption by their high inclination.

When the asteroid belt was first formed, the temperatures at a distance of 2.7 AU from the Sun formed a "snow line" below the freezing point of water. Planetesimals formed beyond this radius were able to accumulate ice. In 2006, a population of comets had been discovered within the asteroid belt beyond the snow line, which may have provided a source of water for Earth's oceans. According to some models, outgassing of water during the Earth's formative period was insufficient to form the oceans, requiring an external source such as a cometary bombardment.

The outer asteroid belt appears to include a few objects that may have arrived there during the last few hundred years, the list includes (457175) 2008 GO98 also known as 362P.

Characteristics

Size distribution of asteroids in the main belt

Contrary to popular imagery, the asteroid belt is mostly empty. The asteroids are spread over such a large volume that reaching an asteroid without aiming carefully would be improbable. Nonetheless, hundreds of thousands of asteroids are currently known, and the total number ranges in the millions or more, depending on the lower size cutoff. Over 200 asteroids are known to be larger than 100 km, and a survey in the infrared wavelengths has shown that the asteroid belt has between 700,000 and 1.7 million asteroids with a diameter of 1 km or more.

The number of asteroids in the main belt steadily increases with decreasing size. Although the size distribution generally follows a power law, there are 'bumps' in the curve at about 5 km and 100 km, where more asteroids than expected from such a curve are found. Most asteroids larger than approximately 120 km in diameter are primordial, having survived from the accretion epoch, whereas most smaller asteroids are products of fragmentation of primordial asteroids. The primordial population of the main belt was probably 200 times what it is today.

The absolute magnitudes of most of the known asteroids are between 11 and 19, with the median at about 16. On average the distance between the asteroids is about 965,600 km (600,000 mi), although this varies among asteroid families and smaller undetected asteroids might be even closer. The total mass of the asteroid belt is estimated to be 2.39×1021 kg, which is just 3% of the mass of the Moon. The four largest objects, Ceres, Vesta, Pallas, and Hygiea, contain an estimated 62% of the belt's total mass, with 39% accounted for by Ceres alone.

Composition

Distribution of asteroid spectral types by distance from the Sun

The present day belt consists primarily of three categories of asteroids: C-type carbonaceous asteroids, S-type silicate asteroids, and a hybrid group of X-type asteroids. The latter have featureless spectra, but they can be divided into three groups based on reflectivity, yielding the M-type metallic, P-type primitive, and E-type enstatite asteroids. Additional types have been found that do not fit within these primary classes. There is a compositional trend of asteroid types by increasing distance from the Sun, in the order of S, C, P, and the spectrally-featureless D-types.

Fragment of the Allende meteorite, a carbonaceous chondrite that fell to Earth in Mexico in 1969

Carbonaceous asteroids, as their name suggests, are carbon-rich. They dominate the asteroid belt's outer regions, and are rare in the inner belt. Together they comprise over 75% of the visible asteroids. They are redder in hue than the other asteroids and have a very low albedo. Their surface compositions are similar to carbonaceous chondrite meteorites. Chemically, their spectra match the primordial composition of the early Solar System, with the lighter elements and volatiles removed.

S-type (silicate-rich) asteroids are more common toward the inner region of the belt, within 2.5 AU of the Sun. The spectra of their surfaces reveal the presence of silicates and some metal, but no significant carbonaceous compounds. This indicates that their materials have been significantly modified from their primordial composition, probably through melting and reformation. They have a relatively high albedo and form about 17% of the total asteroid population.

M-type (metal-rich) asteroids are typically found in the middle of the main belt, and they make up much of the remainder of the total population. Their spectra resemble that of iron-nickel. Some are believed to have formed from the metallic cores of differentiated progenitor bodies that were disrupted through collision. However, some silicate compounds also can produce a similar appearance. For example, the large M-type asteroid 22 Kalliope does not appear to be primarily composed of metal. Within the asteroid belt, the number distribution of M-type asteroids peaks at a semimajor axis of about 2.7 AU. Whether all M-types are compositionally similar, or whether it is a label for several varieties which do not fit neatly into the main C and S classes is not yet clear.

One mystery is the relative rarity of V-type (Vestoid) or basaltic asteroids in the asteroid belt. Theories of asteroid formation predict that objects the size of Vesta or larger should form crusts and mantles, which would be composed mainly of basaltic rock, resulting in more than half of all asteroids being composed either of basalt or olivine. However, observations suggest that 99% of the predicted basaltic material is missing. Until 2001, most basaltic bodies discovered in the asteroid belt were believed to originate from the asteroid Vesta (hence their name V-type), but the discovery of the asteroid 1459 Magnya revealed a slightly different chemical composition from the other basaltic asteroids discovered until then, suggesting a different origin. This hypothesis was reinforced by the further discovery in 2007 of two asteroids in the outer belt, 7472 Kumakiri and (10537) 1991 RY16, with a differing basaltic composition that could not have originated from Vesta. These latter two are the only V-type asteroids discovered in the outer belt to date.

Hubble views the multi-tailed cometary asteroid P/2013 P5.

