Search This Blog

Tuesday, June 3, 2025

Marker-assisted selection

From Wikipedia, the free encyclopedia

Marker assisted selection or marker aided selection (MAS) is an indirect selection process where a trait of interest is selected based on a marker (morphological, biochemical or DNA/RNA variation) linked to a trait of interest (e.g. productivity, disease resistance, abiotic stress tolerance, and quality), rather than on the trait itself. This process has been extensively researched and proposed for plant- and animal- breeding.

For example, using MAS to select individuals with disease resistance involves identifying a marker allele that is linked with disease resistance rather than the level of disease resistance. The assumption is that the marker associates at high frequency with the gene or quantitative trait locus (QTL) of interest, due to genetic linkage (close proximity, on the chromosome, of the marker locus and the disease resistance-determining locus). MAS can be useful to select for traits that are difficult or expensive to measure, exhibit low heritability and/or are expressed late in development. At certain points in the breeding process the specimens are examined to ensure that they express the desired trait.

Marker types

The majority of MAS work in the present era uses DNA-based markers. However, the first markers that allowed indirect selection of a trait of interest were morphological markers. In 1923, Karl Sax first reported association of a simply inherited genetic marker with a quantitative trait in plants when he observed segregation of seed size associated with segregation for a seed coat color marker in beans (Phaseolus vulgaris L.). In 1935, J. Rasmusson demonstrated linkage of flowering time (a quantitative trait) in peas with a simply inherited gene for flower color.

Markers may be:

  • Morphological — These were the first markers loci available that have an obvious impact on the morphology of plants. These markers are often detectable by eye, by simple visual inspection. Examples of this type of marker include the presence or absence of an awn, leaf sheath coloration, height, grain color, aroma of rice etc. In well-characterized crops like maize, tomato, pea, barley or wheat, tens or hundreds of genes that determine morphological traits have been mapped to specific chromosome locations.
  • Biochemical — A protein that can be extracted and observed; for example, isozymes and storage proteins.
  • Cytological — Cytological markers are chromosomal features that can be identified through microscopy. These generally take the form of chromosome bands, regions of chromatin that become impregnated with specific dyes used in cytology. The presence or absence of a chromosome band can be correlated with a particular trait, indicating that the locus responsible for the trait is located within or near (tightly linked) to the banded region. Morphological and cytological markers formed the backbone of early genetic studies in crops such as wheat and maize.
  • DNA-based — Including microsatellites (also known as short tandem repeats, STRs, or simple sequence repeats, SSRs), restriction fragment length polymorphism (RFLP), random amplification of polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and single nucleotide polymorphisms (SNPs).

Positive and negative selectable markers

The following terms are generally less relevant to discussions of MAS in plant and animal breeding, but are highly relevant in molecular biology research:

  • Positive selectable markers are selectable markers that confer selective advantage to the host organism. An example would be antibiotic resistance, which allows the host organism to survive antibiotic selection.
  • Negative selectable markers are selectable markers that eliminate or inhibit growth of the host organism upon selection. An example would be thymidine kinase, which makes the host sensitive to ganciclovir selection.

A distinction can be made between selectable markers (which eliminate certain genotypes from the population) and screenable markers (which cause certain genotypes to be readily identifiable, at which point the experimenter must "score" or evaluate the population and act to retain the preferred genotypes). Most MAS uses screenable markers rather than selectable markers.

Gene vs marker

The gene of interest directly causes production of protein(s) or RNA that produce a desired trait or phenotype, whereas markers (a DNA sequence or the morphological or biochemical markers produced due to that DNA) are genetically linked to the gene of interest. The gene of interest and the marker tend to move together during segregation of gametes due to their proximity on the same chromosome and concomitant reduction in recombination (chromosome crossover events) between the marker and gene of interest. For some traits, the gene of interest has been discovered and the presence of desirable alleles can be directly assayed with a high level of confidence. However, if the gene of interest is not known, markers linked to the gene of interest can still be used to select for individuals with desirable alleles of the gene of interest. When markers are used there may be some inaccurate results due to inaccurate tests for the marker. There also can be false positive results when markers are used, due to recombination between the marker of interest and gene (or QTL). A perfect marker would elicit no false positive results. The term 'perfect marker' is sometimes used when tests are performed to detect a SNP or other DNA polymorphism in the gene of interest, if that SNP or other polymorphism is the direct cause of the trait of interest. The term 'marker' is still appropriate to use when directly assaying the gene of interest, because the test of genotype is an indirect test of the trait or phenotype of interest.

Important properties of ideal markers for MAS

An ideal marker:

  • Has easy recognition of phenotypes - ideally all possible phenotypes (homo- and heterozygotes) from all possible alleles
  • Demonstrates measurable differences in expression between trait types or gene of interest alleles, early in the development of the organism
  • Testing for the marker does not have variable success depending on the allele at the marker locus or the allele at the target locus (the gene of interest that determines the trait of interest).
  • Low or null interaction among the markers allowing the use of many at the same time in a segregating population
  • Abundant in number
  • Polymorphic

Drawbacks of morphological markers

Morphological markers are associated with several general deficits that reduce their usefulness including:

  • the delay of marker expression until late into the development of the organism
  • allowing dominance to mask the underlying genetics
  • pleiotropy, which does not allow easy and parsimonious inferences to be drawn from one gene to one trait
  • confounding effects of genes unrelated to the gene or trait of interest but which also affect the morphological marker (epistasis)
  • frequent confounding effects of environmental factors which affect the morphological characteristics of the organism

To avoid problems specific to morphological markers, DNA-based markers have been developed. They are highly polymorphic, exhibit simple inheritance (often codominant), are abundant throughout the genome, are easy and fast to detect, exhibit minimum pleiotropic effects, and detection is not dependent on the developmental stage of the organism. Numerous markers have been mapped to different chromosomes in several crops including rice, wheat, maize, soybean and several others, and in livestock such as cattle, pigs and chickens. Those markers have been used in diversity analysis, parentage detection, DNA fingerprinting, and prediction of hybrid performance. Molecular markers are useful in indirect selection processes, enabling manual selection of individuals for further propagation.

