Search This Blog

Monday, June 2, 2025

Evolution in fiction

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Evolution_in_fiction
All women have evolved to be beautiful, in an illustration by Paul Merwart for a 1911 edition of Camille Flammarion's 1894 novel La Fin du Monde.

Evolution has been an important theme in fiction, including speculative evolution in science fiction, since the late 19th century, though it began before Charles Darwin's time, and reflects progressionist and Lamarckist views as well as Darwin's. Darwinian evolution is pervasive in literature, whether taken optimistically in terms of how humanity may evolve towards perfection, or pessimistically in terms of the dire consequences of the interaction of human nature and the struggle for survival. Other themes include the replacement of humanity, either by other species or by intelligent machines.

Context

Charles Darwin's evolution by natural selection, as set out in his 1859 On the Origin of Species, is the dominant theory in modern biology, but it is accompanied as a philosophy and in fiction by two earlier evolutionary theories, progressionism (orthogenesis) and Lamarckism. Progressionism is the view that evolution is progress towards some goal of perfection, and that it is in some way directed towards that goal. Lamarckism, a philosophy that long predates Jean-Baptiste de Lamarck, is the view that evolution is guided by the inheritance of characteristics acquired by use or disuse during an animal's lifetime.

Progressionism

Ideas of progress and evolution were popular, long before Darwinism, in the 18th century, leading to Nicolas-Edme Rétif's allegorical 1781 story La découverte Australe par un homme volant [fr] (The Southern Hemisphere Discovery by a Flying Man).

The evolutionary biologist Kayla M. Hardwick quotes from the 2013 film Man of Steel, where the villain Faora states: "The fact that you possess a sense of morality, and we do not, gives us an evolutionary advantage. And if history has taught us anything, it is that evolution always wins." She points out that the idea that evolution wins is progressionist, while (she argues) the idea that evolution gives evil an advantage over the moral and good, driving the creation of formidable monsters, is a popular science fiction misconception. Hardwick gives as examples of the evolution of "bad-guy traits" the Morlocks in H. G. Wells's 1895 The Time Machine, the bugs' caste system in Robert Heinlein's 1959 Starship Troopers, and the effective colonisation by Don Siegel's 1956 Invasion of the Body Snatchers aliens.

Lamarckism

In French 19th century literature, evolutionary fantasy was Lamarckian, as seen in Camille Flammarion's 1887 Lumen and his 1894 Omega: The Last Days of the World, J.-H. Rosny's 1887 Les Xipéhuz and his 1910 La mort de la terre, and Jules Verne's 1901 La grande forêt, le village aérien. The philosopher Henri Bergson's creative evolution driven by the supposed élan vital likely inspired J. D. Beresford's English evolutionary fantasy, his 1911 The Hampdenshire Wonder.

Darwinism

Illustration for a 1906 edition of H. G. Wells's 1898 "The War of the Worlds" by Henrique Alvim Corréa

Darwin's version of evolution has been widely explored in fiction, both in fantasies and in imaginative explorations of its grimmer "survival of the fittest" effects, with much attention focused on possible human evolution. H. G. Wells's The Time Machine already mentioned, his 1896 The Island of Dr Moreau, and his 1898 The War of the Worlds all pessimistically explore the possible dire consequences of the darker sides of human nature in the struggle for survival. More broadly, Joseph Conrad's 1899 Heart of Darkness and R. L. Stevenson's 1886 Dr Jekyll and Mr Hyde portray Darwinian thinking in mainstream English literature.

The evolutionary biologist J. B. S. Haldane wrote an optimistic tale, The Last Judgement, in the 1927 collection Possible Worlds. This influenced Olaf Stapledon's 1930 Last and First Men, which portrays the many species that evolved from humans in a billion-year timeframe. A different take on Darwinism is the idea, popular from the 1950s onwards, that humans will evolve more or less godlike mental capacity, as in Arthur C. Clarke's 1950 Childhood's End and Brian Aldiss's 1959 Galaxies Like Grains of Sand. Another science fiction theme is the replacement of humanity on Earth by other species or intelligent machines. For instance, Olof Johannesson's 1966 The Great Computer gives humans the role of enabling intelligent machines to evolve, while Kurt Vonnegut's 1985 Galapagos is one of several novels to depict a replacement species.

Genetics in fiction

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Genetics_in_fiction
Boris Karloff in James Whale's 1931 film Frankenstein, based on Mary Shelley's 1818 novel. The monster is created by an unorthodox scientific experiment.

Aspects of genetics including mutation, hybridisation, cloning, genetic engineering, and eugenics have appeared in fiction since the 19th century.

Genetics is a young science, having started in 1900 with the rediscovery of Gregor Mendel's study on the inheritance of traits in pea plants. During the 20th century it developed to create new sciences and technologies including molecular biology, DNA sequencing, cloning, and genetic engineering. The ethical implications were brought into focus with the eugenics movement.

Since then, many science fiction novels and films have used aspects of genetics as plot devices, often taking one of two routes: a genetic accident with disastrous consequences; or, the feasibility and desirability of a planned genetic alteration. The treatment of science in these stories has been uneven and often unrealistic. The film Gattaca did attempt to portray science accurately but was criticised by scientists.

Background

The 1953 discovery of the double helix chemical structure of DNA transformed genetics and launched the science of molecular biology.