The temperature of the asteroid belt varies with the distance from the Sun. For dust particles within the belt, typical temperatures range from 200 K (−73 °C) at 2.2 AU down to 165 K (−108 °C) at 3.2 AU. However, due to rotation, the surface temperature of an asteroid can vary considerably as the sides are alternately exposed to solar radiation and then to the stellar background.

Main-belt comets

Several otherwise unremarkable bodies in the outer belt show cometary activity. Because their orbits cannot be explained through the capture of classical comets, many of the outer asteroids are thought to be icy, with the ice occasionally exposed to sublimation through small impacts. Main-belt comets may have been a major source of the Earth's oceans because the deuterium-hydrogen ratio is too low for classical comets to have been the principal source.

Orbits

The asteroid belt (showing eccentricities), with the asteroid belt in red and blue ("core" region in red)

Most asteroids within the asteroid belt have orbital eccentricities of less than 0.4, and an inclination of less than 30°. The orbital distribution of the asteroids reaches a maximum at an eccentricity around 0.07 and an inclination below 4°.[66] Thus, although a typical asteroid has a relatively circular orbit and lies near the plane of the ecliptic, some asteroid orbits can be highly eccentric or travel well outside the ecliptic plane.

Sometimes, the term "main belt" is used to refer only to the more compact "core" region where the greatest concentration of bodies is found. This lies between the strong 4:1 and 2:1 Kirkwood gaps at 2.06 and 3.27 AU, and at orbital eccentricities less than roughly 0.33, along with orbital inclinations below about 20°. As of 2006, this "core" region contained 93% of all discovered and numbered minor planets within the Solar System. The JPL Small-Body Database lists over 1 million known main-belt asteroids.

Kirkwood gaps

Number of asteroids in the main belt as a function of their semimajor axis (a). The dashed lines indicate Kirkwood gaps, while colors designate the following zones:
  I: inner main-belt (a < 2.5 AU)
  II: middle main-belt (2.5 AU < a < 2.82 AU)
  III: outer main-belt (a > 2.82 AU)

The semimajor axis of an asteroid is used to describe the dimensions of its orbit around the Sun, and its value determines the minor planet's orbital period. In 1866, Daniel Kirkwood announced the discovery of gaps in the distances of these bodies' orbits from the Sun. They were located in positions where their period of revolution about the Sun was an integer fraction of Jupiter's orbital period. Kirkwood proposed that the gravitational perturbations of the planet led to the removal of asteroids from these orbits.

When the mean orbital period of an asteroid is an integer fraction of the orbital period of Jupiter, a mean-motion resonance with the gas giant is created that is sufficient to perturb an asteroid to new orbital elements. Primordial asteroids entered these gaps because of the migration of Jupiter's orbit. Subsequently, asteroids primarily migrate into these gap orbits due to the Yarkovsky effect, but may also enter because of perturbations or collisions. After entering, an asteroid is gradually nudged into a different, random orbit with a larger or smaller semimajor axis.

Collisions

The zodiacal light, parts of which are reflected by interplanetary dust, which in turn originates in part from collisions of asteroids.

The high population of the asteroid belt makes for a very active environment, where collisions between asteroids occur frequently (on astronomical time scales). Impact events between main-belt bodies with a mean radius of 10 km are expected to occur about once every 10 million years. A collision may fragment an asteroid into numerous smaller pieces (leading to the formation of a new asteroid family). Conversely, collisions that occur at low relative speeds may also join two asteroids. After more than 4 billion years of such processes, the members of the asteroid belt now bear little resemblance to the original population.

Evidence suggests that most main belt asteroids between 200 m and 10 km in diameter are rubble piles formed by collisions. These bodies consist of a multitude of irregular objects that are mostly bound together by self-gravity, resulting in significant amounts of internal porosity. Along with the asteroid bodies, the asteroid belt also contains bands of dust with particle radii of up to a few hundred micrometres. This fine material is produced, at least in part, from collisions between asteroids, and by the impact of micrometeorites upon the asteroids. Due to the Poynting–Robertson effect, the pressure of solar radiation causes this dust to slowly spiral inward toward the Sun.

The combination of this fine asteroid dust, as well as ejected cometary material, produces the zodiacal light. This faint auroral glow can be viewed at night extending from the direction of the Sun along the plane of the ecliptic. Asteroid particles that produce visible zodiacal light average about 40 μm in radius. The typical lifetimes of main-belt zodiacal cloud particles are about 700,000 years. Thus, to maintain the bands of dust, new particles must be steadily produced within the asteroid belt. It was once thought that collisions of asteroids form a major component of the zodiacal light. However, computer simulations by Nesvorný and colleagues attributed 85 percent of the zodiacal-light dust to fragmentations of Jupiter-family comets, rather than to comets and collisions between asteroids in the asteroid belt. At most 10 percent of the dust is attributed to the asteroid belt.

Meteorites

Some of the debris from collisions can form meteoroids that enter the Earth's atmosphere. Of the 50,000 meteorites found on Earth to date, 99.8 percent are believed to have originated in the asteroid belt.