Selection for major genes linked to markers

'Major genes' that are responsible for economically important characteristics are frequent in the plant kingdom. Such characteristics include disease resistance, male sterility, self-incompatibility, and others related to shape, color, and architecture of whole plants and are often of mono- or oligogenic in nature. The marker loci that are tightly linked to major genes can be used for selection and are sometimes more efficient than direct selection for the target gene. Such advantages in efficiency may be due for example, to higher expression of the marker mRNA in such cases that the marker is itself a gene. Alternatively, in such cases that the target gene of interest differs between two alleles by a difficult-to-detect single nucleotide polymorphism, an external marker (be it another gene or a polymorphism that is easier to detect, such as a short tandem repeat) may present as the most realistic option.

Situations that are favorable for molecular marker selection

There are several indications for the use of molecular markers in the selection of a genetic trait.

Situations such as:

  • The selected character is expressed late in plant development, like fruit and flower features or adult characters with a juvenile period (so that it is not necessary to wait for the organism to become fully developed before arrangements can be made for propagation)
  • The expression of the target gene is recessive (so that individuals which are heterozygous positive for the recessive allele can be crossed to produce some homozygous offspring with the desired trait)
  • There are special conditions for expression of the target gene(s), as in the case of breeding for disease and pest resistance (where inoculation with the disease or subjection to pests would otherwise be required). Sometimes inoculation methods are unreliable and sometimes field inoculation with the pathogen is not even allowed for safety reasons. Moreover, sometimes expression is dependent on environmental conditions.
  • The phenotype is affected by two or more unlinked genes (epistatis). For example, selection for multiple genes which provide resistance against diseases or insect pests for gene pyramiding.

The cost of genotyping (for example, the molecular marker assays needed here) is decreasing thus increasing the attractiveness of MAS as the development of the technology continues. (Additionally, the cost of phenotyping performed by a human is a labor burden, which is higher in a developed country and increasing in a developing country.)

Steps for MAS

Generally the first step is to map the gene or quantitative trait locus (QTL) of interest first by using different techniques and then using this information for marker assisted selection. Generally, the markers to be used should be close to gene of interest (<5 recombination unit or cM) in order to ensure that only minor fraction of the selected individuals will be recombinants. Generally, not only a single marker but rather two markers are used in order to reduce the chances of an error due to homologous recombination. For example, if two flanking markers are used at same time with an interval between them of approximately 20cM, there is higher probability (99%) for recovery of the target gene.

QTL mapping techniques

In plants QTL mapping is generally achieved using bi-parental cross populations; a cross between two parents which have a contrasting phenotype for the trait of interest are developed. Commonly used populations are near isogenic lines (NILs), recombinant inbred lines (RILs), doubled haploids (DH), back cross and F2. Linkage between the phenotype and markers which have already been mapped is tested in these populations in order to determine the position of the QTL. Such techniques are based on linkage and are therefore referred to as "linkage mapping".A

Single step MAS and QTL mapping

In contrast to two-step QTL mapping and MAS, a single-step method for breeding typical plant populations has been developed.

In such an approach, in the first few breeding cycles, markers linked to the trait of interest are identified by QTL mapping and later the same information is used in the same population. In this approach, pedigree structure is created from families that are created by crossing number of parents (in three-way or four way crosses). Both phenotyping and genotyping is done using molecular markers mapped the possible location of QTL of interest. This will identify markers and their favorable alleles. Once these favorable marker alleles are identified, the frequency of such alleles will be increased and response to marker assisted selection is estimated. Marker allele(s) with desirable effect will be further used in next selection cycle or other experiments.

High-throughput genotyping techniques

Recently high-throughput genotyping techniques are developed which allows marker aided screening of many genotypes. This will help breeders in shifting traditional breeding to marker aided selection. One example of such automation is using DNA isolation robots, capillary electrophoresis and pipetting robots.

One recent example of capllilary system is Applied Biosystems 3130 Genetic Analyzer. This is the latest generation of 4-capillary electrophoresis instruments for the low to medium throughput laboratories.

High-throughput MAS is needed for crop breeding because current techniques are not cost effective. Arrays have been developed for rice by Masouleh et al 2009; wheat by Berard et al 2009, Bernardo et al 2015, and Rasheed et al 2016; legumes by Varshney et al 2016; and various other crops, but all of these have also problems with customization, cost, flexibility, and equipment costs.

Use of MAS for backcross breeding

A minimum of five or six-backcross generations are required to transfer a gene of interest from a donor (may not be adapted) to a recipient (recurrent – adapted cultivar). The recovery of the recurrent genotype can be accelerated with the use of molecular markers. If the F1 is heterozygous for the marker locus, individuals with the recurrent parent allele(s) at the marker locus in first or subsequent backcross generations will also carry a chromosome tagged by the marker.

Marker assisted gene pyramiding

Gene pyramiding has been proposed and applied to enhance resistance to disease and insects by selecting for two or more than two genes at a time. For example, in rice such pyramids have been developed against bacterial blight and blast. The advantage of use of markers in this case allows to select for QTL-allele-linked markers that have same phenotypic effect.

MAS has also been proved useful for livestock improvement.

A coordinated effort to implement wheat (Durum (Triticum turgidum) and common wheat (Triticum aestivum)) marker assisted selection in the U.S. as well as a resource for marker assisted selection exists at the Wheat CAP (Coordinated Agricultural Project) website.

Crossbreed

From Wikipedia, the free encyclopedia

A crossbreed is an organism with purebred parents of two different breeds, varieties, or populations. A domestic animal of unknown ancestry, where the breed status of only one parent or grandparent is known, may also be called a crossbreed though the term "mixed breed" is technically more accurate. Outcrossing is a type of crossbreeding used within a purebred breed to increase the genetic diversity within the breed, particularly when there is a need to avoid inbreeding.

In animal breeding, crossbreeds are crosses within a single species, while hybrids are crosses between different species. In plant breeding terminology, the term crossbreed is uncommon, and no universal term is used to distinguish hybridization or crossing within a population from those between populations, or even those between species.

Crossbreeding is the process of breeding such an organism. It can be beneficially used to maintain health and viability of organisms. However, irresponsible crossbreeding can also produce organisms of inferior quality or dilute a purebred gene pool to the point of extinction of a given breed of organism.

Crossbreeds in specific animals

Cats: The many newly developed and recognized breeds of domestic cat are crossbreeds between existing, well-established breeds (sometimes with limited hybridization with some wild species), to either combine selected traits from the foundation stock, or propagate a rare mutation without excessive inbreeding. However, some nascent breeds such as the Aegean cat are developed entirely from a local landrace population. Most experimental cat breeds are crossbreeds.

