Search This Blog

Wednesday, April 17, 2024

Volcanism on Io

From Wikipedia, the free encyclopedia
Io, with two plumes erupting from its surface

Volcanism on Io, a moon of Jupiter, is represented by the presence of volcanoes, volcanic pits and lava flows on the surface. Io's volcanic activity was discovered in 1979 by Linda Morabito, an imaging scientist working on Voyager 1. Observations of Io by passing spacecraft and Earth-based astronomers have revealed more than 150 active volcanoes. As of 2004, up to 400 such volcanoes are predicted to exist based on these observations. Io's volcanism makes the satellite one of only four known currently volcanically or cryovolcanically active worlds in the Solar System (the others being Earth, Saturn's moon Enceladus, and Neptune's moon Triton.)

First predicted shortly before the Voyager 1 flyby, the heat source for Io's volcanism comes from tidal heating produced by its forced orbital eccentricity. This differs from Earth's internal heating, which is derived primarily from radioactive isotope decay and primordial heat of accretion. Io's eccentric orbit leads to a slight difference in Jupiter's gravitational pull on the satellite between its closest and farthest points on its orbit, causing a varying tidal bulge. This variation in the shape of Io causes frictional heating in its interior. Without this tidal heating, Io might have been similar to the Moon, a world of similar size and mass, geologically dead and covered with numerous impact craters.

Io's volcanism has led to the formation of hundreds of volcanic centres and extensive lava formations, making it the most volcanically active body in the Solar System. Three different types of volcanic eruptions have been identified, differing in duration, intensity, lava effusion rate, and whether the eruption occurs within a volcanic pit (known as a patera). Lava flows on Io, tens or hundreds of kilometres long, have primarily basaltic composition, similar to lavas seen on Earth at shield volcanoes such as Kīlauea in Hawaii. Although most of the lava on Io is made of basalt, a few lava flows consisting of sulfur and sulfur dioxide have been seen. In addition, eruption temperatures as high as 1,600 K (1,300 °C; 2,400 °F) were detected, which can be explained by the eruption of high-temperature ultramafic silicate lavas.

As a result of the presence of significant quantities of sulfurous materials in Io's crust and on its surface, some eruptions propel sulfur, sulfur dioxide gas, and pyroclastic material up to 500 kilometres (310 mi) into space, producing large, umbrella-shaped volcanic plumes. This material paints the surrounding terrain in red, black, and/or white, and provides material for Io's patchy atmosphere and Jupiter's extensive magnetosphere. Spacecraft that have flown by Io since 1979 have observed numerous surface changes as a result of Io's volcanic activity.

Further observations by the Juno orbiter of volcanism and volcanic plumes on Io were made during a 3 February 2024 flyby.

Discovery

Discovery image of active volcanism on Io. The plumes of Pele and Loki are visible above the limb and at the terminator, respectively.

Before the Voyager 1 encounter with Io on March 5, 1979, Io was thought to be a dead world much like the Moon. The discovery of a cloud of sodium surrounding Io led to theories that the satellite would be covered in evaporites.

Hints of discoveries to come arose from Earth-based infrared observations taken in the 1970s. An anomalously high thermal flux, compared to the other Galilean satellites, was discovered during measurements taken at an infrared wavelength of 10 μm while Io was in Jupiter's shadow. At the time, this heat flux was attributed to the surface having a much higher thermal inertia than Europa and Ganymede. These results were considerably different from measurements taken at wavelengths of 20 μm, which suggested that Io had similar surface properties to the other Galilean satellites. Robert Nelson and Bruce Hapke attempted to explain these features in Io's spectrum by suggesting fumarolic activity as a mechanism for producing short-chain sulfur allotropes on Io's surface. It has since been determined that the greater flux at shorter wavelengths was due to the combined flux from Io's volcanoes and solar heating, whereas solar heating provides a much greater fraction of the flux at longer wavelengths. A sharp increase in Io's thermal emission at 5 μm was observed on February 20, 1978 by Witteborn, et al. The group considered volcanic activity at the time, in which case the data was fit into a region on Io 8,000 square kilometres (3,100 sq mi) in size at 600 K (300 °C; 600 °F). However, the authors considered that hypothesis unlikely, and instead focused on emission from Io's interaction with Jupiter's magnetosphere.

Shortly before the Voyager 1 encounter, Stan Peale, Patrick Cassen, and R. T. Reynolds published a paper in the journal Science predicting a volcanically modified surface and a differentiated interior, with distinct rock types rather than a homogeneous blend. They based this prediction on models of Io's interior that took into account the massive amount of heat produced by the varying tidal pull of Jupiter on Io caused by its slightly eccentric orbit. Their calculations suggested that the amount of heat generated for an Io with a homogeneous interior would be three times greater than the amount of heat generated by radioactive isotope decay alone. This effect would be even greater with a differentiated Io.

Voyager 1 observation of Loki Patera and nearby lava flows and volcanic pits

Voyager 1's first images of Io revealed a lack of impact craters, suggesting a very young surface. Craters are used by geologists to estimate the age of a planetary surface; the number of impact structures increase with the age of the planetary surface. Instead, Voyager 1 observed a multi-coloured surface, pockmarked with irregular-shaped depressions, which lacked the raised rims characteristic of impact craters. Voyager 1 also observed flow features formed by low-viscosity fluid and tall, isolated mountains that did not resemble terrestrial volcanoes. The surface observed suggested that, just as Peale and colleagues had theorized, Io was heavily modified by volcanism.

On March 8, 1979, three days after passing Jupiter, Voyager 1 took images of Jupiter's moons to help mission controllers determine the spacecraft's exact location, a process called optical navigation. By processing images of Io to enhance the visibility of background stars, navigation engineer Linda Morabito found a 300-kilometre (190 mi) tall cloud along its limb. At first, she suspected the cloud to be a moon behind Io, but no suitably sized body would have been in that location. The feature was determined to be a plume generated by active volcanism at a dark depression later named Pele. Following this discovery, eight other plumes were located in Voyager images of Io. These plumes were later named after mythological deities associated with fire, volcanoes, or mayhem: Loki (two separate plumes), Prometheus, Volund, Amirani, Maui, Marduk, and Masubi. Thermal emission from multiple sources, indicative of cooling lava, were also found. Surface changes were observed when images that had been acquired by Voyager 2 were compared to those taken four months previously by Voyager 1, including new plume deposits at Aten Patera and Surt.