Families and groups

This plot of orbital inclination (ip) versus eccentricity (ep) for the numbered main-belt asteroids clearly shows clumpings representing asteroid families.
Overview of the Inner Solar System asteroids up to the Jovian System
Linear overview of the Inner Solar System bodies

In 1918, the Japanese astronomer Kiyotsugu Hirayama noticed that the orbits of some of the asteroids had similar parameters, forming families or groups.

Approximately one-third of the asteroids in the asteroid belt are members of an asteroid family. These share similar orbital elements, such as semi-major axis, eccentricity, and orbital inclination as well as similar spectral features, all of which indicate a common origin in the breakup of a larger body. Graphical displays of these element pairs, for members of the asteroid belt, show concentrations indicating the presence of an asteroid family. There are about 20 to 30 associations that are almost certainly asteroid families. Additional groupings have been found that are less certain. Asteroid families can be confirmed when the members display similar spectral features. Smaller associations of asteroids are called groups or clusters.

Some of the most prominent families in the asteroid belt (in order of increasing semi-major axes) are the Flora, Eunomia, Koronis, Eos, and Themis families. The Flora family, one of the largest with more than 800 known members, may have formed from a collision less than 1 billion years ago. The largest asteroid to be a true member of a family is 4 Vesta. (This is in contrast to an interloper, in the case of Ceres with the Gefion family.) The Vesta family is believed to have formed as the result of a crater-forming impact on Vesta. Likewise, the HED meteorites may also have originated from Vesta as a result of this collision.

Three prominent bands of dust have been found within the asteroid belt. These have similar orbital inclinations as the Eos, Koronis, and Themis asteroid families, and so are possibly associated with those groupings.

The main belt evolution after the Late Heavy Bombardment was very likely affected by the passages of large Centaurs and trans-Neptunian objects (TNOs). Centaurs and TNOs that reach the inner Solar System can modify the orbits of main belt asteroids, though only if their mass is of the order of 10−9 M for single encounters or, one order less in case of multiple close encounters. However, Centaurs and TNOs are unlikely to have significantly dispersed young asteroid families in the main belt, although they can have perturbed some old asteroid families. Current main belt asteroids that originated as Centaurs or trans-Neptunian objects may lie in the outer belt with short lifetime of less than 4 million years, most likely orbiting between 2.8 and 3.2 AU at larger eccentricities than typical of main belt asteroids.

Periphery

Skirting the inner edge of the belt (ranging between 1.78 and 2.0 AU, with a mean semi-major axis of 1.9 AU) is the Hungaria family of minor planets. They are named after the main member, 434 Hungaria; the group contains at least 52 named asteroids. The Hungaria group is separated from the main body by the 4:1 Kirkwood gap and their orbits have a high inclination. Some members belong to the Mars-crossing category of asteroids, and gravitational perturbations by Mars are likely a factor in reducing the total population of this group.

Another high-inclination group in the inner part of the asteroid belt is the Phocaea family. These are composed primarily of S-type asteroids, whereas the neighboring Hungaria family includes some E-types. The Phocaea family orbit between 2.25 and 2.5 AU from the Sun.

Skirting the outer edge of the asteroid belt is the Cybele group, orbiting between 3.3 and 3.5 AU. These have a 7:4 orbital resonance with Jupiter. The Hilda family orbit between 3.5 and 4.2 AU with relatively circular orbits and a stable 3:2 orbital resonance with Jupiter. There are few asteroids beyond 4.2 AU, until Jupiter's orbit. At the latter the two families of Trojan asteroids can be found, which, at least for objects larger than 1 km, are approximately as numerous as the asteroids of the asteroid belt.

New families

Some asteroid families have formed recently, in astronomical terms. The Karin family apparently formed about 5.7 million years ago from a collision with a progenitor asteroid 33 km in radius.[103] The Veritas family formed about 8.3 million years ago; evidence includes interplanetary dust recovered from ocean sediment.

More recently, the Datura cluster appears to have formed about 530,000 years ago from a collision with a main-belt asteroid. The age estimate is based on the probability of the members having their current orbits, rather than from any physical evidence. However, this cluster may have been a source for some zodiacal dust material. Other recent cluster formations, such as the Iannini cluster (c. 1–5 million years ago), may have provided additional sources of this asteroid dust.

Exploration

Artist's concept of the Dawn spacecraft with Vesta and Ceres

The first spacecraft to traverse the asteroid belt was Pioneer 10, which entered the region on 16 July 1972. At the time there was some concern that the debris in the belt would pose a hazard to the spacecraft, but it has since been safely traversed by multiple spacecraft without incident. Pioneer 11, Voyagers 1 and 2 and Ulysses passed through the belt without imaging any asteroids. Cassini measured plasma and fine dust grains while traversing the belt in 2000. On its way to Jupiter, Juno traversed the asteroid belt without collecting science data. Due to the low density of materials within the belt, the odds of a probe running into an asteroid are estimated at less than 1 in 1 billion.