Cattle: In cattle, there are systems of crossbreeding. In many crossbreeds, one animal is larger than the other. One is used when the purebred females are particularly adapted to a specific environment, and are crossed with purebred bulls from another environment to produce a generation having traits of both parents.

Sheep: The large number of breeds of sheep, which vary greatly, creates an opportunity for crossbreeding to be used to tailor production of lambs to the goal of the individual stockman.

Llamas: Results of crossbreeding classic and woolly breeds of llama are unpredictable. The resulting offspring displays physical characteristics of either parent, or a mix of characteristics from both, periodically producing a fleeced llama. The results are increasingly unpredictable when both parents are crossbreeds, with possibility of the offspring displaying characteristics of a grandparent, not obvious in either parent.

Dogs:

A crossbred dog is a cross between two (sometimes more) known breeds, and is usually distinguished from a mixed-breed dog, which has ancestry from many sources, some of which may not be known. Crossbreeds are popular, due to the belief that they have increased vigor without loss of attractiveness of the dog. Certain planned crossbreeding between purebred dogs of different breeds are now widely known as "designer dogs" and can produce puppies worth more than their purebred parents, due to a high demand.

The National Show Horse was developed from crossbreeding programs in the 1970s and 1980s that blended Arabian horse and American Saddlebred bloodlines

Horses: Crossbreeding horses is often done with the intent of ultimately creating a new breed of horse. One type of modern crossbreeding in horses created many of the warmblood breeds used in the sport horse disciplines, usually registered in an open stud book by a studbook selection procedure that evaluates conformation, pedigree and, in some animals, a training or performance standard. Most warmblood breeds began as a cross of draft horse breeds on Thoroughbreds, but have, in some cases, developed over the past century to the point where they are considered to be a true-breeding population and have a closed stud book. Other types of recognized crossbreeding include that within the American Quarter Horse, which will register horses with one Thoroughbred parent and one registered Quarter Horse parent in the "Appendix" registry, and allow such animals full breed registration status as Quarter Horses if they meet a certain performance standard. Another well-known crossbred horse is the Anglo-Arabian, which may be produced by a purebred Arabian horse crossed on a Thoroughbred, or by various crosses of Anglo-Arabians with other Anglo-Arabians, as long as the ensuing animal never has more than 75% or less than 25% of each breed represented in its pedigree.

Hybrid animals

A hybrid animal is one with parentage of two separate species, differentiating it from crossbred animals, which have parentage of the same species. Hybrids are usually, but not always, sterile.

One of the most ancient types of hybrid animal is the mule, a cross between a female horse and a male donkey. The liger is a hybrid cross between a male lion and female tiger. The yattle is a cross between a cow and a yak. Other crosses include the tigon (between a male tiger and female lion) and yakalo (between a yak and an American bison). The Incas recognized that hybrids of Lama glama (llama) and Vicugna pacos (alpaca) resulted in a hybrid with none of the advantages of either parent.

At one time it was thought that dogs and wolves were separate species, and the crosses between dogs and wolves were called wolf hybrids. Today wolves and dogs are both recognized as Canis lupus, but the old term "wolf hybrid" is still used.

Mixed breeds

A mixed-breed animal is defined as having undocumented or unknown parentage, while a crossbreed generally has known, usually purebred parents of two distinct breeds or varieties. A dog of unknown parentage is often called a mixed-breed dog, "mutt" or "mongrel." A cat of unknown parentage is often referred to as a domestic short-haired or domestic long-haired cat generically, and in some dialects is often called a "moggie". A horse of unknown bloodlines is called a grade horse.

Designer crossbreed

Examples of designer crossbreds
 
A black horse, standing up
A Friesian Sport Horse horse is a cross between a Friesian and one of several other breeds

A designer crossbreed or designer breed is a crossbred animal with purebred parents, usually registered with a breed registry, but from two different breeds. These animals are the result of a deliberate decision to create a specific crossbred animal. Less often, the animal may have more than two pure breeds in its ancestry, but unlike a mutt or a mongrel, its entire pedigree is known to descend from specific known animals. While the term is best known when applied to certain dog crossbreeds, other animals such as cattle, horses, birds and cats may also be bred in this fashion. Some crossbred breeders start a freestanding breed registry to record designer crossbreds, other crossbreds may be included in an "appendix" to an existing purebred registry. either form of registration may be the first step in recording and tracking pedigrees in order to develop a new breed.

The purpose of creating designer crossbreds is usually one or more of the following reasons:

  1. to breed animals with heterosis, commonly known as "hybrid vigor",
  2. to create animals with more predictable characteristics than mixed breed or mongrel breeding,
  3. to avoid certain undesirable recessive traits that lead to genetic diseases that plague many purebred animals,
  4. to develop an animal that combines what are viewed as the best traits of two or more breeds,
  5. as the preliminary steps toward developing a new animal breed.

Breeders of designer crossbreds borrow the technical language from hybrid plant breeding: A first generation, 50–50 crossbred is an F1 cross. Subsequent generations may see a purebred animal crossed back on a crossbred, creating a 75/25 cross, or a BC1 or F1b "backcross." The breeding of two crossbreeds of the same combination of breeds, creating an F2 cross, an animal that is still a 50–50 cross, but it is the second filial generation of the combination. An F2 cross bred to an F2 cross creates an F3 cross. Similarly, an F2 animal bred to an F1 animal creates an F2b backcross. F3 crosses and greater are called "multi-generational" crosses. In dog breeding, three generations of reliable documented breeding can be considered a "breed" rather than a crossbreed.

There are disadvantages to creating designer crossbreeds, notably the potential that the cross will be of inferior quality or that it will not produce as consistent a result as would breeding purebred animals. For example, the Poodle is a frequent breed used in creation of designer crossbreeds, due to its non-shedding coat, but that trait does not always breed true when it is part of a designer cross. Also, because breeders of crossbred animals may be less careful about genetic testing and weeding out undesirable traits, certain deleterious dominant genes may still be passed on to a crossbreed offspring. In an F2 cross, recessive genetic traits may also return if the parent animals were both carriers of an undesired trait.

Human genetic enhancement

From Wikipedia, the free encyclopedia
An illustration of viral vector-mediated gene transfer using an adenovirus as the vector

Human genetic enhancement or human genetic engineering refers to human enhancement by means of a genetic modification. This could be done in order to cure diseases (gene therapy), prevent the possibility of getting a particular disease (similarly to vaccines), to improve athlete performance in sporting events (gene doping), or to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence. These genetic enhancements may or may not be done in such a way that the change is heritable (which has raised concerns within the scientific community).