Heat source

Io's main source of internal heat comes from the tidal forces generated by Jupiter's gravitational pull. This external heating differs from the internal heat source for volcanism on Earth, which is a result of radioactive isotope decay and residual heat from accretion. In the Earth, these internal heat sources drive mantle convection, which in turn causes volcanism through plate tectonics.

The tidal heating of Io is dependent on its distance from Jupiter, its orbital eccentricity, the composition of its interior, and its physical state. Its Laplace orbital resonance with Europa and Ganymede maintains Io's eccentricity and prevents tidal dissipation within Io from circularizing its orbit. The eccentricity leads to vertical differences in Io's tidal bulge of as much as 100 metres (330 ft) as Jupiter's gravitational pull varies between the periapsis and apoapsis points in Io's orbit. This varying tidal pull also produces friction in Io's interior, enough to cause significant tidal heating and melting. Unlike Earth, where most of its internal heat is released by conduction through the crust, on Io internal heat is released via volcanic activity and generates the satellite's high heat flow (global total: 0.6–1.6 × 1014 W). Models of its orbit suggest that the amount of tidal heating within Io changes with time, and that the current heat flow is not representative of the long-term average. The observed release of heat from Io's interior is greater than estimates for the amount presently generated from tidal heating, suggesting that Io is cooling after a period of greater flexing.

Composition

Jupiter moon Io volcanic activity (12/14/2022/left and 03/01/2023)
Voyager 1 image of volcanic pits and lava flows near Ra Patera

Analysis of Voyager images led scientists to believe that the lava flows on Io were composed mostly of various forms of molten elemental sulfur. The colouration of the flows was found to be similar to its various allotropes. Differences in the lava colour and brightness are a function of the temperature of polyatomic sulfur and the packing and bonding of its atoms. An analysis of the flows that radiate out from Ra Patera revealed differently colored materials, all associated with liquid sulfur, at different distances from the vent: dark albedo material close to the vent at 525 K (252 °C; 485 °F), red material in the central part of each flow at 450 K (177 °C; 350 °F), and orange material at the farthest ends of each flow at 425 K (152 °C; 305 °F). This colour pattern corresponds to flows radiating out from a central vent, cooling as the lava travels away from it. In addition, temperature measurements of thermal emission at Loki Patera taken by Voyager 1's Infrared Interferometer Spectrometer and Radiometer (IRIS) instrument were consistent with sulfur volcanism. However, the IRIS instrument was not capable of detecting wavelengths that are indicative of higher temperatures. This meant that temperatures consistent with silicate volcanism were not discovered by Voyager. Despite this, Voyager scientists deduced that silicates must play a role in Io's youthful appearance, from its high density and the need for silicates to support the steep slopes along patera walls. The contradiction between the structural evidence and the spectral and temperature data following the Voyager flybys led to a debate in the planetary science community regarding the composition of Io's lava flows, whether they were composed of silicate or sulfurous materials.

Earth-based infrared studies in the 1980s and 1990s shifted the paradigm from one of primarily sulfur volcanism to one where silicate volcanism dominates, and sulfur acts in a secondary role. In 1986, measurements of a bright eruption on Io's leading hemisphere revealed temperatures of at least 900 K (600 °C; 1,200 °F). This is higher than the boiling point of sulfur (715 K or 442 °C or 827 °F), indicating a silicate composition for at least some of Io's lava flows. Similar temperatures were also observed at the Surt eruption in 1979 between the two Voyager encounters, and at the eruption observed by Witteborn and colleagues in 1978. In addition, modeling of silicate lava flows on Io suggested that they cooled rapidly, causing their thermal emission to be dominated by lower temperature components, such as solidified flows, as opposed to the small areas covered by still molten lava near the actual eruption temperature.

Thermal emission map of Io by Galileo

Silicate volcanism, involving basaltic lava with mafic to ultramafic (magnesium-rich) compositions, was confirmed by the Galileo spacecraft in the 1990s and 2000s from temperature measurements of Io's numerous hot spots, locations where thermal emission is detected, and from spectral measurements of Io's dark material. Temperature measurements from Galileo's Solid-State Imager (SSI) and Near-Infrared Mapping Spectrometer (NIMS) revealed numerous hot spots with high-temperature components ranging from at least 1,200 K (900 °C; 1,700 °F) to a maximum of 1,600 K (1,300 °C; 2,400 °F), like at the Pillan Patera eruption in 1997. Initial estimates during the course of the Galileo mission suggesting eruption temperatures approaching 2,000 K (1,700 °C; 3,100 °F) have since proven to be overestimates because the wrong thermal models were used to calculate the temperatures. Spectral observations of Io's dark material suggested the presence of orthopyroxenes, such as enstatite, which are magnesium-rich silicate minerals common in mafic and ultramafic basalt. This dark material is seen in volcanic pits, fresh lava flows, and pyroclastic deposits surrounding recent, explosive volcanic eruptions. Based on the measured temperature of the lava and the spectral measurements, some of the lava may be analogous to terrestrial komatiites. Compressional superheating, which could increase the temperature of magma during ascent to the surface during an eruption, may also be a factor in some of the higher temperature eruptions.

Although temperature measurements of Io's volcanoes settled the sulfur-versus-silicates debate that persisted between the Voyager and Galileo missions at Jupiter, sulfur and sulfur dioxide still play a significant role in the phenomena observed on Io. Both materials have been detected in the plumes generated at Io's volcanoes, with sulfur being a primary constituent of Pele-type plumes. Bright flows have been identified on Io, at Tsũi Goab Fluctus, Emakong Patera, and Balder Patera for example, that are suggestive of effusive sulfur or sulfur dioxide volcanism.

Eruption styles

Observations of Io by spacecraft and Earth-based astronomers have led to the identification of differences in the types of eruptions seen on the satellite. The three main types identified include intra-patera, flow-dominated, and explosion-dominated eruptions. They differ in terms of duration, energy released, brightness temperature (determined from infrared imaging), type of lava flow, and whether it is confined within volcanic pits.