Most main belt asteroids imaged to date have come from brief flyby opportunities by probes headed for other targets. Only the Dawn mission has studied main belt asteroids for a protracted period in orbit. The Galileo spacecraft imaged 951 Gaspra in 1991 and 243 Ida in 1993, then NEAR imaged 253 Mathilde in 1997 and landed on near–Earth asteroid 433 Eros in February 2001. Cassini imaged 2685 Masursky in 2000, Stardust imaged 5535 Annefrank in 2002, New Horizons imaged 132524 APL in 2006, and Rosetta imaged 2867 Šteins in September 2008 and 21 Lutetia in July 2010. Dawn orbited Vesta between July 2011 and September 2012 and has orbited Ceres since March 2015.

The Lucy space probe is expected to make a flyby of 152830 Dinkinesh in 2023, on its way to the Jupiter Trojans. ESA's JUICE mission will pass through the asteroid belt twice, with a proposed flyby of the asteroid 223 Rosa in 2029. The Psyche spacecraft is a planned NASA mission to the large M-type asteroid 16 Psyche.

Industrialization of China

From Wikipedia, the free encyclopedia

The industrialization of China refers to the process of China undergoing various stages of industrialization. The focus is on the period after the establishment of the People's Republic of China where China experienced its most notable growths in industrialization. Although Chinese industrialization is largely defined by its 20th-century campaigns, China has a long history that contextualizes the proto-industrial efforts, and explains the reasons for delay of industrialization in comparison to Western countries.

In 1952, 83 percent of the Chinese workforce were employed in agriculture. The figure remained high, but was declining steadily, throughout the early phase of industrialization between the 1960s and 1990s. In view of the rapid population growth, however, this amounted to a rapid growth of the industrial sector in absolute terms, of up to 11 percent per year during the period. By 1977, the fraction of the workforce employed in agriculture had fallen to about 77 percent, and by 2012, to 33 percent.

Historical precursors of industrialization

In the State of Wu of China, steel was first made, preceding the Europeans by over 1,000 years. The Song dynasty saw intensive industry in steel production, and coal mining. No other premodern state advanced nearly as close to starting an industrial revolution as the Southern Song. The lack of potential customers for products manufactured by machines instead of artisans was due to the absence of a "middle class" in Song China which was the reason for the failure to industrialize.

The puddling process of smelting iron ore to make wrought iron from pig iron, with the right illustration displaying men working a blast furnace, from the Tiangong Kaiwu encyclopedia, 1637.

Western historians debate whether bloomery-based ironworking ever spread to China from the Middle East. Around 500 BC, however, metalworkers in the southern state of Wu developed an iron smelting technology that would not be practiced in Europe until late medieval times. In Wu, iron smelters achieved a temperature of 1130 °C, hot enough to be considered a blast furnace which could create cast iron. At this temperature, iron combines with 4.3% carbon and melts. As a liquid, iron can be cast into molds, a method far less laborious than individually forging each piece of iron from a bloom.

Cast iron is rather brittle and unsuitable for striking implements. It can, however, be decarburized to steel or wrought iron by heating it in air for several days. In China, these ironworking methods spread northward, and by 300 BC, iron was the material of choice throughout China for most tools and weapons. A mass grave in Hebei province, dated to the early 3rd century BC, contains several soldiers buried with their weapons and other equipment. The artifacts recovered from this grave are variously made of wrought iron, cast iron, malleabilized cast iron, and quench-hardened steel, with only a few, probably ornamental, bronze weapons.

An illustration of furnace bellows operated by waterwheels, from the Nong Shu, by Wang Zhen, 1313 AD, during the Yuan dynasty in China.

During the Han dynasty (202 BC–220 AD), the government established ironworking as a state monopoly (yet repealed during the latter half of the dynasty, returned to private entrepreneurship) and built a series of large blast furnaces in Henan province, each capable of producing several tons of iron per day. By this time, Chinese metallurgists had discovered how to puddle molten pig iron, stirring it in the open air until it lost its carbon and became wrought iron. (In Chinese, the process was called chao, literally, stir frying.) By the 1st century BC, Chinese metallurgists had found that wrought iron and cast iron could be melted together to yield an alloy of intermediate carbon content, that is, steel. According to legend, the sword of Liu Bang, the first Han emperor, was made in this fashion. Some texts of the era mention "harmonizing the hard and the soft" in the context of ironworking; the phrase may refer to this process. Also, the ancient city of Wan (Nanyang) from the Han period forward was a major center of the iron and steel industry. Along with their original methods of forging steel, the Chinese had also adopted the production methods of creating Wootz steel, an idea imported from India to China by the 5th century.