Ethics
Genetics is the study of genes and inherited traits and while the ongoing advancements in this field have resulted in the advancement of healthcare at multiple levels, ethical considerations have become increasingly crucial especially alongside. Genetic engineering has always been a topic of moral debate among bioethicists. Even though the technological advancements in this field present exciting prospects for biomedical improvement, it also prompts the need for ethical, societal, and practical assessments to understand its impact on human biology, evolution, and the environment. Genetic testing, genetic engineering, and stem cell research are often discussed together due to the interrelated moral arguments surrounding these topics. The distinction between repairing genes and enhancing genes is a central idea in many moral debates surrounding genetic enhancement because some argue that repairing genes is morally permissible, but that genetic enhancement is not due to its potential to lead to social injustice through discriminatory eugenics initiatives.

Moral questions related to genetic testing are often related to duty to warn family members if an inherited disorder is discovered, how physicians should navigate patient autonomy and confidentiality with regard to genetic testing, the ethics of genetic discrimination, and the moral permissibility of using genetic testing to avoid causing seriously disabled persons to exist, such as through selective abortion.

The responsibility of public health professionals is to determine potential exposures and suggest testing for communicable diseases that require reporting. Public health professionals may encounter disclosure concerns if the extension of obligatory screening results in genetic abnormalities being classified as reportable conditions. Genetic data is personal and closely linked to a person's identity. Confidentiality concerns not only work, health care, and insurance coverage, but a family's whole genetic test results can be impacted. Affected individuals may also have their parents, children, siblings, sisters, and even extended relatives if the condition is either genetically dominant or carried by them. Moreover, a person's decisions could change their entire life depending on the outcome of a genetic test. Results of genetic testing may need to be disclosed in all facets of a person's life.

Non-invasive prenatal testing (NIPT) can accurately determine the sex of the fetus at an early stage of gestation, raising concerns about the potential facilitation of sex-selective termination of pregnancy (TOP) due to its ease, timing, and precision. Even though the ultrasound technology can do the same, NIPT is being explored due to its capability to accurately identify the fetus's sex at an early stage in pregnancy, with increasing precision as early as 7 weeks' gestation. This timeframe precedes the typical timing for other sex determination techniques, such as ultrasound or chorionic villus sampling (CVS). The high early accuracy of NIPT reduces the uncertainty associated with other methods, such as the aforementioned, leading to more informed decisions and eliminating the risk of inaccurate results that could influence decision-making regarding sex-selective TOP. Additionally, NIPT enables sex-selective TOP in the first trimester, which is more practical, and allows pregnant women to postpone maternal-fetal bonding. These considerations may significantly facilitate the pursuit of sex-selective TOP when NIPT is utilized. Therefore, it is crucial to examine these ethical concerns within the framework of NIPT adoption.

Ethical issues related to gene therapy and human genetic enhancement concern the medical risks and benefits of the therapy, the duty to use the procedures to prevent suffering, reproductive freedom in genetic choices, and the morality of practicing positive genetics, which includes attempts to improve normal functions.

In every genetic based study conducted for humanity, studies must be carried out in accordance with the ethics committee approval statement, ethical, legal norms and human morality. CAR T cell therapy, which is intended to be a new treatment aims to change the genetics of T cells and transform immune system cells that do not recognize cancer into cells that recognize and fight cancer. it works with the T cell therapy method, which is arranged with palindromic repeats at certain short intervals called CRISPR.

All research involving human subjects in healthcare settings must be registered in a public database before the recruitment of the first trial. The informed consent statement should include adequate information about possible conflicts of interest, the expected benefits of the study, its potential risks, and other issues related to the discomfort it may involve.

Technological advancements play an integral role in new forms of human enhancement. While phenotypic and somatic interventions for human enhancement provide noteworthy ethical and sociological dilemmas, germline heritable genetic intervention necessitates even more comprehensive deliberations at the individual and societal levels.

Moral judgments are empirically based and entail evaluating prospective risk-benefit ratios particularly in the field of biomedicine. The technology of CRISPR genome editing raises ethical questions for several reasons. To be more specific, concerns exist regarding the capabilities and technological constraints of CRISPR technology. Furthermore, the long-term effects of the altered organisms and the possibility of the edited genes being passed down to succeeding generations and having unanticipated effects are two further issues to be concerned about. Decision-making on morality becomes more difficult when uncertainty from these circumstances prevents appropriate risk/benefit assessments.

The potential benefits of revolutionary tools like CRISPR are endless. For example, because it can be applied directly in the embryo, CRISPR/Cas9 reduces the time required to modify target genes compared to gene targeting technologies that rely on the use of embryonic stem (ES) cells. Bioinformatics tools developed to identify the optimal sequences for designing guide RNAs and optimization of experimental conditions have provided very robust procedures that guarantee the successful introduction of the desired mutation. Major benefits are likely to develop from the use of safe and effective HGGM, making a precautionary stance against HGGM unethical.

Going forward, many people support the establishment of an organization that would provide guidance on how best to control the ethical complexities mentioned above. Recently, a group of scientists founded the Association for Responsible Research and Innovation in Genome Editing (ARRIGE) to study and provide guidance on the ethical use of genome editing.

In addition, Jasanoff and Hurlbut have recently advocated for the establishment and international development of an interdisciplinary "global observatory for gene regulation".

Researchers proposed that debates in gene editing should not be controlled by the scientific community. The network is envisioned to focus on gathering information from dispersed sources, bringing to the fore perspectives that are often overlooked, and fostering exchange across disciplinary and cultural divides.

The interventions aimed at enhancing human traits from a genetic perspective are emphasized as being contingent upon the understanding of genetic engineering, and comprehending the outcomes of these interventions requires an understanding of the interactions between humans and other living beings. Therefore, the regulation of genetic engineering underscores the significance of examining the knowledge between humans and the environment.

To address the ethical challenges and uncertainties arising from genetic advancements, the development of comprehensive guidelines based on universal principles has been emphasized as essential. The importance of adopting a cautious approach to safeguard fundamental values such as autonomy, global well-being, and individual dignity has been elucidated when overcoming these challenges.

When contemplating genetic enhancement, genetic technologies should be approached from a broad perspective, using a definition that encompasses not only direct genetic manipulation but also indirect technologies such as biosynthetic drugs. It has been emphasized that attention should be given to expectations that can shape the marketing and availability of these technologies, anticipating the allure of new treatments. These expectations have been noted to potentially signify the encouragement of appropriate public policies and effective professional regulations.