Intra-patera eruptions

Tupan Patera, an example of a volcanic depression

Intra-patera eruptions occur within volcanic depressions known as paterae, which generally have flat floors bounded by steep walls. Paterae resemble terrestrial calderas, but it is unknown whether they form when an empty magma chamber collapses, like their terrestrial cousins. One hypothesis suggests that they are produced through the exhumation of volcanic sills, with the overlying material either being blasted out or integrated into the sill. Some paterae display evidence for multiple collapses, similar to the calderas atop Olympus Mons on Mars or Kīlauea on Earth, suggesting that they may occasionally form like volcanic calderas. Because the formation mechanism is still uncertain, the general term for these features uses the Latin descriptor term employed by the International Astronomical Union in naming them, paterae. Unlike similar features on Earth and Mars, these depressions generally do not lie at the peak of shield volcanoes and are larger, with an average diameter of 41 kilometres (25 mi). Patera depths have been measured for only a few paterae and typically exceed 1 km. The largest volcanic depression on Io is Loki Patera at 202 kilometres (126 mi) across. Whatever the formation mechanism, the morphology and distribution of many paterae suggest that they are structurally controlled, with at least half bounded by faults or mountains.

Infrared image showing night-time thermal emission from the lava lake Pele

This eruption style can take the form of either lava flows, spreading across the floor of the paterae, or lava lakes. Except for observations by Galileo during its seven close flybys, it can be difficult to tell the difference between a lava lake and a lava flow eruption on a patera floor, due to inadequate resolution and similar thermal emission characteristics. Intra-patera lava flow eruptions, such as the Gish Bar Patera eruption in 2001, can be just as voluminous as those seen spreading out across the Ionian plains. Flow-like features have also been observed within a number of paterae, like Camaxtli Patera, suggesting that lava flows periodically resurface their floors.

Ionian lava lakes are depressions partially filled with molten lava covered by a thin solidified crust. These lava lakes are directly connected to a magma reservoir lying below. Observations of thermal emission at several Ionian lava lakes reveal glowing molten rock along the patera margin, caused by the lake's crust breaking up along the edge of the patera. Over time, because the solidified lava is denser than the still-molten magma below, this crust can founder, triggering an increase in thermal emission at the volcano. For some lava lakes, like the one at Pele, this occurs continuously, making Pele one of the brightest emitters of heat in the near-infrared spectrum on Io. At other sites, such as at Loki Patera, this can occur episodically. During an overturning episode at these more quiescent lava lakes, a wave of foundering crust spreads out across the patera at the rate of about 1 kilometre (0.6 mi) per day, with new crust forming behind it until the entire lake has been resurfaced. Another eruption would only begin once the new crust has cooled and thickened enough for it to no longer be buoyant over the molten lava. During an overturning episode, Loki can emit up to ten times more heat than when its crust is stable.

Flow-dominated eruptions (Promethean Volcanism)

Culann Patera, an example of a flow-dominated eruption

Flow-dominated eruptions are long-lived events that build up extensive, compound lava flows. The extent of these flows makes them a major terrain type on Io. In this style of eruption, magma emerges onto the surface from vents on the floor of paterae, vents surrounding paterae, or from fissures on the plains, producing inflated, compound lava flows similar to those seen at Kīlauea in Hawaii. Images from the Galileo spacecraft revealed that many of Io's major flows, like those at Prometheus and Amirani, are produced by the build-up of small breakouts of lava on top of older flows. Flow-dominated eruptions differ from explosion-dominated eruptions by their longevity and their lower energy output per unit of time. Lava erupts at a generally steady rate, and flow-dominated eruptions can last for years or decades.

Active flow fields more than 300 kilometres (190 mi) long have been observed on Io at Amirani and Masubi. A relatively inactive flow field named Lei-Kung Fluctus covers more than 125,000 square kilometres (48,000 sq mi), an area slightly larger than Nicaragua. The thickness of flow fields was not determined by Galileo, but the individual breakouts on their surface are likely to be 1 m (3 ft) thick. In many cases, active lava breakouts flow out onto the surface at locations tens to hundreds of kilometres from the source vent, with low amounts of thermal emission observed between it and the breakout. This suggests that lava flows through lava tubes from the source vent to the breakout.

Although these eruptions generally have a steady eruption rate, larger outbreaks of lava have been observed at many flow-dominated eruption sites. For example, the leading edge of the Prometheus flow field moved 75 to 95 kilometres (47 to 59 mi) between observations by Voyager in 1979 and Galileo in 1996. Although generally dwarfed by explosion-dominated eruptions, the average flow rate at these compound flow fields is much greater than what is observed at similar contemporary lava flows on Earth. Average surface coverage rates of 35–60 square metres (380–650 sq ft) per second were observed at Prometheus and Amirani during the Galileo mission, compared to 0.6 square metres (6.5 sq ft) per second at Kīlauea.

Explosion-dominated eruptions (Pillanian Volcanism)

Galileo images of active lava flows and fountains at Tvashtar Paterae in 1999

Explosion-dominated eruptions are the most pronounced of Io's eruption styles. These eruptions, sometimes called "outburst" eruptions from their Earth-based detections, are characterized by their short duration (lasting only weeks or months), rapid onset, large volumetric flow rates, and high thermal emission. They lead to a short-lived, significant increase in Io's overall brightness in the near-infrared. The most powerful volcanic eruption observed on Io was an "outburst" eruption at Surt, observed by Earth-based astronomers on February 22, 2001.

Explosion-dominated eruptions occur when a body of magma (called a dike) from deep within Io's partially molten mantle reaches the surface at a fissure. This results in a spectacular display of lava fountains. During the beginning of the outburst eruption, thermal emission is dominated by strong, 1–3 μm infrared radiation. It is produced by a large amount of exposed, fresh lava within the fountains at the eruption source vent. Outburst eruptions at Tvashtar in November 1999 and February 2007 centred on a 25-kilometre (16 mi) long, 1-kilometre (0.62 mi) tall lava "curtain" produced at a small patera nested within the larger Tvashtar Paterae complex.

The large amount of exposed molten lava at these lava fountains has provided researchers with their best opportunity to measure the actual temperatures of Ionian lavas. Temperatures suggestive of an ultramafic lava composition similar to Pre-Cambrian komatiites (about 1,600 K or 1,300 °C or 2,400 °F) are dominant at such eruptions, though superheating of the magma during ascent to the surface cannot be ruled out as a factor in the high eruption temperatures.