The Chinese during the ancient Han Dynasty were also the first to apply hydraulic power (i.e. a waterwheel) in working the inflatable bellows of the blast furnace. This was recorded in the year 31 AD, an innovation of the engineer Du Shi, prefect of Nanyang. Although Du Shi was the first to apply water power to bellows in metallurgy, the first drawn and printed illustration of its operation with water power came in 1313, in the Yuan dynasty era text called the Nong Shu. In the 11th century, there is evidence of the production of steel in Song China using two techniques: a "berganesque" method that produced inferior, heterogeneous steel and a precursor to the modern Bessemer process that utilized partial decarbonization via repeated forging under a cold blast. By the 11th century, there was also a large amount of deforestation in China due to the iron industry's demands for charcoal. However, by this time the Chinese had figured out how to use bituminous coke to replace the use of charcoal, and with this switch in resources many acres of prime timberland in China were spared. This switch in resources from charcoal to coal was later used in Europe by the 17th century.

The economy of the Song dynasty was one of the most prosperous and advanced economies in the medieval world. Song Chinese invested their funds in joint stock companies and in multiple sailing vessels at a time when monetary gain was assured from the vigorous overseas trade and indigenous trade along the Grand Canal and Yangzi River. Prominent merchant families and private businesses were allowed to occupy industries that were not already government-operated monopolies. Both private and government-controlled industries met the needs of a growing Chinese population in the Song. Both artisans and merchants formed guilds which the state had to deal with when assessing taxes, requisitioning goods, and setting standard worker's wages and prices on goods.

The iron industry was pursued by both private entrepreneurs who owned their own smelters as well as government-supervised smelting facilities. The Song economy was stable enough to produce over a hundred million kg (over two hundred million lb) of iron product a year. Large scale deforestation in China would have continued if not for the 11th-century innovation of the use of coal instead of charcoal in blast furnaces for smelting cast iron. Much of this iron was reserved for military use in crafting weapons and armoring troops, but some was used to fashion the many iron products needed to fill the demands of the growing indigenous market. The iron trade within China was furthered by the building of new canals which aided the flow of iron products from production centers to the large market found in the capital city.

Left item: A Northern Song qingbai-ware vase with a transparent blue-toned ceramic glaze, from Jingdezhen, 11th century; Center item: A Northern or Southern Song qingbai-ware bowl with incised lotus decorations, a metal rim, and a transparent blue-toned glaze, from Jingdezhen, 12th or 13th century; Right item: A Southern Song miniature model of a storage granary with removable top lid and doorway, qingbai porcelain with transparent blue-toned glaze, Jingdezhen, 13th century.

The annual output of minted copper currency in 1085 alone reached roughly six billion coins. The most notable advancement in the Song economy was the establishment of the world's first government issued paper-printed money, known as Jiaozi (see also Huizi). For the printing of paper money alone, the Song court established several government-run factories in the cities of Huizhou, Chengdu, Hangzhou, and Anqi. The size of the workforce employed in paper money factories was large; it was recorded in 1175 that the factory at Hangzhou employed more than a thousand workers a day.

The economic power of Song China heavily influenced foreign economies abroad. The Moroccan geographer al-Idrisi wrote in 1154 of the prowess of Chinese merchant ships in the Indian Ocean and of their annual voyages that brought iron, swords, silk, velvet, porcelain, and various textiles to places such as Aden (Yemen), the Indus River, and the Euphrates in modern-day Iraq. Foreigners, in turn, affected the Chinese economy. For example, many West Asian and Central Asian Muslims went to China to trade, becoming a preeminent force in the import and export industry, while some were even appointed as officers supervising economic affairs. Sea trade with the Southeast Pacific, the Hindu world, the Islamic world, and the East African world brought merchants great fortune and spurred an enormous growth in the shipbuilding industry of Song-era Fujian province. However, there was risk involved in such long overseas ventures. To reduce the risk of losing money on maritime trade missions abroad, the historians Ebrey, Walthall, and Palais write:

[Song era] investors usually divided their investment among many ships, and each ship had many investors behind it. One observer thought eagerness to invest in overseas trade was leading to an outflow of copper cash. He wrote, 'People along the coast are on intimate terms with the merchants who engage in overseas trade, either because they are fellow-countrymen or personal acquaintances...[They give the merchants] money to take with them on their ships for purchase and return conveyance of foreign goods. They invest from ten to a hundred strings of cash, and regularly make profits of several hundred percent'.

Reasons for the delay in industrialization

Some historians such as David Landes and Max Weber credit the different belief systems in China and Europe with dictating where the revolution occurred. The religion and beliefs of Europe were largely products of Judaeo-Christianity, Socrates, Plato, and Aristotle. Conversely, Chinese society was founded on men like Confucius, Mencius, Han Feizi (Legalism), Lao Tzu (Taoism), and Buddha (Buddhism). The key difference between these belief systems was that those from Europe focused on the individual, while Chinese beliefs centered around relationships between people. The family unit was more important than the individual for the large majority of Chinese history, and this may have played a role in why the Industrial Revolution took much longer to occur in China. There was the additional difference as to whether people looked backwards to a reputedly glorious past for answers to their questions or looked hopefully to the future. Further scholarship, such as that of Joel Makyr suggests that one of the main driving forces that led to Europe industrializing sooner than China was a culture of interstate competition. Because China was the regional hegemonic power there was no large threat from the 17th century onwards. In Europe, where there was no clear hegemonic power, the power struggle created a competition model which allowed for economic, cultural, and technological progress that was unseen in China. Other factors include a Chinese culture of status-quo stability, meaning that revolutionary new ideas which called into question the historical or cultural narrative of China were largely suppressed, meaning there was little space for innovation comparable to Europe. Although this view may supplement a larger narrative, it is by no means definitive and is only one piece of the multi-faceted phenomena of why China experienced industrialization later in its history compared to Western nations.