Clinical stem cell research must be conducted in accordance with ethical values. This entails a full respect for ethical principles, including the accurate assessment of the balance between risks and benefits, as well as obtaining informed and voluntary participant consent. The design of research should be strengthened, scientific and ethical reviews should be effectively coordinated, assurance should be provided that participants understand the fundamental features of the research, and full compliance with additional ethical requirements for disclosing negative findings has been addressed.

Clinicians have been emphasized to understand the role of genomic medicine in accurately diagnosing patients and guiding treatment decisions. It has been highlighted that detailed clinical information and expert opinions are crucial for the accurate interpretation of genetic variants. While personalized medicine applications are exciting, it has been noted that the impact and evidence base of each intervention should be carefully evaluated. The human genome contains millions of genetic variants, so caution should be exercised and expert opinions sought when analyzing genomic results.

Disease prevention

With the discovery of various types of immune-related disorders, there is a need for diversification in prevention and treatment. Developments in the field of gene therapy are being studied to be included in the scope of this treatment, but of course more research is needed to increase the positive results and minimize the negative effects of gene therapy applications. The CRISPR/Cas9 system is also designed as a gene editing technology for the treatment of HIV-1/AIDS. CRISPR/Cas9 has been developed as the latest gene editing technique that allows the insertion, deletion and modification of DNA sequences and provides advantages in the disruption of the latent HIV-1 virus. However, the production of some vectors for HIV-1-infected cells is still limited and further studies are needed Being an HIV carrier also plays an important role in the incidence of cervical cancer. While there are many personal and biological factors that contribute to the development of cervical cancer, HIV carriage is correlated with its occurrence. However, long-term research on the effectiveness of preventive treatment is still ongoing. Early education, accessible worldwide, will play an important role in prevention. When medications and treatment methods are consistently adhered to, safe sexual practices are maintained and healthy lifestyle changes are implemented, the risk of transmission is reduced in most people living with HIV. Consistently implemented proactive prevention strategies can significantly reduce the incidence of HIV infections. Education on safe sex practices and risk-reducing changes for everyone, whether they are HIV carriers or not, is critical to preventing the disease. However, controlling the HIV epidemic and eliminating the stigma associated with the disease may not be possible only through a general AIDS awareness campaign. It is observed that HIV awareness, especially among individuals in low socio-economic regions, is considerably lower than the general population. Although there is no clear-cut solution to prevent the transmission of HIV and the spread of the disease through sexual transmission, a combination of preventive measures can help to control the spread of HIV. Increasing knowledge and awareness plays an important role in preventing the spread of HIV by contributing to the improvement of behavioral decisions with high risk perception. Genetics plays a pivotal role in disease prevention, offering insights into an individual's predisposition to certain conditions and paving the way for personalized strategies to mitigate disease risk. The burgeoning field of genetic testing and analysis has provided valuable tools for identifying genetic markers associated with various diseases, allowing for proactive measures to be taken in disease prevention  Disease prevention via genetic testing is made easier as genetic testing can unveil an individual's genetic susceptibility to certain diseases, enabling early detection and intervention which can be very crucial in disease like heritable cancers such and breast and ovarian cancer. Having genetic information can inform the development of precision medicine approaches and targeted therapies for disease prevention in general. By identifying genetic factors contributing to disease susceptibility, such as specific gene mutations associated with autoimmune disorders, researchers can develop targeted therapies to modulate the immune response and prevent the onset or progression of these conditions.

There are many types of neurodegenerative diseases. Alzheimer's disease is one of the most common one of these diseases and it affects millions of people worldwide. The CRISPR-Cas9 techniques can be used to prevent the Alzheimer's disease. For example, it has a potential to correct the autosomal dominant mutaitons, problematic neurons, restoring the associated electrophysiological deficits and decreased the Aβ peptides. Amyotrophic Lateral Sclerosis (ALS) is another highly lethal neurodegenerative disease. And CRISPR-Cas9 technology is simple and effective for changinc specific point mutations about ALS. Also with this technology Chen and his colleagues were found some important alterations in major indicators of ALS like decreasing in RNA foci, polypeptides and haplosufficiency.

Some individuals experience immunocompromise, a condition in which their immune systems are weakened and less effective in defending against various diseases, including but not limited to influenza. This susceptibility to infections can be attributed to a range of factors, including genetic flaws and genetic diseases such as Severe Combined Immunodeficiency (SCID). Some gene therapies have already been developed or are being developed to correct these genetic flaws/diseases, hereby making these people less susceptible to catching additional diseases (i.e. influenza, ). These genetic flaws and diseases can significantly impact the body's ability to mount an effective immune response, leaving individuals vulnerable to a wide array of pathogens. However, advancements in gene therapy research and development have shown promising potential in addressing these genetic deficiencies however not without associated challenges

CRISPR technology is a promising tool not only for genetic disease corrections but also for the prevention of viral and bacterial infections. Utilizing CRISPR–Cas therapies, researchers have targeted viral infections like HSV-1, EBV, HIV-1, HBV, HPV, and HCV, with ongoing clinical trials for an HIV-clearing strategy named EBT-101. Additionally, CRISPR has demonstrated efficacy in preventing viral infections such as IAV and SARS-CoV-2 by targeting viral RNA genomes with Cas13d, and it has been used to sensitize antibiotic-resistant S. aureus to treatment through Cas9 delivered via bacteriophages.

Advancements in gene editing and gene therapy hold promise for disease prevention by addressing genetic factors associated with certain conditions. Techniques like CRISPR-Cas9 offer the potential to correct genetic mutations associated with hereditary diseases, thereby preventing their manifestation in future generations and reducing disease burden. In November 2018, Lulu and Nana were created. By using clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9, a gene editing technique, they disabled a gene called CCR5 in the embryos, aiming to close the protein doorway that allows HIV to enter a cell and make the subjects immune to the HIV virus.

Despite existing evidence of CRISPR technology, advancements in the field persist in reducing limitations. Researchers developed a new, gentle gene editing method for embryos using nanoparticles and peptide nucleic acids. Delivering editing tools without harsh injections, the method successfully corrected genes in mice without harming development. While ethical and technical questions remain, this study paves the way for potential future use in improving livestock and research animals, and maybe even in human embryos for disease prevention or therapy.