Modern genetics began with the work of the monk Gregor Mendel in the 19th century, on the inheritance of traits in pea plants. Mendel found that visible traits, such as whether peas were round or wrinkled, were inherited discretely, rather than by blending the attributes of the two parents. In 1900, Hugo de Vries and other scientists rediscovered Mendel's research; William Bateson coined the term "genetics" for the new science, which soon investigated a wide range of phenomena including mutation (inherited changes caused by damage to the genetic material), genetic linkage (when some traits are to some extent inherited together), and hybridisation (crosses of different species).

Eugenics, the production of better human beings by selective breeding, was named and advocated by Charles Darwin's cousin, the scientist Francis Galton, in 1883. It had both a positive aspect, the breeding of more children with high intelligence and good health; and a negative aspect, aiming to suppress "race degeneration" by preventing supposedly "defective" families with attributes such as profligacy, laziness, immoral behaviour and a tendency to criminality from having children.

Molecular biology, the interactions and regulation of genetic materials, began with the identification in 1944 of DNA as the main genetic material; the genetic code and the double helix structure of DNA was determined by James Watson and Francis Crick in 1953. DNA sequencing, the identification of an exact sequence of genetic information in an organism, was developed in 1977 by Frederick Sanger.

Genetic engineering, the modification of the genetic material of a live organism, became possible in 1972 when Paul Berg created the first recombinant DNA molecules (artificially assembled genetic material) using viruses.

Cloning, the production of genetically identical organisms from some chosen starting point, was shown to be practicable in a mammal with the creation of Dolly the sheep from an ordinary body cell in 1996 at the Roslin Institute.

Genetics themes

Mutants and hybrids

H. G. Wells's 1896 The Island of Dr Moreau imagined the use of hybridisation to create human-like hybrid beings.

Mutation and hybridisation are widely used in fiction, starting in the 19th century with science fiction works such as Mary Shelley's 1818 novel Frankenstein and H. G. Wells's 1896 The Island of Dr. Moreau.

In her 1977 Biological Themes in Modern Science Fiction, Helen Parker identified two major types of story: "genetic accident", the uncontrolled, unexpected and disastrous alteration of a species; and "planned genetic alteration", whether controlled by humans or aliens, and the question of whether that would be either feasible or desirable. In science fiction up to the 1970s, the genetic changes were brought about by radiation, breeding programmes, or manipulation with chemicals or surgery (and thus, notes Lars Schmeink, not necessarily by strictly genetic means). Examples include The Island of Dr. Moreau with its horrible manipulations; Aldous Huxley's 1932 Brave New World with a breeding programme; and John Taine's 1951 Seeds of Life, using radiation to create supermen. After the discovery of the double helix and then recombinant DNA, genetic engineering became the focus for genetics in fiction, as in books like Brian Stableford's tale of a genetically modified society in his 1998 Inherit the Earth, or Michael Marshall Smith's story of Organ farming in his 1997 Spares.

Comic books have imagined mutated superhumans with extraordinary powers. The DC Universe (from 1939) imagines "metahumans"; the Marvel Universe (from 1961) calls them "mutants", while the Wildstorm (from 1992) and Ultimate Marvel (2000–2015) Universes name them "posthumans". Stan Lee introduced the concept of mutants in the Marvel X-Men books in 1963; the villain Magneto declares his plan to "make Homo sapiens bow to Homo superior!", implying that mutants will be an evolutionary step up from current humanity. Later, the books speak of an X-gene that confers powers from puberty onwards. X-men powers include telepathy, telekinesis, healing, strength, flight, time travel, and the ability to emit blasts of energy. Marvel's god-like Celestials are later (1999) said to have visited Earth long ago and to have modified human DNA to enable mutant powers.

James Blish's 1952 novel Titan's Daughter (in Kendell Foster Crossen's Future Tense collection) featured stimulated polyploidy (giving organisms multiple sets of genetic material, something that can create new species in a single step), based on spontaneous polyploidy in flowering plants, to create humans with more than normal height, strength, and lifespans.

Cloning

Steven Spielberg's 1993 film Jurassic Park portrayed the recreation of dinosaurs from cloned fossil DNA.

Cloning, too, is a familiar plot device. Aldous Huxley's 1931 dystopian novel Brave New World imagines the in vitro cloning of fertilised human eggs. Huxley was influenced by J. B. S. Haldane's 1924 non-fiction book Daedalus; or, Science and the Future, which used the Greek myth of Daedalus to symbolise the coming revolution in genetics; Haldane predicted that humans would control their own evolution through directed mutation and in vitro fertilisation. Cloning was explored further in stories such as Poul Anderson's 1953 UN-Man. In his 1976 novel, The Boys from Brazil, Ira Levin describes the creation of 96 clones of Adolf Hitler, replicating for all of them the rearing of Hitler (including the death of his father at age 13), with the goal of resurrecting Nazism. In his 1990 novel Jurassic Park, Michael Crichton imagined the recovery of the complete genome of a dinosaur from fossil remains, followed by its use to recreate living animals of an extinct species.

Cloning is a recurring theme in science fiction films like Jurassic Park (1993), Alien Resurrection (1997), The 6th Day (2000), Resident Evil (2002), Star Wars: Episode II (2002) and The Island (2005). The process of cloning is represented variously in fiction. Many works depict the artificial creation of humans by a method of growing cells from a tissue or DNA sample; the replication may be instantaneous, or take place through slow growth of human embryos in artificial wombs. In the long-running British television series Doctor Who, the Fourth Doctor and his companion Leela were cloned in a matter of seconds from DNA samples ("The Invisible Enemy", 1977) and then—in an apparent homage to the 1966 film Fantastic Voyage—shrunk to microscopic size in order to enter the Doctor's body to combat an alien virus. The clones in this story are short-lived, and can only survive a matter of minutes before they expire. Films such as The Matrix and Star Wars: Episode II – Attack of the Clones have featured human foetuses being cultured on an industrial scale in enormous tanks.