The English school

By contrast, there is a historical school which Jack Goldstone has dubbed the "English school" which argues that China was not essentially different from Europe, and that many of the assertions that it was are based on bad historical evidence.

Mark Elvin argues that China was in a high-level equilibrium trap in which the non-industrial methods were efficient enough to prevent use of industrial methods with high initial capital. Kenneth Pomeranz, in the Great Divergence, argues that Europe and China were remarkably similar in 1700, and that the crucial differences which created the Industrial Revolution in Europe were sources of coal near manufacturing centers, and raw materials such as food and wood from the New World, which allowed Europe to expand economically in a way that China could not.

Some have compared England directly to China, but the comparison between England and China has been viewed as a faulty one, since China is so much larger than England. A more relevant comparison would be between China's Yangtze Delta region, China's most advanced region, the location of Hangzhou, Nanjing and contemporary Shanghai, and England. This region of China is said to have had similar labor costs to England. According to Andre Gunder Frank, "Particularly significant is the comparison of Asia's 66 percent share of world population, confirmed above all by estimates for 1750, with its 80 percent share of production in the world at the same time. So, two thirds of the world's people in Asia produced four-fifths of total world output, while one-fifth of world population in Europe produced only a part of the remaining one-fifth share of world production, to which Europeans and Americans also contributed." China was one of Asia's most advanced economies at the time and was in the middle of its 18th-century boom brought on by a long period of stability under the Qing dynasty.

Industrialization of the People's Republic of China

Small scale industrial efforts such as home and community metallurgy and steel production were common in the Great Leap Forward. Pictured is a man tending to his backyard steel furnace.

Industrialization of China did occur on a significant scale only from the 1950s. Beginning in 1953 Mao introduced a 'Five Year Plan' reminiscent of Soviet industrialization efforts. This five-year plan would signify the People's Republic of China first large scale campaign to industrialize. Drawing heavily from Soviet success, the plan was characterized by intense collectivization and economic centralization. Soviet assistance was crucial in this undertaking, China “received the most advanced technology available within the Soviet Union, and in some cases this was the best in the world”. Several thousand Soviet Technical advisors went on to oversee and guide 156 industrial projects. Soviet assistance during this stage constituted about half of industrial production and development. Because of Soviet assisted development, agricultural and industrial output value grew from 30% in 1949 to 56.5% in 1957, and heavy industry saw similar growth from 26.4% to 48.4%. Therefore, the Soviet assistance in kickstarting industrialization was a key component in the larger process of Chinese industrialization, and economic development as a whole. The Maoist Great Leap Forward (simplified Chinese: 大跃进; traditional Chinese: 大躍進; pinyin: Dàyuèjìn) was the plan used from 1958 to 1961 to transform the People's Republic of China from a primarily agrarian economy by peasant farmers into a modern communist society through the process of agriculturalization and industrialization. Mao Zedong anticipated agriculture and industry (shorthand 'grain and steel') as the foundations of any economic progress or national strengthening. Thus, The Great Leap forward heavily relied on and lent attention to these two sectors to establish a strong economic base from which further developments could originate. Ideological motivations for this transformation are widely varied. Chinese experience of foreign occupation had widespread effects on the national mentality, compelling leaders to establish a strong, autonomous and self sufficient state. A primary factor however was Cold War cultural, and economic competition with the West. Hearing of the Soviet Union's plan to surpass the United States in industrial output, Mao Zedong claimed "Comrade Khrushchev has told us, the Soviet Union 15 years later will surpass the United States of America. I can also say, 15 years later, we may catch up with or exceed the UK." Mao Zedong based this program on the Theory of Productive Forces. The Great Leap Forward ended in catastrophe, high volumes of resources were directed to the industrial projects of the campaign. When the industrial projects failed to produce the expected output, there was a lack of resources including tools, farming equipment and infrastructure upon which the agricultural sector was relying upon. In conjunction with widespread drought towards the end of the period, a widespread famine occurred. The overall result of the Great Leap Forward was an actual, albeit temporary, shrinking of the Chinese economy. However, from 1952 to 1978 GDP per capita grew at an average rate of 3.6%, outpacing inflation. Another trend from The Great Leap Forward, was the steady decline of those employed in the agricultural sector, as the industrial sector grew. Furthermore, as China began to rely more heavily on industrial output, the value added to the GDP by agriculture also declined, going from 70% in 1952, to 30% in 1977. During this time period several notable industries within China experienced significant growth in their annual production: annual steel production grew from 1.3 million tons to 23 million tons, coal grew from 66 million tons to 448 million tons, electric power generation increased from 7 million to 133 billion kilowatt-hours, and cement production rose from 3 million to 49 million tons per year.