Informing prospective parents about their susceptibility to genetic diseases is crucial. Pre-implantation genetic diagnosis also holds significance for disease prevention by inheritance, as whole genome amplification and analysis help select a healthy embryo for implantation, preventing the transmission of a fatal metabolic disorder in the family.

Genetic human enhancement emerges as a potential frontier in disease prevention by precisely targeting genetic predispositions to various illnesses. Through techniques like CRISPR, specific genes associated with diseases can be edited or modified, offering the prospect of reducing the hereditary risk of conditions such as cancer, cardiovascular disorders, or neurodegenerative diseases. This approach not only holds the potential to break the cycle of certain genetic disorders but also to influence the health trajectories of future generations.

Furthermore, genetic enhancement can extend its impact by focusing on fortifying the immune system and optimizing overall health parameters. By enhancing immune responses and fine-tuning genetic factors related to general well-being, the susceptibility to infectious diseases can be minimized. This proactive approach to health may contribute to a population less prone to ailments and more resilient in the face of environmental challenges.

However, the ethical dimensions of genetic manipulation cannot be overstated. Striking a delicate balance between scientific progress and ethical considerations is imperative. Robust regulatory frameworks and transparent guidelines are crucial to ensuring that genetic human enhancement is utilized responsibly, avoiding unintended consequences or potential misuse. As the field advances, the integration of ethical, legal, and social perspectives becomes paramount to harness the full potential of genetic human enhancement for disease prevention while respecting individual rights and societal values.

Overall, the technology requires improvements in effectiveness, precision, and applications. Immunogenicity, off-target effects, mutations, delivery systems, and ethical issues are the main challenges that CRISPR technology faces. The safety concerns, ethical considerations, and the potential for misuse underscore the need for careful and responsible exploration of these technologies. CRISPR-Cas9 technology offers so much on disease prevention and treatment yet its future aspects, especially those that affect the next generations, should be investigated strictly.

Disease treatment

Gene therapy

Modification of human genes in order to treat genetic diseases is referred to as gene therapy. Gene therapy is a medical procedure that involves inserting genetic material into a patient's cells to repair or fix a malfunctioning gene in order to treat hereditary illnesses. Between 1989 and December 2018, over 2,900 clinical trials of gene therapies were conducted, with more than half of them in phase I. Since that time, many gene therapy based drugs became available, such as Zolgensma and Patisiran. Most of these approaches utilize viral vectors, such as adeno-associated viruses (AAVs), adenoviruses (AV) and lentiviruses (LV), for inserting or replacing transgenes in vivo or ex vivo.

In 2023, nanoparticles that act similarly to viral vectors were created. These nanoparticles, called bioorthgonal engineered virus-like recombinant biosomes, display strong and rapid binding capabilities to LDL receptors on cell surfaces, allowing them to enter cells efficiently and deliver genes to specific target areas, such as tumor and arthritic tissues.

RNA interference-based agents, such as zilebesiran, contain siRNA which binds with mRNA of the target cells, modifying gene expression.

CRISPR/Cas9

Many diseases are complex and cannot be effectively treated by simple coding sequence-targeting strategies. CRISPR/Cas9 is one technology that targets double strand breaks in the human genome, modifying genes and providing a quick way to treat genetic disorders. Gene treatment employing the CRISPR/Cas genome editing method is known as CRISPR/Cas-based gene therapy. Mammalian cells can be genetically modified using the straightforward, affordable, and extremely specific CRISPR/Cas method. It can help with single-base exchanges, homology-directed repair, and non-homologous end joining. The primary application is targeted gene knockouts, involving the disruption of coding sequences to silence deleterious proteins. Since the development of the CRISPR-Cas9 gene editing method between 2010 and 2012, scientists have been able to alter genes by making specific breaks in their DNA. This technology has many uses, including genome editing and molecular diagnosis.

Genetic engineering has undergone a revolution because to CRISPR/Cas technology, which provides a flexible framework for building disease models in larger animals. This breakthrough has created new opportunities to evaluate possible therapeutic strategies and comprehend the genetic foundations of different diseases. But in order to fully realize the promise of CRISPR/Cas-based gene therapy, a number of obstacles must be removed. Improving CRISPR/Cas systems' editing precision and efficiency is one of the main issues. Although this technology makes precise gene editing possible, reducing off-target consequences is still a major challenge. Unintentional genetic changes resulting from off-target modifications may have unanticipated effects or difficulties. Using enhanced guide RNA designs, updated Cas proteins, and cutting-edge bioinformatics tools, researchers are actively attempting to improve the specificity and reduce off-target effects of CRISPR/Cas procedures. Moreover, the effective and specific delivery of CRISPR components to target tissues presents another obstacle. Delivery systems must be developed or optimized to ensure the CRISPR machinery reaches the intended cells or organs efficiently and safely. This includes exploring various delivery methods such as viral vectors, nanoparticles, or lipid-based carriers to transport CRISPR components accurately to the target tissues while minimizing potential toxicity or immune responses.

Despite recent progress, further research is needed to develop safe and effective CRISPR therapies. CRISPR/Cas9 technology is not actively used today, however there are ongoing clinical trials of its use in treating various disorders, including sickle cell disease, human papillomavirus (HPV)-related cervical cancer, COVID-19 respiratory infection, renal cell carcinoma, and multiple myeloma.

Gene therapy has emerged as a promising field in medical science, aiming to address and treat various genetic diseases by modifying human genes. The process involves the introduction of genetic material into a patient's cells, with the primary goal of repairing or correcting malfunctioning genes that contribute to hereditary illnesses. This innovative medical procedure has seen significant advancements and a growing number of clinical trials since its inception.

Between 1989 and December 2018, more than 2,900 clinical trials of gene therapies were conducted, with over half of them reaching the phase I stage. Over the years, several gene therapy-based drugs have been developed and made available to the public, marking important milestones in the treatment of genetic disorders. Examples include Zolgensma and Patisiran, which have demonstrated efficacy in addressing specific genetic conditions.

The majority of gene therapy approaches leverage viral vectors, such as adeno-associated viruses (AAVs), adenoviruses (AV), and lentiviruses (LV), to facilitate the insertion or replacement of transgenes either in vivo or ex vivo. These vectors serve as delivery vehicles for introducing the therapeutic genetic material into the patient's cells.