Cloning humans from body parts is a common science fiction trope, one of several genetics themes parodied in Woody Allen's 1973 comedy Sleeper, where an attempt is made to clone an assassinated dictator from his disembodied nose.

Genetic engineering

Genetic engineering features in many science fiction stories. Films such as The Island (2005) and Blade Runner (1982) bring the engineered creature to confront the person who created it or the being it was cloned from, a theme seen in some film versions of Frankenstein. Few films have informed audiences about genetic engineering as such, with the exception of the 1978 The Boys from Brazil and the 1993 Jurassic Park, both of which made use of a lesson, a demonstration, and a clip of scientific film. In 1982, Frank Herbert's novel The White Plague described the deliberate use of genetic engineering to create a pathogen which specifically killed women. Another of Herbert's creations, the Dune series of novels, starting with Dune in 1965, emphasises genetics. It combines selective breeding by a powerful sisterhood, the Bene Gesserit, to produce a supernormal male being, the Kwisatz Haderach, with the genetic engineering of the powerful but despised Tleilaxu.

Eugenics

1921 conference logo, depicting eugenics as a tree uniting many fields

Eugenics plays a central role in films such as Andrew Niccol's 1997 Gattaca, the title alluding to the letters G, A, T, C for guanine, adenine, thymine, and cytosine, the four nucleobases of DNA. Genetic engineering of humans is unrestricted, resulting in genetic discrimination, loss of diversity, and adverse effects on society. The film explores the ethical implications; the production company, Sony Pictures, consulted with a gene therapy researcher, French Anderson, to ensure that the portrayal of science was realistic, and test-screened the film with the Society of Mammalian Cell Biologists and the American National Human Genome Research Institute before its release. This care did not prevent researchers from attacking the film after its release. Philim Yam of Scientific American called it "science bashing"; in Nature Kevin Davies called it a ""surprisingly pedestrian affair"; and the molecular biologist Lee Silver described the film's extreme genetic determinism as "a straw man".

Myth and oversimplification

The geneticist Dan Koboldt observes that while science and technology play major roles in fiction, from fantasy and science fiction to thrillers, the representation of science in both literature and film is often unrealistic. In Koboldt's view, genetics in fiction is frequently oversimplified, and some myths are common and need to be debunked. For example, the Human Genome Project has not (he states) immediately led to a Gattaca world, as the relationship between genotype and phenotype is not straightforward. People do differ genetically, but only very rarely because they are missing a gene that other people have: people have different alleles of the same genes. Eye and hair colour are controlled not by one gene each, but by multiple genes. Mutations do occur, but they are rare: people are 99.99% identical genetically, the 3 million differences between any two people being dwarfed by the hundreds of millions of DNA bases which are identical; nearly all DNA variants are inherited, not acquired afresh by mutation. And, Koboldt writes, believable scientists in fiction should know their knowledge is limited.

Xenotransplantation

From Wikipedia, the free encyclopedia

Patient derived xenografts are created by xenotransplantation of human tumor cells into immunocompromised mice, and is a research technique frequently used in pre-clinical oncology research.

Human xenotransplantation offers a potential treatment for end-stage organ failure, a significant health problem in parts of the industrialized world. It also raises many novel medical, legal and ethical issues. A continuing concern is that many animals, such as pigs, have a shorter lifespan than humans, meaning that their tissues age at a quicker rate. (Pigs have a maximum life span of about 27 years.) Disease transmission (xenozoonosis) and permanent alteration to the genetic code of animals are also causes for concern. Similarly to objections to animal testing, animal rights activists have also objected to xenotransplantation on ethical grounds. A few temporarily successful cases of xenotransplantation are published.

Bioprosthetic artificial heart valves are generally pig or bovine-derived, but the cells are killed by glutaraldehyde treatment before insertion, therefore technically not fulfilling the WHO definition of xenotransplantation of being live cells.

History

The first serious attempts at xenotransplantation (then called heterotransplantation) appeared in the scientific literature in 1905, when slices of rabbit kidney were transplanted into a child with chronic kidney disease. In the first two decades of the 20th century, several subsequent efforts to use organs from lambs, pigs, and primates were published.

Scientific interest in xenotransplantation declined when the immunological basis of the organ rejection process was described. The next waves of studies on the topic came with the discovery of immunosuppressive drugs. Even more studies followed Joseph Murray's first successful renal transplantation in 1954 and scientists, facing the ethical questions of organ donation for the first time, accelerated their effort in looking for alternatives to human organs.

Non-human kidney to a human

On February 16, 1963, the first transplant of a non-human animal's organ into a human being took place in Minneapolis when surgeons led by Dr. Claude R. Hitchcock and R. Joseph Kiser "tried grafting a baboon kidney" into "a woman in whom previously implanted human kidney (from a corpse) was doing poorly", and the kidney "immediately began functioning normally and cleared her blood of wastes". Her body rejected the kidney five days afterward and she died in March, three weeks later.