As political stability was gradually restored following the Cultural Revolution of the late 1960s, a renewed drive for coordinated, balanced development was set in motion under the leadership of Premier Zhou Enlai. To revive efficiency in industry, Chinese Communist Party committees were returned to positions of leadership over the revolutionary committees, and a campaign was carried out to return skilled and highly educated personnel to the jobs from which they had been displaced during the Cultural Revolution. Universities began to reopen, and foreign contacts were expanded. Once again the economy suffered from imbalances in the capacities of different industrial sectors and an urgent need for increased supplies of modern inputs for agriculture. In response to these problems, there was a significant increase in investment, including the signing of contracts with foreign firms for the construction of major facilities for chemical fertilizer production, steel finishing, and oil extraction and refining. The most notable of these contracts was for thirteen of the world's largest and most modern chemical fertilizer plants. During this period, industrial output grew at an average rate of 11 percent a year.

At the milestone Third Plenum of the National Party Congress's 11th Central Committee which opened on December 22, 1978, the party leaders decided to undertake a program of gradual but fundamental reform of the economic system. They concluded that the Maoist version of the centrally planned economy had failed to produce efficient economic growth and had caused China to fall far behind not only the industrialized nations of the West but also the new industrial powers of Asia: Japan, South Korea, Singapore, Taiwan, and Hong Kong. In the late 1970s, while Japan and Hong Kong rivaled European countries in modern technology, China's citizens had to make do with barely sufficient food supplies, rationed clothing, inadequate housing, and a service sector that was inadequate and inefficient. All of these shortcomings embarrassed China internationally.

The purpose of the reform program was not to abandon communism but to make it work better by substantially increasing the role of market mechanisms in the system and by reducing—not eliminating—government planning and direct control. The process of reform was incremental. New measures were first introduced experimentally in a few localities and then were popularized and disseminated nationally if they proved successful. By 1987 the program had achieved remarkable results in increasing supplies of food and other consumer goods and had created a new climate of dynamism and opportunity in the economy. At the same time, however, the reforms also had created new problems and tensions, leading to intense questioning and political struggles over the program's future.

The first few years of the reform program were designated the "period of readjustment," during which key imbalances in the economy were to be corrected and a foundation was to be laid for a well-planned modernization drive. The schedule of Hua Guofeng's ten-year plan was discarded, although many of its elements were retained. The major goals of the readjustment process were to expand exports rapidly; overcome key deficiencies in transportation, communications, coal, iron, steel, building materials, and electric power; and redress the imbalance between light and heavy industry by increasing the growth rate of light industry and reducing investment in heavy industry.

In 1984, the fourteen largest coastal cities were designated as economic development zones, including Dalian, Tianjin, Shanghai, and Guangzhou, all of which were major commercial and industrial centers. These zones were to create productive exchanges between foreign firms with advanced technology and major Chinese economic networks.

China has continued its rise as an industrial power to the present day. It is now the leading industrial power in the world in terms of output, in 2016 producing $4.566 trillion worth of industrial yield. This rapid increase, is in large part attributed to a number of factors. Opening sectors of the industrial economy to foreign investment and privatization, the introduction of the stock market in Shanghai, increasing export markets, outsourcing of manufacturing into China, and the entry of China into the World Trade Organization.

While Chinese industrial output is still dominant in the world, it has experienced stagnation. Declining in the late 1990s, it reached its low point of 7% in 1998 (industrial output index) and reached 23% in 2004. Since then, it has largely declined and stagnated in the 2010s, hovering between 5-10%. Much of this downturn can be attributed to lower demand as a response to the Chinese stock market crash. In response, in 2016 China announced its plans to downsize its steel and coal industries and lay off 15% of the respective workforce. Part of this larger trend can be attributed to China's movement away from heavy industry, and into light industry such as the production of consumer goods for the world market. China has also seen growth in other sectors such as construction, technology, finance, and energy which can be attributed to a decreased reliance on industry.

Environmental implications

Like previous industrialization campaigns, Chinese industrialization brought modern economic development and a general increase in quality of life for many of its citizens, while also introducing a variety of environmental implications that can be felt locally, and on a global scale. Severe pollution, dehydration of waterways, widespread deforestation, and some of the highest levels of air pollution in the world are just a few of China's cost of its rapid industrialization and modernization. From 1985 to 2008, the quantities of energy production grew by 203.9%, while the energy consumption increased by 271.7%. Along with those increases, the emissions of industrial wastewater, gas and solid waste have undergone massive growth. Environmental accidents all over the country have also increased in recent years. “It is reported that the number of environmental disasters in 2010 was as double as that of 2009, and there were 102 accidents in the first half of 2010.”

A blanket of smog covering northeast China, home to most of Chinese industrialization.