A notable development in 2023 was the creation of nanoparticles designed to function similarly to viral vectors. These bioorthogonal engineered virus-like recombinant biosomes represent a novel approach to gene delivery. They exhibit robust and rapid binding capabilities to low-density lipoprotein (LDL) receptors on cell surfaces, enhancing their efficiency in entering cells. This capability enables the targeted delivery of genes to specific areas, such as tumor and arthritic tissues. This advancement holds the potential to enhance the precision and effectiveness of gene therapy, minimizing off-target effects and improving overall therapeutic outcomes.

In addition to viral vector and nanoparticle-based approaches, RNA interference (RNAi) has emerged as another strategy in gene therapy. Agents like zilebesiran utilize small interfering RNA (siRNA) that binds with the messenger RNA (mRNA) of target cells, effectively modifying gene expression. This RNA interference-based approach provides a targeted and specific method for regulating gene activity, presenting further opportunities for treating genetic disorders.

The continuous evolution of gene therapy techniques, along with the development of innovative delivery systems and therapeutic agents, underscores the ongoing commitment of the scientific and medical communities to advance the field and provide effective treatments for a wide range of genetic diseases.

Gene doping

Athletes might adopt gene therapy technologies to improve their performance. Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports. Therefore, this technology, which is a subfield of genetic engineering commonly referred to as gene doping in sports, has been prohibited due to its potential risks. The primary objective of gene doping is to aid individuals with medical conditions. However, athletes, cognizant of its associated health risks, resort to employing this method in pursuit of enhanced athletic performance. The prohibition of the indiscriminate use of gene doping in sports has been enforced since the year 2003, pursuant to the decision taken by the World Anti-Doping Agency (WADA). A study conducted in 2011 underscored the significance of addressing issues related to gene doping and highlighted the importance of promptly comprehending how gene doping in sports and exercise medicine could impact healthcare services by elucidating its potential to enhance athletic performance. The article elucidates, according to the World Anti-Doping Agency (WADA), how gene doping poses a threat to the fairness of sports. Additionally, the paper delves into health concerns that may arise as a consequence of the utilization of gene doping solely for the purpose of enhancing sports performance. The misuse of gene doping to enhance athletic performance constitutes an unethical practice and entails significant health risks, including but not limited to cancer, viral infections, myocardial infarction, skeletal damage, and autoimmune complications. In addition, gene doping may give rise to various health issues, such as excessive muscle development leading to conditions like hypertonic cardiomyopathy, and render bones and tendons more susceptible to injuries Several genes such as EPO, IGF1, VEGFA, GH, HIFs, PPARD, PCK1, and myostatins are prominent choices for gene doping. Particularly in gene doping, athletes employ substances such as antibodies against myostatin or myostatin blockers. These substances contribute to the augmentation of the athletes' mass, facilitation of increased muscle development, and enhancement of strength. However, the primary genes utilized for gene doping in humans may lead to complications such as excessive muscle growth, which can adversely impact the cardiovascular system and increase the likelihood of injuries. However, due to insufficient awareness of these risks, numerous athletes resort to employing gene doping for purposes divergent from its genuine intent. Within the realm of athlete health, sports ethics and the ethos of fair play, scientists have developed various technologies for the detection of gene doping. Although in its early years the technology used wasn’t reliable, more extensive research has been done for better techniques to uncover gene doping instances that have been more successful. In the beginning, scientist resorted to techniques such as PCR in its various forms. This was not successful due to the fact that such technologies rely on exon-exon junctions in the DNA. This leads to a lack of precision in its detection as results can be easily tampered using misleading primers and gene doping would go undetected. With the emerge of new technologies, more recent studies utilized Next Generation Sequencing (NGS) as a method of detection. With the help of bioinformatics, this technology surpassed previous sequencing techniques in its in-depth analysis of DNA make up. Next Generation Sequencing (NGS) focuses on using an elaborate method of analyzing sample sequence and comparing it to a pre-existing reference sequence from a gene database. This way, primer tampering is not possible as the detection is on a genomic level. Using bioinformatic visualizing tools, data can be easily read and sequences that do not align with reference sequence can be highlighted.[66][67] Most recently, One of the high-efficiency gene doping analysis methods conducted in the year 2023, leveraging cutting-edge technology, is HiGDA (High-efficiency Gene Doping Analysis), which employs CRISPR/deadCas9 technology.

The ethical issues concerning gene doping have been present long before its discovery. Although gene doping is relatively new, the concept of genetic enhancement of any kind has always been subject to ethical concerns. Even when used in a therapeutic manner, gene therapy poses many risks due to its unpredictability among other reasons. Factors other than health issues have raised ethical questions as well. These are mostly concerned with the hereditary factor of these therapies, where gene editing in some cases can be transmitted to the next generation with higher rates of unpredictability and risks in outcomes. For this reason, non-therapeutic application of gene therapy can be seen as a riskier approach to a non-medical concern.[70]

In a study, from history to today, human beings have always been in competition. While in the past warriors competed to be stronger in wars, today there is competition to be successful in every field, and it is understood that this psychology is a phenomenon that has always existed in human history until today. It is known that although an athlete has genetic potential, he cannot become a champion if he does not comply with the necessary training and lifestyle. However, as competition increases, both more physical training and more mental performance are needed. Just as warriors in history used some herbal cures to look stronger and more aggressive, it is a fact that today, athletes resort to doping methods to increase their performance. However, this situation is against sports ethics because it does not comply with the morality and understanding of the game.

One of the negative effects is the risk of cancer, and as a positive effect is taking precautions against certain pathological conditions.Altering genes could lead to unintended and unpredictable changes in the body, potentially causing unforeseen health issues. Further effects of gene doping in sports is the constant fight against drugs not approved by the World Anti doping agency and unfairness regarding athletes that take drugs and don't. The long-term health consequences of gene doping may not be fully understood, and athletes may face health problems later in life.

Other uses

Other hypothetical gene therapies could include changes to physical appearance, metabolism, mental faculties such as memory and intelligence, and well-being (by increasing resistance to depression or relieving chronic pain, for example).

Physical appearance

The exploration of challenges in understanding the effects of gene alterations on phenotypes, particularly within natural genetic diversity, is highlighted. Emphasis is placed on the potential of systems biology and advancements in genotyping/phenotyping technologies for studying complex traits. Despite progress, persistent difficulties in predicting the influence of gene alterations on phenotypic changes are acknowledged, emphasizing the ongoing need for research in this area.