Starting in October 1963, doctors at Tulane University attempted renal transplantations from non-human primates in six people who were near death. The first person, a 32 year old woman with a chronic kidney disease received the kidneys of a rhesus monkey and the kidneys "functioned well for seven days, then failed," and the patient died later from her illness. The first successful attempt (one in which the patient was able to leave the hospital and return home) with a chimpanzee was performed on November 5 at Charity Hospital in New Orleans by a 12-man team of Tulane physicians, led by Dr. Keith Reemtsma, and the patient, a 44-year-old dock worker named Jefferson Davis, left the hospital on December 17 after a six-week recuperation; after this and several subsequent unsuccessful attempts to use primates as organ donors and the development of a working cadaver organ procuring program, interest in xenotransplantation for kidney failure dissipated. Out of 13 such transplants performed by Keith Reemtsma, one kidney recipient lived for nine months.

Non-human heart to a human

An American infant girl known as "Baby Fae" with hypoplastic left heart syndrome was the first infant recipient of a xenotransplantation, when she received a baboon heart on October 26, 1984. The procedure was performed by Leonard Lee Bailey at Loma Linda University Medical Center in Loma Linda, California. Fae died 21 days later, on November 15, due to a humoral-based graft rejection thought to be caused mainly by an ABO blood type mismatch, considered unavoidable due to the rarity of type O baboons. The graft was meant to be temporary, but unfortunately a suitable allograft replacement could not be found in time. While the procedure itself did not advance the progress on xenotransplantation, it did shed a light on the insufficient amount of organs for infants. The story made such an impact that the crisis of infant organ shortage improved for that time.

Non-human heart, lungs, and kidneys to a human

The first heart transplant in a human ever performed was by Hardy in 1964, using a chimpanzee heart, but the patient died within 2 hours. The first transplant of a non-genetically modified pig's heart, lungs and kidneys into a human was performed in Sonapur, Assam, in India in mid-December 1996, and was announced in January 1997. The recipient was Purno Saikia, a 32-year-old terminally-ill man; he died of multiple infections shortly after the operation. The Indian cardiothoracic surgeon Dhani Ram Baruah and two of his associates, Jonathan Ho Kei-shing (of the Hong Kong-based Prince of Wales Medical Institute) and C.S. James, performed the surgeries. Baruah claimed that Saikia had failed to respond to conventional surgery, and that the patient and his family had consented to the procedure.

All three involved in the surgery were arrested on January 9, 1997, for the alleged violation of the Transplantation of Human Organs and Tissues Act of 1994. Baruah was dismissed in medical circles as a "mad scientist" and the procedure was dubbed a "hoax". Baruah himself signed a statement saying he had done no transplant, but then alleged that the confession was forced from him. They were found guilty of unethical procedure and culpable homicide and imprisoned for 40 days. Dhani Ram Baruah's surgical institute was also found to be without necessary registration.

Critics said Dhani Bam Baruah's claims and medical procedures were neither taken seriously nor accepted by the scientific community because he never got his findings scientifically peer-reviewed. Past complaints of ethics violations during surgeries in Hong Kong by Baruah and Ho had occurred in 1992, when they had implanted heart valves, developed by Baruah, made of animal tissue. A year later, six patients died. The Asian Medical News reported that "grave concerns" were expressed "over the procedure and ethics of the implementation".

Genetically engineered non-human kidney to a human

In September 2021, surgeons led by Robert Montgomery performed the first genetically engineered pig kidney xenotransplant to a brain-dead human at NYU Langone Health with no sign of immediate rejection (partly because the pig thymus gland was transplanted as well). The kidney was procured from a pig with only a single gene modification: the removal of alpha-gal.

In July 2023, surgeons from the NYU Langone Transplant Institute completed a transplant of a genetically modified pig kidney (along with the pig's thymus gland underneath it) into a patient declared brain dead but maintained on a respirator. The patient had previously consented to be an organ donor, but his tissues were not considered suitable for transplant. The kidney came from an animal with a knocked-out gene for the production of alpha gal sugars, which has been implicated in immune response to mammalian tissue. In order to ensure that renal function was only supported by the pig kidney, the team removed both of the patient's kidneys. The team has reported that the kidney has maintained optimal functioning for over a month, as evidenced by routine testing of creatinine and weekly biopsies. The team plans to monitor the patient for another month, pending approval by ethics board and his family.

In March 2024, Richard Slayman, a patient whose transplanted human kidney had failed, received a genetically engineered pig kidney xenotransplant from surgeons at Massachusetts General Hospital. This kidney has 69 genomic edits (3 gene knockout, 7 human gene insertion and 59 copies of the porcine retrovirus knockout) made by eGenesis, Inc. Mr. Slayman died a few months later of unrelated causes, with no apparent rejection of the kidney. Meanwhile, in April 2024, Lisa Pisano became the second person to receive such a kidney transplant. Because of "unique challenges" related to a mechanical heart pump she received along with the kidney, her kidney had to be removed due to "insufficient blood flow" late in May. Medication also deteriorated the kidney, which led to the organs rejection.

Genetically engineered non-human heart to a human

In January 2022, doctors led by cardiothoracic surgeon Bartley P. Griffith and Muhammad M. Mohiuddin at the University of Maryland Medical Center and University of Maryland School of Medicine performed a heart transplant from a genetically modified pig to a terminally ill patient, David Bennett Sr., who was ineligible for a standard human heart transplant. The pig had undergone specific gene editing to remove enzymes responsible for producing sugar antigens that lead to hyperacute organ rejection in humans. The US medical regulator gave special dispensation to carry out the procedure under compassionate use criteria. The recipient died two months after the transplantation.

In June and July 2022, surgeons at NYU Langone Health performed two genetically modified pig heart transplants into recently deceased humans. The hearts were from pigs that had the identical 10 genetic modifications used in the University of Maryland Medical Center heart xenotransplantation in January 2022. All three hearts came from Revivicor, Inc., a facility based in Blacksburg, Va., and a subsidiary of United Therapeutics.