Air pollutants

CO2

China faces a problem with air quality as a consequence of industrialization. China ranks as the second largest consumer of oil in the world, and "China is the world's top coal producer, consumer, and importer, and accounts for almost half of global coal consumption.”, as such their CO2 emissions reflect the usage and production of fossil fuels. As of 2015, China has been ranked the number one CO2 contributor holding 29% of the global CO2 emission emissions. In 2012, the World Resources Institute figured the total global carbon emission to be 33.84 billion tons where China contributed to 9.31 billion. In particular, biomass forest burning and shrubland, grassland, and crop residue fire burning are some of the most important contributors to China's CO2 emission. Agriculture is also another top contributor to carbon emission in China representing 17% of the total emissions. And, China's steel industry has accounted for 44% of the total CO2 emissions. China's industries are not the only determinate of air pollution; China's growing population has increased heavy traffic and power generation. Altogether, China's growing infrastructure has created 3.28 billion tons of industrial waste from 2013 to 2016. On a local level, China has implemented a pollution warning system that notifies citizens of the day to day air quality and potential health effects. The highest warning: red, indicates an unsuitability for all outdoor activity because of health risks. Certain measures have been adopted to curb the production of smog and haze within China such as temporary vehicle bans. Additionally as smog and haze threats grow, the Chinese Ministry of Environmental Protection has called upon the steel producing cities of Linyi and Chengde to curb pollution from a result of the steel industry, by enforcing environmental laws or by closing down some thirteen offender's factories.

Water pollutants

Huai River Basin Within the Shandong Province Case Study

A trash picking boat, removing waste from the Pearl River in southern China which receives high amounts of trash and industrial pollution from the major industrial center of Guangzhou and surrounding towns.

The Huai River Basin is located between the Yangtze River and the Yellow River and contains 42 counties. The Huai River Basin within Shandong covers an area of 47100 km2 including the Nansi Lake Basin and Yishi River Basin.

With the growing infrastructure from industrialization, urbanization, and the growth of megacities in China, there are numerous pollutants that are decreasing the water quality and have contaminated many groundwater aquifers. A study on the causes of pollutants on the Huai River Basin within the Shandong province analyzed which of these industries caused the most wastewater to determine the direct effects of industrialization in the HRBSP. Different industries that emit these pollutants in the region were classified into different levels for their environmental impact. Coal, papermaking, and construction material were classified as high-energy-consumption/low-output value/high-pollution industries. Textiles, petrochemicals, and electric power were classified as high-energy-consumption/ high-output value/high pollution industries. Lastly, medical manufacturing and mechanical scores were classified as low-energy-consumption/high-output value/low-pollutant industries. The study concluded that the top contributors to water pollutants were the food processing industry, 23.55% COD and 26.05% NH3-N, the papermaking industry, 28.47% COD and 18.72% NH3-N, and the petrochemical industry, 15.34% COD and 25.52% NH3-N.

Since 2010, China's Prevention and Control of Water Pollution and the Eleventh Five-Year Plan of the Huai River Basin have set water quality requirements to level III meaning the water quality is clean enough for human consumption and recreation. Because the Huai River Basin includes four-prefecture-level cities, Zaozhuang, Jinan, Linyi, and Heze, there is high pressure for meeting the required water quality standards. Of the 27 monitoring sites in this case study, the Huai River Basin's water quality was graded IV, where water quality is not suitable for human consumption or recreation, at 10 monitoring sites and graded V, where water quality it extremely polluted and unsuitable for any use, in the Xiangzimio region. Even though the water quality at these sites have slightly improved, the Eastern Route of the South-to-North Water Division Project, who manages the water quality of the Huai River Basin, are still in their developing stages and have struggled to maintain a balance between industrialization and water quality due to the rate of China's growing industrial activities.

Desertification

Desertification remains a serious problem, consuming an area greater than the area used as farmland. Over 2.95 million hectares, or 57% of its territory, had been affected by desertification. Although desertification has been curbed in some areas, it is still expanding at a rate of more than 67 km2 every year. 90% of China's desertification occurs in the west of the country. Approximately 30% of China's current surface area is considered desert. China's rapid industrialization could cause this area to drastically increase. The Gobi Desert to the north currently expands by about 950 square miles (2,500 km2) per year. The vast plains in northern China used to be regularly flooded by the Yellow River. However, overgrazing and the expansion of agricultural land could cause this area to increase.

Health risks

Pollutants emitted into the air and water by China's rapid industrialization has brought major health concerns. The anthropogenic activities in China have decreased food safety and antibiotic resistance and have increased resurging infectious diseases. Air pollution, alone, is directly linked to increased risk of lung cancer, breast cancer, and bladder cancer and has already led to more than 1.3 million premature deaths in China and linked to 1.6 million deaths a year - 17% of all annual Chinese deaths. 92% of Chinese have had at least 120 annual hours of unhealthy air determined by EPA standards. As the World Health Organization states hazardous air is more deadly than AIDS, malaria, breast cancer, or tuberculosis, than Chinese air quality is especially problematic because of the scale at which it occurs.

While farmable land in China is slim to begin with, the Ministry of Land and Resources reported that China has contaminated 33.3 million hectares of farmland that cannot be used for any constructive purpose. Consequently, China is faced with increased exposure to new pathogens that threaten public health as a result migrating wildlife from these dead zones.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...