Two Galileo images, taken 168 days apart, showing the effects of an explosion-dominated eruption at Pillan Patera in 1997

Although the more explosive, lava-fountaining stage may last only a few days to a week, explosion-dominated eruptions can continue for weeks to months, producing large, voluminous silicate lava flows. A major eruption in 1997 from a fissure north-west of Pillan Patera produced more than 31 cubic kilometres (7.4 cu mi) of fresh lava over a 2+12- to 5+12-month period, and later flooded the floor of Pillan Patera. Observations by Galileo suggest lava coverage rates at Pillan between 1,000 and 3,000 square metres (11,000 and 32,000 sq ft) per second during the 1997 eruption. The Pillan flow was found to be 10 m (33 ft) thick, compared to the 1 m (3 ft) thick flows observed at the inflated fields at Prometheus and Amirani. Similar, rapidly emplaced lava flows were observed by Galileo at Thor in 2001. Such flow rates are similar to those seen at Iceland's Laki eruption in 1783 and in terrestrial flood basalt eruptions.

Explosion-dominated eruptions can produce dramatic (but often short-lived) surface changes around the eruption site, such as large pyroclastic and plume deposits produced as gas exsolves from lava fountains. The 1997 Pillan eruption produced a 400 km (250 mi) wide deposit of dark, silicate material and bright sulfur dioxide. The Tvashtar eruptions of 2000 and 2007 generated a 330 km (210 mi) tall plume that deposited a ring of red sulfur and sulfur dioxide 1,200 km (750 mi) wide. Despite the dramatic appearance of these features, without continuous resupply of material, the vent surroundings often revert to their pre-eruption appearance over a period of months (in the case of Grian Patera) or years (as at Pillan Patera).

Plumes

Sequence of five New Horizons images, taken over eight minutes, showing Io's volcano Tvashtar erupting material 330 kilometres (210 mi) above its surface

The discovery of volcanic plumes at Pele and Loki in 1979 provided conclusive evidence that Io was geologically active. Generally, plumes form when volatiles like sulfur and sulfur dioxide are ejected skyward from Io's volcanoes at speeds reaching 1 kilometre per second (0.62 mi/s), creating umbrella-shaped clouds of gas and dust. Additional materials that might be found in the volcanic plumes include sodium, potassium, and chlorine. Although striking in appearance, volcanic plumes are relatively uncommon. Of the 150 or so active volcanoes observed on Io, plumes have only been observed at a couple of dozen of them. The limited area of Io's lava flows suggests that much of the resurfacing needed to erase Io's cratering record must come from plume deposits.

A plume, about 100 km high, erupting from the Masubi region of Io in July 1999

The most common type of volcanic plume on Io are dust plumes, or Prometheus-type plumes, produced when encroaching lava flows vaporize underlying sulfur dioxide frost, sending the material skyward. Examples of Prometheus-type plumes include Prometheus, Amirani, Zamama, and Masubi. These plumes are usually less than 100 kilometres (62 mi) tall with eruption velocities around 0.5 kilometres per second (0.31 mi/s). Prometheus-type plumes are dust-rich, with a dense inner core and upper canopy shock zone, giving them an umbrella-like appearance. These plumes often form bright circular deposits, with a radius ranging between 100 and 250 kilometres (62 and 155 mi) and consisting primarily of sulfur dioxide frost. Prometheus-type plumes are frequently seen at flow-dominated eruptions, helping make this plume type quite long-lived. Four out of the six Prometheus-type plumes observed by Voyager 1 in 1979 were also observed throughout the Galileo mission and by New Horizons in 2007. Although the dust plume can be clearly seen in sunlit visible-light images of Io acquired by passing spacecraft, many Prometheus-type plumes have an outer halo of fainter, more gas-rich material reaching heights approaching that of the larger, Pele-type plumes.

Io's largest plumes, Pele-type plumes, are created when sulfur and sulfur dioxide gas exsolve from erupting magma at volcanic vents or lava lakes, carrying silicate pyroclastic material with them. The few Pele-type plumes that have been observed are usually associated with explosion-dominated eruptions, and are short-lived. The exception to this is Pele, which is associated with a long-lived active lava lake eruption, though the plume is thought to be intermittent. The higher vent temperatures and pressures associated with these plumes generate eruption speeds of up to 1 kilometre per second (0.62 mi/s), allowing them to reach heights of between 300 and 500 kilometres (190 and 310 mi). Pele-type plumes form red (from short-chain sulfur) and black (from silicate pyroclastics) surface deposits, including large 1,000 kilometres (620 mi)-wide red rings, as seen at Pele. The erupted sulfurous components of Pele-type plumes are thought to be the result of an excess amount of sulfur in Io's crust and a decrease in sulfur solubility at greater depths in Io's lithosphere. They are generally fainter than Prometheus-type plumes as a result of the low dust content, causing some to be called stealth plumes. These plumes are sometimes only seen in images acquired while Io is in the shadow of Jupiter or those taken in ultraviolet. The little dust that is visible in sunlit images is generated when sulfur and sulfur dioxide condense as the gases reach the top of their ballistic trajectories. That is why these plumes lack the dense central column seen in Prometheus-type plumes, in which dust is generated at the plume source. Examples of Pele-type plumes have been observed at Pele, Tvashtar, and Grian.

Geology of the Moon

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Geology_of_the_Moon
Geologic map of the Moon, with general features colored in by age, except in the case of maria (in blue), KREEP (red) and other special features. Oldest to youngest: Aitkenian (pink), Nectarian (brown), Imbrian (greens/turquoise), Eratosthenian (light orange) and Copernican (yellow).

The geology of the Moon (sometimes called selenology, although the latter term can refer more generally to "lunar science") is quite different from that of Earth. The Moon lacks a true atmosphere, and the absence of free oxygen and water eliminates erosion due to weather. Instead, the surface is eroded much more slowly through the bombardment of the lunar surface by micrometeorites. It does not have any known form of plate tectonics, it has a lower gravity, and because of its small size, it cooled faster. In addition to impacts, the geomorphology of the lunar surface has been shaped by volcanism, which is now thought to have ended less than 50 million years ago. The Moon is a differentiated body, with a crust, mantle, and core.