On 20 September 2023, surgeons at the University of Maryland Medical Center in Baltimore performed a heart transplant from a genetically modified pig to Lawrence Faucette, a patient with terminal heart disease who was ineligible for a traditional heart transplant. On 30 October 2023, Faucette died after showing signs of organ rejection.

Potential uses

A worldwide shortage of organs for clinical implantation causes about 20–35% of patients who need replacement organs to die on the waiting list. Certain procedures, some of which are being investigated in early clinical trials, aim to use cells or tissues from other species to treat life-threatening and debilitating illnesses such as cancer, diabetes, liver failure and Parkinson's disease. If vitrification can be perfected, it could allow for long-term storage of xenogenic cells, tissues and organs so that they would be more readily available for transplant.

Xenotransplants could save thousands of patients waiting for donated organs. The animal organ, probably from a pig or baboon could be genetically altered with human genes to trick a patient's immune system into accepting it as a part of its own body. They have re-emerged because of the lack of organs available and the constant battle to keep immune systems from rejecting allotransplants. Xenotransplants are thus potentially a more effective alternative.

Xenotransplantation of human tumor cells into immunocompromised mice is a research technique frequently used in oncology research. It is used to predict the sensitivity of the transplanted tumor to various cancer treatments; several companies offer this service, including the Jackson Laboratory.

Human organs have been transplanted into animals as a powerful research technique for studying human biology without harming human patients. This technique has also been proposed as an alternative source of human organs for future transplantation into human patients. For example, researchers from the Ganogen Research Institute transplanted human fetal kidneys into rats which demonstrated life supporting function and growth.

Potential animal organ donors

Since they are the closest relatives to humans, non-human primates were first considered as a potential organ source for xenotransplantation to humans. Chimpanzees were originally considered the best option since their organs are of similar size, and they have good blood type compatibility with humans, which makes them potential candidates for xenotransfusions. However, since chimpanzees are listed as an endangered species, other potential donors were sought. Baboons are more readily available, but impractical as potential donors. Problems include their smaller body size, the infrequency of blood group O (the universal donor), their long gestation period, and their typically small number of offspring. In addition, a major problem with the use of nonhuman primates is the increased risk of disease transmission, since they are so closely related to humans.

Pigs (Sus scrofa domesticus) are currently thought to be the best candidates for organ donation. The risk of cross-species disease transmission is decreased because of their increased phylogenetic distance from humans. Pigs have relatively short gestation periods, large litters, and are easy to breed, making them readily available. They are inexpensive and easy to maintain in pathogen-free facilities, and current gene editing tools are adapted to pigs to combat rejection and potential zoonoses. Pig organs are anatomically comparable in size, and new infectious agents are less likely since they have been in close contact with humans through domestication for many generations. Treatments sourced from pigs have proven to be successful such as porcine-derived insulin for patients with diabetes mellitus. Increasingly, genetically engineered pigs are becoming the norm, which raises moral qualms, but also increases the success rate of the transplant. Current experiments in xenotransplantation most often use pigs as the donor, and baboons as human models. In 2020, the U.S. Food and Drug Administration approved a genetic modification of pigs so they do not produce alpha-gal sugars. Pig organs have been used for kidney and heart transplants into humans.

Barriers and issues

Immunologic barriers

To date, no xenotransplantation trials have been entirely successful due to the many obstacles arising from the response of the recipient's immune system. Xenozoonoses are one of the biggest threats to rejections, as they are xenogeneic infections. The introduction of these microorganisms are a big issue that lead to the fatal infections and then rejection of the organs. This response, which is generally more extreme than in allotransplantations, ultimately results in rejection of the xenograft, and can in some cases result in the immediate death of the recipient. There are several types of rejection organ xenografts are faced with, these include hyperacute rejection, acute vascular rejection, cellular rejection, and chronic rejection.

A rapid, violent, and hyperacute response comes as a result of antibodies present in the host organism. These antibodies are known as xenoreactive natural antibodies (XNAs).

Hyperacute rejection

This rapid and violent type of rejection occurs within minutes to hours from the time of the transplant. It is mediated by the binding of XNAs (xenoreactive natural antibodies) to the donor endothelium, causing activation of the human complement system, which results in endothelial damage, inflammation, thrombosis and necrosis of the transplant. XNAs are first produced and begin circulating in the blood in neonates, after colonization of the bowel by bacteria with galactose moieties on their cell walls. Most of these antibodies are the IgM class, but also include IgG, and IgA.

The epitope XNAs target is an α-linked galactose moiety, galactose-alpha-1,3-galactose (also called the α-Gal epitope), produced by the enzyme alpha-galactosyltransferase. Most non-primates contain this enzyme thus, this epitope is present on the organ epithelium and is perceived as a foreign antigen by primates, which lack the galactosyl transferase enzyme. In pig to primate xenotransplantation, XNAs recognize porcine glycoproteins of the integrin family.

The binding of XNAs initiate complement activation through the classical complement pathway. Complement activation causes a cascade of events leading to: destruction of endothelial cells, platelet degranulation, inflammation, coagulation, fibrin deposition, and hemorrhage. The result is thrombosis and necrosis of the xenograft.