False-color image of the Moon taken by the Galileo orbiter showing geological features. NASA photo
The same image using different color filters

Geological studies of the Moon are based on a combination of Earth-based telescope observations, measurements from orbiting spacecraft, lunar samples, and geophysical data. Six locations were sampled directly during the crewed Apollo program landings from 1969 to 1972, which returned 382 kilograms (842 lb) of lunar rock and lunar soil to Earth In addition, three robotic Soviet Luna spacecraft returned another 301 grams (10.6 oz) of samples, and the Chinese robotic Chang'e 5 returned a sample of 1,731 g (61.1 oz) in 2020.

The Moon is the only extraterrestrial body for which we have samples with a known geologic context. A handful of lunar meteorites have been recognized on Earth, though their source craters on the Moon are unknown. A substantial portion of the lunar surface has not been explored, and a number of geological questions remain unanswered.

Elemental composition

Elements known to be present on the lunar surface include, among others, oxygen (O), silicon (Si), iron (Fe), magnesium (Mg), calcium (Ca), aluminium (Al), manganese (Mn) and titanium (Ti). Among the more abundant are oxygen, iron and silicon. The oxygen content is estimated at 45% (by weight). Carbon (C) and nitrogen (N) appear to be present only in trace quantities from deposition by solar wind.

Lunar surface chemical composition
Compound Formula Composition
Maria Highlands
silica SiO2 45.4% 45.5%
alumina Al2O3 14.9% 24.0%
lime CaO 11.8% 15.9%
iron(II) oxide FeO 14.1% 5.9%
magnesia MgO 9.2% 7.5%
titanium dioxide TiO2 3.9% 0.6%
sodium oxide Na2O 0.6% 0.6%
  99.9% 100.0%
Neutron spectrometry data from Lunar Prospector indicate the presence of hydrogen (H) concentrated at the poles.
Relative concentration of various elements on the lunar surface (in weight %)
Relative concentration (in weight %) of various elements on lunar highlands, lunar lowlands, and Earth
Relative concentration (in weight %) of various elements on lunar highlands, lunar lowlands, and Earth

Formation

For a long period of time, the fundamental question regarding the history of the Moon was of its origin. Early hypotheses included fission from Earth, capture, and co-accretion. Today, the giant-impact hypothesis is widely accepted by the scientific community.

Geologic history

The geological history of the Moon has been defined into six major epochs, called the lunar geologic timescale. Starting about 4.5 billion years ago, the newly formed Moon was in a molten state and was orbiting much closer to Earth resulting in tidal forces. These tidal forces deformed the molten body into an ellipsoid, with the major axis pointed towards Earth.

The first important event in the geologic evolution of the Moon was the crystallization of the near global magma ocean. It is not known with certainty what its depth was, but several studies imply a depth of about 500 km or greater. The first minerals to form in this ocean were the iron and magnesium silicates olivine and pyroxene. Because these minerals were denser than the molten material around them, they sank. After crystallization was about 75% complete, less dense anorthositic plagioclase feldspar crystallized and floated, forming an anorthositic crust about 50 km in thickness. The majority of the magma ocean crystallized quickly (within about 100 million years or less), though the final remaining KREEP-rich magmas, which are highly enriched in incompatible and heat-producing elements, could have remained partially molten for several hundred million (or perhaps 1 billion) years. It appears that the final KREEP-rich magmas of the magma ocean eventually became concentrated within the region of Oceanus Procellarum and the Imbrium basin, a unique geologic province that is now known as the Procellarum KREEP Terrane.

Quickly after the lunar crust formed, or even as it was forming, different types of magmas that would give rise to the Mg-suite norites and troctolites began to form, although the exact depths at which this occurred are not known precisely. Recent theories suggest that Mg-suite plutonism was largely confined to the region of the Procellarum KREEP Terrane, and that these magmas are genetically related to KREEP in some manner, though their origin is still highly debated in the scientific community. The oldest of the Mg-suite rocks have crystallization ages of about 3.85 Ga. However, the last large impact that could have been excavated deep into the crust (the Imbrium basin) also occurred at 3.85 Ga before present. Thus, it seems probable that Mg-suite plutonic activity continued for a much longer time, and that younger plutonic rocks exist deep below the surface.

Analysis of the samples from the Moon seems to show that a lot of the Moon's impact basins formed in a short amount of time between about 4 and 3.85 Ga ago. This hypothesis is referred to as the lunar cataclysm or late heavy bombardment. However, it is now recognized that ejecta from the Imbrium impact basin (one of the youngest large impact basins on the Moon) should be found at all of the Apollo landing sites. It is thus possible that ages for some impact basins (in particular Mare Nectaris) could have been mistakenly assigned the same age as Imbrium.

The lunar maria represent ancient flood basaltic eruptions. In comparison to terrestrial lavas, these contain higher iron abundances, have low viscosities, and some contain highly elevated abundances of the titanium-rich mineral ilmenite. The majority of basaltic eruptions occurred between about 3 and 3.5 Ga ago, though some mare samples have ages as old as 4.2 Ga. The youngest (based on the method of crater counting) was long thought to date to 1 billion years ago, but research in the 2010s has found evidence of eruptions from less than 50 million years in the past. Along with mare volcanism came pyroclastic eruptions, which launched molten basaltic materials hundreds of kilometers away from the volcano. A large portion of the mare formed, or flowed into, the low elevations associated with the nearside impact basins. However, Oceanus Procellarum does not correspond to any known impact structure, and the lowest elevations of the Moon within the farside South Pole-Aitken basin are only modestly covered by mare (see lunar mare for a more detailed discussion).

Moon – Oceanus Procellarum ("Ocean of Storms")
Ancient rift valleys – rectangular structure (visible – topography – GRAIL gravity gradients) (October 1, 2014)
Ancient rift valleys – context
Ancient rift valleys – closeup (artist's concept)

Impacts by meteorites and comets are the only abrupt geologic force acting on the Moon today, though the variation of Earth tides on the scale of the Lunar anomalistic month causes small variations in stresses.[20] Some of the most important craters used in lunar stratigraphy formed in this recent epoch. For example, the crater Copernicus, which has a depth of 3.76 km and a radius of 93 km, is estimated to have formed about 900 million years ago (though this is debatable). The Apollo 17 mission landed in an area in which the material coming from the crater Tycho might have been sampled. The study of these rocks seem to indicate that this crater could have formed 100 million years ago, though this is debatable as well. The surface has also experienced space weathering due to high energy particles, solar wind implantation, and micrometeorite impacts. This process causes the ray systems associated with young craters to darken until it matches the albedo of the surrounding surface. However, if the composition of the ray is different from the underlying crustal materials (as might occur when a "highland" ray is emplaced on the mare), the ray could be visible for much longer times.

After resumption of Lunar exploration in the 1990s, it was discovered there are scarps across the globe that are caused by the contraction due to cooling of the Moon.[21]

Strata and epochs

At the top of the Moon’s stratigraphy is the Copernican unit consisting of craters with a ray system. Below this is the Eratosthenian unit, defined by craters with established impact crater morphology, but lacking the ray system of the Copernican. These two units are present in smaller spots on the lunar surface. Further down the stratigraphy are the Mare units (previously known as the Procellarian unit), and the Imbrian unit which is related to ejecta and tectonics from the Imbrium basin. The bottom of the lunar stratigraphy is the pre-Nectarian unit, which consists of old crater plains.

Lunar landscape

The lunar landscape is characterized by impact craters, their ejecta, a few volcanoes, hills, lava flows and depressions filled by lava.

Highlands

The most distinctive aspect of the Moon is the contrast between its bright and dark zones. Lighter surfaces are the lunar highlands, which receive the name of terrae (singular terra, from the Latin for earth, land), and the darker plains are called maria (singular mare, from the Latin for sea), after Johannes Kepler who introduced the names in the 17th century. The highlands are anorthositic in composition, whereas the maria are basaltic. The maria often coincide with the "lowlands," but the lowlands (such as within the South Pole-Aitken basin) are not always covered by maria. The highlands are older than the visible maria, and hence are more heavily cratered.

Maria

The major products of volcanic processes on the Moon are evident to Earth-bound observers in the form of the lunar maria. These are large flows of basaltic lava that correspond to low-albedo surfaces covering nearly a third of the near side. Only a few percent of the farside has been affected by mare volcanism. Even before the Apollo missions confirmed it, most scientists already thought that the maria are lava-filled plains, because they have lava flow patterns and collapses attributed to lava tubes.

The ages of the mare basalts have been determined both by direct radiometric dating and by the technique of crater counting. The oldest radiometric ages are about 4.2 Ga (billion years), and ages of most of the youngest maria lavas have been determined from crater counting to be about 1 Ga. Due to better resolution of more recent imagery, about 70 small areas called irregular mare patches (each area only a few hundred meters or a few kilometers across) have been found in the maria that crater counting suggests were sites of volcanic activity in the geologically much more recent past (less than 50 million years). Volumetrically, most of the mare formed between about 3 and 3.5 Ga before present. The youngest lavas erupted within Oceanus Procellarum, whereas some of the oldest appear to be located on the farside. The maria are clearly younger than the surrounding highlands given their lower density of impact craters.

Moon – Evidence of young lunar volcanism (October 12, 2014)
Volcanic rilles near the crater Prinz
Volcanic domes within the Mons Rümker complex
Wrinkle ridges within the crater Letronne
Rima Ariadaeus is a graben. NASA photo taken during Apollo 10 mission.

A large portion of maria erupted within, or flowed into, the low-lying impact basins on the lunar nearside. However, it is unlikely that a causal relationship exists between the impact event and mare volcanism because the impact basins are much older (by about 500 million years) than the mare fill. Furthermore, Oceanus Procellarum, which is the largest expanse of mare volcanism on the Moon, does not correspond to any known impact basin. It is commonly suggested that the reason the mare only erupted on the nearside is that the nearside crust is thinner than the farside. Although variations in the crustal thickness might act to modulate the amount of magma that ultimately reaches the surface, this hypothesis does not explain why the farside South Pole-Aitken basin, whose crust is thinner than Oceanus Procellarum, was only modestly filled by volcanic products.

Another type of deposit associated with the maria, although it also covers the highland areas, are the "dark mantle" deposits. These deposits cannot be seen with the naked eye, but they can be seen in images taken from telescopes or orbiting spacecraft. Before the Apollo missions, scientists predicted that they were deposits produced by pyroclastic eruptions. Some deposits appear to be associated with dark elongated ash cones, reinforcing the idea of pyroclasts. The existence of pyroclastic eruptions was later confirmed by the discovery of glass spherules similar to those found in pyroclastic eruptions here on Earth.

Many of the lunar basalts contain small holes called vesicles, which were formed by gas bubbles exsolving from the magma at the vacuum conditions encountered at the surface. It is not known with certainty which gases escaped these rocks, but carbon monoxide is one candidate.

The samples of pyroclastic glasses are of green, yellow, and red tints. The difference in color indicates the concentration of titanium that the rock has, with the green particles having the lowest concentrations (about 1%), and red particles having the highest concentrations (up to 14%, much more than the basalts with the highest concentrations).

Rilles

Rilles on the Moon sometimes resulted from the formation of localized lava channels. These generally fall into three categories, consisting of sinuous, arcuate, or linear shapes. By following these meandering rilles back to their source, they often lead to an old volcanic vent. One of the most notable sinuous rilles is the Vallis Schröteri feature, located in the Aristarchus plateau along the eastern edge of Oceanus Procellarum. An example of a sinuous rille exists at the Apollo 15 landing site, Rima Hadley, located on the rim of the Imbrium Basin. Based on observations from the mission, it is generally thought that this rille was formed by volcanic processes, a topic long debated before the mission took place.

Domes

A variety of shield volcanoes can be found in selected locations on the lunar surface, such as on Mons Rümker. These are thought to be formed by relatively viscous, possibly silica-rich lava, erupting from localized vents. The resulting lunar domes are wide, rounded, circular features with a gentle slope rising in elevation a few hundred meters to the midpoint. They are typically 8–12 km in diameter, but can be up to 20 km across. Some of the domes contain a small pit at their peak.

Wrinkle ridges

Wrinkle ridges are features created by compressive tectonic forces within the maria. These features represent buckling of the surface and form long ridges across parts of the maria. Some of these ridges may outline buried craters or other features beneath the maria. A prime example of such an outlined feature is the crater Letronne.