Hyperacute rejection is a severe, immediate immune response that occurs when a transplanted organ, such as a pig kidney, is rapidly attacked and destroyed by the recipient's immune system. In the context of pig kidney xenotransplantation, this type of rejection is triggered by pre-existing antibodies in the recipient's blood that recognize and bind to antigens on the surface of the pig kidney cells. These antigens, which are foreign to the human immune system, include certain carbohydrates and proteins that are not present in human tissues. The binding of these antibodies activates the complement system, leading to a cascade of events that cause widespread clotting and inflammation in the transplanted organ's blood vessels. As a result, the kidney quickly becomes ischemic (lacking adequate blood flow) and undergoes acute damage, often resulting in the organ's immediate loss.

Hyperacute rejection can severely affect the recipient’s body by leading to the rapid and complete failure of the transplanted kidney. This failure not only undermines the purpose of the transplant, which is to restore kidney function, but also poses serious health risks to the recipient. The sudden loss of kidney function can result in the accumulation of waste products and fluids in the body, causing symptoms such as swelling, electrolyte imbalances, and potential life-threatening complications. Furthermore, hyperacute rejection necessitates immediate medical intervention, often leading to the removal of the rejected kidney and the need to explore alternative treatment options, such as returning to dialysis or seeking another transplant.

Overcoming hyperacute rejection

Since hyperacute rejection presents such a barrier to the success of xenografts, several strategies to overcome it are under investigation:

Interruption of the complement cascade

  • The recipient's complement cascade can be inhibited through the use of cobra venom factor (which depletes C3), soluble complement receptor type 1, anti-C5 antibodies, or C1 inhibitor (C1-INH). Disadvantages of this approach include the toxicity of cobra venom factor, and most importantly these treatments would deprive the individual of a functional complement system.

Transgenic organs (Genetically engineered pigs)

  • 1,3 galactosyl transferase gene knockouts – These pigs do not contain the gene that codes for the enzyme responsible for expression of the immunogeneic gal-α-1,3Gal moiety (the α-Gal epitope).
  • Increased expression of H-transferase (α-1,2-fucosyltransferase), an enzyme that competes with galactosyl transferase. Experiments have shown this reduces α-Gal expression by 70%.
  • Expression of human complement regulators (CD55, CD46, and CD59) to inhibit the complement cascade.
  • Plasmaphoresis, on humans to remove 1,3 galactosyltransferase, reduces the risk of activation of effector cells such as CTL (CD8 T cells), complement pathway activation and delayed type hypersensitivity (DTH).

Acute vascular rejection

Also known as delayed xenoactive rejection, this type of rejection occurs in discordant xenografts within 2 to 3 days, if hyperacute rejection is prevented. The process is much more complex than hyperacute rejection and is currently not completely understood. Acute vascular rejection requires de novo protein synthesis and is driven by interactions between the graft endothelial cells and host antibodies, macrophages, and platelets. The response is characterized by an inflammatory infiltrate of mostly macrophages and natural killer cells (with small numbers of T cells), intravascular thrombosis, and fibrinoid necrosis of vessel walls.

Binding of the previously mentioned XNAs to the donor endothelium leads to the activation of host macrophages as well as the endothelium itself. The endothelium activation is considered type II since gene induction and protein synthesis are involved. The binding of XNAs ultimately leads to the development of a procoagulant state, the secretion of inflammatory cytokines and chemokines, as well as expression of leukocyte adhesion molecules such as E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1).

This response is further perpetuated as normally binding between regulatory proteins and their ligands aid in the control of coagulation and inflammatory responses. However, due to molecular incompatibilities between the molecules of the donor species and recipient (such as porcine major histocompatibility complex molecules and human natural killer cells), this may not occur.

Overcoming acute vascular rejection

Due to its complexity, the use of immunosuppressive drugs along with a wide array of approaches are necessary to prevent acute vascular rejection, and include administering a synthetic thrombin inhibitor to modulate thrombogenesis, depletion of anti-galactose antibodies (XNAs) by techniques such as immunoadsorption, to prevent endothelial cell activation, and inhibiting activation of macrophages (stimulated by CD4+ T cells) and NK cells (stimulated by the release of Il-2). Thus, the role of MHC molecules and T cell responses in activation would have to be reassessed for each species combo.

Accommodation

Accommodation, which is the survival of the xenograft despite the presence of circulating XNAs, is possible if hyperacute and acute vascular rejection are avoided. The graft is given a break from humoral rejection when the complement cascade is interrupted, circulating antibodies are removed, their function is changed, or there is a change in the expression of surface antigens on the graft. This allows the xenograft to up-regulate and express protective genes, which aid in resistance to injury, such as heme oxygenase-1 (an enzyme that catalyzes the degradation of heme).

Cellular rejection

Rejection of the xenograft in hyperacute and acute vascular rejection is due to the response of the humoral immune system, since the response is elicited by the XNAs. Cellular rejection is based on cellular immunity, and is mediated by natural killer cells that accumulate in and damage the xenograft and T-lymphocytes which are activated by MHC molecules through both direct and indirect xenorecognition.

In direct xenorecognition, antigen presenting cells from the xenograft present peptides to recipient CD4+ T cells via xenogeneic MHC class II molecules, resulting in the production of interleukin 2 (IL-2). Indirect xenorecognition involves the presentation of antigens from the xenograft by recipient antigen presenting cells to CD4+ T cells. Antigens of phagocytosed graft cells can also be presented by the host's class I MHC molecules to CD8+ T cells.

The strength of cellular rejection in xenografts remains uncertain, however, it is expected to be stronger than in allografts due to differences in peptides among different animals. This leads to more antigens potentially recognized as foreign, thus eliciting a greater indirect xenogenic response.