Grabens

Grabens are tectonic features that form under extensional stresses. Structurally, they are composed of two normal faults, with a down-dropped block between them. Most grabens are found within the lunar maria near the edges of large impact basins.

Impact craters

Mare Imbrium and the crater Copernicus

The origin of the Moon's craters as impact features became widely accepted only in the 1960s. This realization allowed the impact history of the Moon to be gradually worked out by means of the geologic principle of superposition. That is, if a crater (or its ejecta) overlaid another, it must be the younger. The amount of erosion experienced by a crater was another clue to its age, though this is more subjective. Adopting this approach in the late 1950s, Gene Shoemaker took the systematic study of the Moon away from the astronomers and placed it firmly in the hands of the lunar geologists.[23]

Impact cratering is the most notable geological process on the Moon. The craters are formed when a solid body, such as an asteroid or comet, collides with the surface at a high velocity (mean impact velocities for the Moon are about 17 km per second). The kinetic energy of the impact creates a compression shock wave that radiates away from the point of entry. This is succeeded by a rarefaction wave, which is responsible for propelling most of the ejecta out of the crater. Finally there is a hydrodynamic rebound of the floor that can create a central peak.

These craters appear in a continuum of diameters across the surface of the Moon, ranging in size from tiny pits to the immense South Pole–Aitken basin with a diameter of nearly 2,500 km and a depth of 13 km. In a very general sense, the lunar history of impact cratering follows a trend of decreasing crater size with time. In particular, the largest impact basins were formed during the early periods, and these were successively overlaid by smaller craters. The size frequency distribution (SFD) of crater diameters on a given surface (that is, the number of craters as a function of diameter) approximately follows a power law with increasing number of craters with decreasing crater size. The vertical position of this curve can be used to estimate the age of the surface.

The lunar crater King displays the characteristic features of a large impact formation, with a raised rim, slumped edges, terraced inner walls, a relatively flat floor with some hills, and a central ridge. The Y-shaped central ridge is unusually complex in form.

The most recent impacts are distinguished by well-defined features, including a sharp-edged rim. Small craters tend to form a bowl shape, whereas larger impacts can have a central peak with flat floors. Larger craters generally display slumping features along the inner walls that can form terraces and ledges. The largest impact basins, the multiring basins, can even have secondary concentric rings of raised material.

The impact process excavates high albedo materials that initially gives the crater, ejecta, and ray system a bright appearance. The process of space weathering gradually decreases the albedo of this material such that the rays fade with time. Gradually the crater and its ejecta undergo impact erosion from micrometeorites and smaller impacts. This erosional process softens and rounds the features of the crater. The crater can also be covered in ejecta from other impacts, which can submerge features and even bury the central peak.

The ejecta from large impacts can include large blocks of material that reimpact the surface to form secondary impact craters. These craters are sometimes formed in clearly discernible radial patterns, and generally have shallower depths than primary craters of the same size. In some cases an entire line of these blocks can impact to form a valley. These are distinguished from catena, or crater chains, which are linear strings of craters that are formed when the impact body breaks up prior to impact.

Generally speaking, a lunar crater is roughly circular in form. Laboratory experiments at NASA's Ames Research Center have demonstrated that even very low-angle impacts tend to produce circular craters, and that elliptical craters start forming at impact angles below five degrees. However, a low angle impact can produce a central peak that is offset from the midpoint of the crater. Additionally, the ejecta from oblique impacts show distinctive patterns at different impact angles: asymmetry starting around 60˚ and a wedge-shaped "zone of avoidance" free of ejecta in the direction the projectile came from starting around 45˚.[24]

Dark-halo craters are formed when an impact excavates lower albedo material from beneath the surface, then deposits this darker ejecta around the main crater. This can occur when an area of darker basaltic material, such as that found on the maria, is later covered by lighter ejecta derived from more distant impacts in the highlands. This covering conceals the darker material below, which is later excavated by subsequent craters.

The largest impacts produced melt sheets of molten rock that covered portions of the surface that could be as thick as a kilometer. Examples of such impact melt can be seen in the northeastern part of the Mare Orientale impact basin.

Regolith

The surface of the Moon has been subject to billions of years of collisions with both small and large asteroidal and cometary materials. Over time, these impact processes have pulverized and "gardened" the surface materials, forming a fine-grained layer termed regolith. The thickness of the lunar regolith varies between 2 meters (6.6 ft) beneath the younger maria, to up to 20 meters (66 ft) beneath the oldest surfaces of the lunar highlands. The regolith is predominantly composed of materials found in the region, but also contains traces of materials ejected by distant impact craters. The term mega-regolith is often used to describe the heavily fractured bedrock directly beneath the near-surface regolith layer.

The regolith contains rocks, fragments of minerals from the original bedrock, and glassy particles formed during the impacts. In most of the lunar regolith, half of the particles are made of mineral fragments fused by the glassy particles; these objects are called agglutinates. The chemical composition of the regolith varies according to its location; the regolith in the highlands is rich in aluminium and silica, just as the rocks in those regions.[citation needed] The regolith in the maria is rich in iron and magnesium and is silica-poor, as are the basaltic rocks from which it is formed.

The lunar regolith is very important because it also stores information about the history of the Sun. The atoms that compose the solar wind – mostly hydrogen, helium, neon, carbon and nitrogen – hit the lunar surface and insert themselves into the mineral grains. Upon analyzing the composition of the regolith, particularly its isotopic composition, it is possible to determine if the activity of the Sun has changed with time. The gases of the solar wind could be useful for future lunar bases, because oxygen, hydrogen (water), carbon and nitrogen are not only essential to sustain life, but are also potentially very useful in the production of fuel. The composition of the lunar regolith can also be used to infer its source origin.

Lunar lava tubes

Lunar pit in Mare Tranquillitatis

Lunar lava tubes form a potentially important location for constructing a future lunar base, which may be used for local exploration and development, or as a human outpost to serve exploration beyond the Moon. A lunar lava cave potential has long been suggested and discussed in literature and thesis. Any intact lava tube on the Moon could serve as a shelter from the severe environment of the lunar surface, with its frequent meteorite impacts, high-energy ultraviolet radiation and energetic particles, and extreme diurnal temperature variations. Following the launch of the Lunar Reconnaissance Orbiter, many lunar lava tubes have been imaged. These lunar pits are found in several locations across the Moon, including Marius Hills, Mare Ingenii and Mare Tranquillitatis.