Overcoming cellular rejection

A proposed strategy to avoid cellular rejection is to induce donor non-responsiveness using hematopoietic chimerism. Donor stem cells are introduced into the bone marrow of the recipient, where they coexist with the recipient's stem cells. The bone marrow stem cells give rise to cells of all hematopoietic lineages, through the process of hematopoiesis. Lymphoid progenitor cells are created by this process and move to the thymus where negative selection eliminates T cells found to be reactive to self. The existence of donor stem cells in the recipient's bone marrow causes donor reactive T cells to be considered self-reactive and undergo apoptosis.

Chronic rejection

Chronic rejection is slow and progressive, and usually occurs in transplants that survive the initial rejection phases. Scientists are still unclear how chronic rejection exactly works, research in this area is difficult since xenografts rarely survive past the initial acute rejection phases. Nonetheless, it is known that XNAs and the complement system are not primarily involved. Fibrosis in the xenograft occurs as a result of immune reactions, cytokines (which stimulate fibroblasts), or healing (following cellular necrosis in acute rejection). Perhaps the major cause of chronic rejection is arteriosclerosis. Lymphocytes, which were previously activated by antigens in the vessel wall of the graft, activate macrophages to secrete smooth muscle growth factors. This results in a build up of smooth muscle cells on the vessel walls, causing the hardening and narrowing of vessels within the graft. Chronic rejection leads to pathologic changes of the organ, and is why transplants must be replaced after so many years. It is also anticipated that chronic rejection will be more aggressive in xenotransplants as opposed to allotransplants.

Dysregulated coagulation

Successful efforts have been made to create knockout mice without α1,3GT; the resulting reduction in the highly immunogenic αGal epitope has resulted in the reduction of the occurrence of hyperacute rejection, but has not eliminated other barriers to xenotransplantation such as dysregulated coagulation, also known as coagulopathy.

Different organ xenotransplants result in different responses in clotting. For example, kidney transplants result in a higher degree of coagulopathy, or impaired clotting, than cardiac transplants, whereas liver xenografts result in severe thrombocytopenia, causing recipient death within a few days due to bleeding. An alternate clotting disorder, thrombosis, may be initiated by preexisting antibodies that affect the protein C anticoagulant system. Due to this effect, porcine donors must be extensively screened before transplantation. Studies have also shown that some porcine transplant cells are able to induce human tissue factor expression, thus stimulating platelet and monocyte aggregation around the xenotransplanted organ, causing severe clotting. Additionally, spontaneous platelet accumulation may be caused by contact with pig von Willebrand factor.

Just as the α1,3G epitope is a major problem in xenotransplantation, so too is dysregulated coagulation a cause of concern. Transgenic pigs that can control for variable coagulant activity based on the specific organ transplanted would make xenotransplantation a more readily available solution for the 70,000 patients per year who do not receive a human donation of the organ or tissue they need.

Physiology

Extensive research is required to determine whether animal organs can replace the physiological functions of human organs. Many issues include:

  • size – with pigs for example, organs are taken from young pigs to be of suitable size for donation, and these may still be able to grow afterwards
  • longevity – the lifespan of most pigs is roughly 15 years, currently it is unknown how xenotransplanted organs age
  • hormone and protein differences – some proteins will be molecularly incompatible, which could cause malfunction of important regulatory processes. These differences also make the prospect of hepatic xenotransplantation less promising, since the liver plays an important role in the production of so many proteins
  • environment – for example, pig hearts work in a different anatomical site and under different hydrostatic pressure than in humans
  • temperature – the body temperature of pigs is 39 °C (2 °C above the average human body temperature). Implications of this difference, if any, on the activity of important enzymes are currently unknown.

Xenozoonosis

Xenozoonosis, also known as zoonosis or xenosis, is the transmission of infectious agents between species via xenograft. Animal to human infection is normally rare, but has occurred in the past. An example of such is the avian influenza, when an influenza A virus was passed from birds to humans. Xenotransplantation may increase the chance of disease transmission for 3 reasons: (1) implantation breaches the physical barrier that normally helps to prevent disease transmission, (2) the recipient of the transplant will be severely immunosuppressed, and (3) human complement regulators (CD46, CD55, and CD59) expressed in transgenic pigs have been shown to serve as virus receptors, and may also help to protect viruses from attack by the complement system.

Examples of viruses carried by pigs include porcine herpesvirus, rotavirus, parvovirus, and circovirus. Porcine herpesviruses and rotaviruses can be eliminated from the donor pool by screening, however others (such as parvovirus and circovirus) may contaminate food and footwear then re-infect the herd. Thus, pigs to be used as organ donors must be housed under strict regulations and screened regularly for microbes and pathogens. Unknown viruses, as well as those not harmful in the animal, may also pose risks. Of particular concern are PERVS (porcine endogenous retroviruses), vertically transmitted microbes that embed in swine genomes. The risks with xenosis are twofold, as not only could the individual become infected, but a novel infection could initiate an epidemic in the human population. Because of this risk, the FDA has suggested any recipients of xenotransplants shall be closely monitored for the remainder of their life, and quarantined if they show signs of xenosis.

Baboons and pigs carry myriad transmittable agents that are harmless in their natural host, but extremely toxic and deadly in humans. HIV is an example of a disease believed to have jumped from monkeys to humans. Researchers also do not know if an outbreak of infectious diseases could occur and if they could contain the outbreak even though they have measures for control. Another obstacle facing xenotransplants is that of the body's rejection of foreign objects by its immune system. These antigens (foreign objects) are often treated with powerful immunosuppressive drugs that could, in turn, make the patient vulnerable to other infections and actually aid the disease. This is the reason the organs would have to be altered to fit the patients' DNA (histocompatibility).

In 2005, the Australian National Health and Medical Research Council (NHMRC) declared an eighteen-year moratorium on all animal-to-human transplantation, concluding that the risks of transmission of animal viruses to patients and the wider community had not been resolved. This was repealed in 2009 after an NHMRC review stated "... the risks, if appropriately regulated, are minimal and acceptable given the potential benefits.", citing international developments on the management and regulation of xenotransplantation by the World Health Organisation and the European Medicines Agency.

Porcine endogenous retroviruses

Endogenous retroviruses are remnants of ancient viral infections, found in the genomes of most, if not all, mammalian species. Integrated into the chromosomal DNA, they are vertically transferred through inheritance. Due to the many deletions and mutations they accumulate over time, they usually are not infectious in the host species, however the virus may become infectious in another species. PERVS were originally discovered as retrovirus particles released from cultured porcine kidney cells. Most breeds of swine harbor approximately 50 PERV genomes in their DNA. Although it is likely that most of these are defective, some may be able to produce infectious viruses so every proviral genome must be sequenced to identify which ones pose a threat. In addition, through complementation and genetic recombination, two defective PERV genomes could give rise to an infectious virus. There are three subgroups of infectious PERVs (PERV-A, PERV-B, and PERV-C). Experiments have shown that PERV-A and PERV-B can infect human cells in culture. To date no experimental xenotransplantations have demonstrated PERV transmission, yet this does not mean PERV infections in humans are impossible. Pig cells have been engineered to inactivate all 62 PERVs in the genome using CRISPR Cas9 genome editing technology, and eliminated infection from the pig to human cells in culture.

Ethics

Xenografts have been a controversial procedure since they were first attempted. Many, including animal rights groups, strongly oppose killing animals to harvest their organs for human use. In the 1960s, many organs came from the chimpanzees, and were transferred into people that were deathly ill, and in turn, did not live much longer afterwards. Modern scientific supporters of xenotransplantation argue that the potential benefits to society outweigh the risks, making pursuing xenotransplantation the moral choice. None of the major religions object to the use of genetically modified pig organs for life-saving transplantation. Religions such as Buddhism and Jainism, however, have long espoused non-violence towards all living creatures. In general, the use of pig and cow tissue in humans has been met with little resistance, save some religious beliefs and a few philosophical objections. Experimentation without consent doctrines are now followed, which was not the case in the past, which may lead to new religious guidelines to further medical research on pronounced ecumenical guidelines. The "Common Rule" is the United States bio-ethics mandate as of 2011.

History of xenotransplantation in ethics

At the beginning of the 20th century when studies in xenotransplantation were just beginning, few questioned the morality of it, turning to animals as a "natural" alternative to allografts. While satirical plays mocked xenografters such as Serge Voronoff, and some images showing emotionally distraught primates – whom Voronoff had deprived of their testicles – appeared, no serious attempts were yet made to question the science based on animal rights concerns. Xenotransplantation was not taken seriously, at least in France, during the first half of the 20th century.

With the Baby Fae incident of 1984 as the impetus, animal rights activists began to protest, gathering media attention and proving that some people felt that it was unethical and a violation of the animal's own rights to use its organs to preserve a sick human's life. Treating animals as mere tools for the slaughter on demand by human will would lead to a world they would not prefer. Supporters of the transplant pushed back, claiming that saving a human life justifies the sacrifice of an animal one. Most animal rights activists found the use of primate organs more reprehensible than those of, for example, pigs. As Peter Singer et al. have expressed, many primates exhibit greater social structure, communication skills, and affection than mentally deficient humans and human infants. Despite this, it is considerably unlikely that animal suffering will provide sufficient impetus for regulators to prevent xenotransplantation.

Autonomy and informed consent are important when considering the future uses of xenotransplantation. A patient undergoing xenotransplantation should be fully aware of the procedure and should have no outside force influencing their choice. The patient should understand the risks and benefits of such a transplantation. A public health dimension can also be considered.

The Ethics Committee of the International Xenotransplantation Association pointed out in 2003 that one major ethical issue is the societal response to such a procedure.

The application of the four bioethics principles is standardized in the moral conduct of laboratories. The four principles emphasize informed consent, the Hippocratic Oath to do no harm, using skills to help others, and protecting the right to quality care.

Though xenotransplantation may have future medical benefits, it also has the serious risk of introducing and spreading the infectious diseases, into the human population. Guidelines have been drafted by governments with the purpose of forming the foundation of infectious disease surveillance. United Kingdom guidelines state that patients have to agree to "the periodic provision of bodily samples that would then be archived for epidemiological purposes", "post-mortem analysis in case of death, the storage of samples post-mortem, and the disclosure of this agreement to their family", "refrain from donating blood, tissue or organs", "the use of barrier contraception when engaging in sexual intercourse", "keep both name and current address on register and to notify the relevant health authorities when moving abroad" and "divulge confidential information, including one's status as a xenotransplantation recipient to researchers, all health care professionals from whom one seeks professional services, and close contacts such as current and future sexual partners." The patient must abide by these rules throughout their lifetime or until the government determines that there is no need for public health safeguards.

Xenotransplantation guidelines in the United States

The Food and Drug Administration (FDA) has also stated that if a transplantation takes place, the recipient must undergo monitoring for the rest of their lifetime and waive their right to withdraw. The reason for requiring lifelong monitoring is due to the risk of acute infections that may occur. The FDA suggests that a passive screening program should be implemented and should extend for the life of the recipient.

Women in computing

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Women_in_computing   Women in computing were amon...