Lunar magma ocean

The first rocks brought back by Apollo 11 were basalts. Although the mission landed on Mare Tranquillitatis, a few millimetric fragments of rocks coming from the highlands were picked up. These are composed mainly of plagioclase feldspar; some fragments were composed exclusively of anorthite. The identification of these mineral fragments led to the bold hypothesis that a large portion of the Moon was once molten, and that the crust formed by fractional crystallization of this magma ocean.

A natural outcome of the hypothetical giant-impact event is that the materials that re-accreted to form the Moon must have been hot. Current models predict that a large portion of the Moon would have been molten shortly after the Moon formed, with estimates for the depth of this magma ocean ranging from about 500 km to complete melting. Crystallization of this magma ocean would have given rise to a differentiated body with a compositionally distinct crust and mantle and accounts for the major suites of lunar rocks.

As crystallization of the lunar magma ocean proceeded, minerals such as olivine and pyroxene would have precipitated and sank to form the lunar mantle. After crystallization was about three-quarters complete, anorthositic plagioclase would have begun to crystallize, and because of its low density, float, forming an anorthositic crust. Importantly, elements that are incompatible (i.e., those that partition preferentially into the liquid phase) would have been progressively concentrated into the magma as crystallization progressed, forming a KREEP-rich magma that initially should have been sandwiched between the crust and mantle. Evidence for this scenario comes from the highly anorthositic composition of the lunar highland crust, as well as the existence of KREEP-rich materials. Additionally, zircon analysis of Apollo 14 samples suggests the lunar crust differentiated 4.51±0.01 billion years ago.

Formation of the anorthosite crust

Lunar rocks

Surface materials

Olivine basalt collected by Apollo 15

The Apollo program brought back 380.05 kilograms (837.87 lb) of lunar surface material, most of which is stored at the Lunar Receiving Laboratory in Houston, Texas, and the uncrewed Soviet Luna programme returned 326 grams (11.5 oz) of lunar material. These rocks have proved to be invaluable in deciphering the geologic evolution of the Moon. Lunar rocks are in large part made of the same common rock forming minerals as found on Earth, such as olivine, pyroxene, and plagioclase feldspar (anorthite). Plagioclase feldspar is mostly found in the lunar crust, whereas pyroxene and olivine are typically seen in the lunar mantle. The mineral ilmenite is highly abundant in some mare basalts, and a new mineral named armalcolite (named for Armstrong, Aldrin, and Collins, the three members of the Apollo 11 crew) was first discovered in the lunar samples.

The maria are composed predominantly of basalt, whereas the highland regions are iron-poor and composed primarily of anorthosite, a rock composed primarily of calcium-rich plagioclase feldspar. Another significant component of the crust are the igneous Mg-suite rocks, such as the troctolites, norites, and KREEP-basalts. These rocks are thought to be related to the petrogenesis of KREEP.

Composite rocks on the lunar surface often appear in the form of breccias. Of these, the subcategories are called fragmental, granulitic, and impact-melt breccias, depending on how they were formed. The mafic impact melt breccias, which are typified by the low-K Fra Mauro composition, have a higher proportion of iron and magnesium than typical upper crust anorthositic rocks, as well as higher abundances of KREEP.

Composition of the maria

The main characteristics of the basaltic rocks with respect to the rocks of the lunar highlands is that the basalts contain higher abundances of olivine and pyroxene, and less plagioclase. They are richer in iron than terrestrial basalts, and also have lower viscosities. Some of them have high abundances of a ferro-titanic oxide called ilmenite. Because the first sampling of rocks contained a high content of ilmenite and other related minerals, they received the name of "high titanium" basalts. The Apollo 12 mission returned to Earth with basalts of lower titanium concentrations, and these were dubbed "low titanium" basalts. Subsequent missions, including the Soviet robotic probes, returned with basalts with even lower concentrations, now called "very low titanium" basalts. The Clementine space probe returned data showing that the mare basalts have a continuum in titanium concentrations, with the highest concentration rocks being the least abundant.

Internal structure

The temperature and pressure of the Moon's interior increase with depth

The current model of the interior of the Moon was derived using seismometers left behind during the crewed Apollo program missions, as well as investigations of the Moon's gravity field and rotation.

The mass of the Moon is sufficient to eliminate any voids within the interior, so it is estimated to be composed of solid rock throughout. Its low bulk density (~3346 kg m−3) indicates a low metal abundance. Mass and moment of inertia constraints indicate that the Moon likely has an iron core that is less than about 450 km in radius. Studies of the Moon's physical librations (small perturbations to its rotation) furthermore indicate that the core is still molten. Most planetary bodies and moons have iron cores that are about half the size of the body. The Moon is thus anomalous in having a core whose size is only about one quarter of its radius.

The crust of the Moon is on average about 50 km thick (though this is uncertain by about ±15 km). It is estimated that the far-side crust is on average thicker than the near side by about 15 km. Seismology has constrained the thickness of the crust only near the Apollo 12 and Apollo 14 landing sites. Although the initial Apollo-era analyses suggested a crustal thickness of about 60 km at this site, recent reanalyses of this data suggest that it is thinner, somewhere between about 30 and 45 km.

Magnetic field

Compared with that of Earth, the Moon has only a very weak external magnetic field. Other major differences are that the Moon does not currently have a dipolar magnetic field (as would be generated by a geodynamo in its core), and the magnetizations that are present are almost entirely crustal in origin. One hypothesis holds that the crustal magnetizations were acquired early in lunar history when a geodynamo was still operating. The small size of the lunar core, however, is a potential obstacle to this hypothesis. Alternatively, it is possible that on airless bodies such as the Moon, transient magnetic fields could be generated during impact processes. In support of this, it has been noted that the largest crustal magnetizations appear to be located near the antipodes of the largest impact basins. Although the Moon does not have a dipolar magnetic field like Earth's, some of the returned rocks do have strong magnetizations. Furthermore, measurements from orbit show that some portions of the lunar surface are associated with strong magnetic fields.

Rydberg atom

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Rydberg_atom Figure 1: Electron orbi...