Some congenital disorders (such as those affecting the muscoskeletal system) may affect physical appearance, and in some cases may also cause physical discomfort. Modifying the genes causing these congenital diseases (on those diagnosed to have mutations of the gene known to cause these diseases) may prevent this.

- Phenotypic Impacts of CRISPR-Cas9 Editing in Mice Targeting the Tyr Gene:

In a comprehensive CRISPR-Cas9 study on gene editing, the Tyr gene in mice was targeted, seeking to instigate genetic alterations. The analysis found no off-target effects across 42 subjects, observing modifications exclusively at the intended Tyr locus. Though specifics were not explicitly discussed, these alterations may potentially influence non-defined aspects, such as coat color, emphasizing the broader potential of gene editing in inducing diverse phenotype changes.

Also changes in the myostatin gene may alter appearance.

Behavior

Significant quantitative genetic discoveries were made in the 1970s and 1980s, going beyond estimating heritability. However, issues such as The Bell Curve resurfaced, and by the 1990s, scientists recognized the importance of genetics for behavioral traits such as intelligence. The American Psychological Association's Centennial Conference in 1992 chose behavioral genetics as a theme for the past, present, and future of psychology. Molecular genetics synthesized, resulting in the DNA revolution and behavioral genomics, as quantitative genetic discoveries slowed. Individual behavioral differences can now be predicted early thanks to the behavioral sciences' DNA revolution. The first law of behavioral genetics was established in 1978 after a review of thirty twin studies revealed that the average heritability estimate for intelligence was 46%. Behavior may also be modified by genetic intervention. Some people may be aggressive, selfish, and may not be able to function well in society. Mutations in GLI3 and other patterning genes have been linked to HH etiology, according to genetic research. Approximately 50%-80% of children with HH have acute wrath and violence, and the majority of patients have externalizing problems. Epilepsy may be preceded by behavioral instability and intellectual incapacity. There is currently research ongoing on genes that are or may be (in part) responsible for selfishness (e.g. ruthlessness gene), aggression (e.g. warrior gene), altruism (e.g. OXTR, CD38, COMT, DRD4, DRD5, IGF2, GABRB2)

There has been a great anticipation of gene editing technology to modify genes and regulate our biology since the invention of recombinant DNA technology. These expectations, however, have mostly gone unmet. Evaluation of the appropriate uses of germline interventions in reproductive medicine should not be based on concerns about enhancement or eugenics, despite the fact that gene editing research has advanced significantly toward clinical application.

Cystic fibrosis (CF) is a hereditary disease caused by mutations in the Cystic fibrosis transmembrane conductance regulator (CFTR) gene. While 90% of CF patients can be treated, current treatments are not curative and do not address the entire spectrum of CFTR mutations. Therefore, a comprehensive, long-term therapy is needed to treat all CF patients once and for all. CRISPR/Cas gene editing technologies are being developed as a viable platform for genetic treatment. However, the difficulties of delivering enough CFTR gene and sustaining expression in the lungs has hampered gene therapy's efficacy. Recent technical breakthroughs, including as viral and non-viral vector transport, alternative nucleic acid technologies, and new technologies like mRNA and CRISPR gene editing, have taken use of our understanding of CF biology and airway epithelium.

Human gene transfer has held the promise of a lasting remedy to hereditary illnesses such as cystic fibrosis (CF) since its conception and use. The emergence of sophisticated technologies that allow for site-specific alteration with programmable nucleases has greatly revitalized the area of gene therapy. There is some research going on on the hypothetical treatment of psychiatric disorders by means of gene therapy. It is assumed that, with gene-transfer techniques, it is possible (in experimental settings using animal models) to alter CNS gene expression and thereby the intrinsic generation of molecules involved in neural plasticity and neural regeneration, and thereby modifying ultimately behaviour.

In recent years, it was possible to modify ethanol intake in animal models. Specifically, this was done by targeting the expression of the aldehyde dehydrogenase gene (ALDH2), lead to a significantly altered alcohol-drinking behaviour. Reduction of p11, a serotonin receptor binding protein, in the nucleus accumbens led to depression-like behaviour in rodents, while restoration of the p11 gene expression in this anatomical area reversed this behaviour.

Recently, it was also shown that the gene transfer of CBP (CREB (c-AMP response element binding protein) binding protein) improves cognitive deficits in an animal model of Alzheimer's dementia via increasing the expression of BDNF (brain-derived neurotrophic factor). The same authors were also able to show in this study that accumulation of amyloid-β (Aβ) interfered with CREB activity which is physiologically involved in memory formation.

In another study, it was shown that Aβ deposition and plaque formation can be reduced by sustained expression of the neprilysin (an endopeptidase) gene which also led to improvements on the behavioural (i.e. cognitive) level.

Similarly, the intracerebral gene transfer of ECE (endothelin-converting enzyme) via a virus vector stereotactically injected in the right anterior cortex and hippocampus, has also shown to reduce Aβ deposits in a transgenic mouse model of Alzeimer's dementia.

There is also research going on on genoeconomics, a protoscience that is based on the idea that a person's financial behavior could be traced to their DNA and that genes are related to economic behavior. As of 2015, the results have been inconclusive. Some minor correlations have been identified.

Some studies show that our genes may affect some of our behaviors. For example, some genes may follow our state of stagnation, while others may be responsible for our bad habits. To give an example, the MAOA (Mono oxidase A) gene, the feature of this gene affects the release of hormones such as serotonin, epinephrine and dopamine and suppresses them. It prevents us from reacting in some situations and from stopping and making quick decisions in other situations, which can cause us to make wrong decisions in possible bad situations. As a result of some research, mood states such as aggression, feelings of compassion and irritability can be observed in people carrying this gene. Additionally, as a result of research conducted on people carrying the MAOA gene, this gene can be passed on genetically from parents, and mutations can also develop due to later epigenetic reasons. If we talk about epigenetic reasons, children of families growing up in bad environments begin to implement whatever they see from their parents. For this reason, those children begin to exhibit bad habits or behaviors such as irritability and aggression in the future.

Military

In December 2020, then-Director of National Intelligence John Ratcliffe said in an editorial for The Wall Street Journal that US intelligence shows China had conducted human testing on People's Liberation Army soldiers with the aim of creating "biologically enhanced" soldiers.

In 2022, the People's Liberation Army Academy of Military Sciences reported a notable experiment where military scientists inserted a gene from the tardigrade into human embryonic stem cells. This experiment aimed to explore the potential enhancement of soldiers' resistance to acute radiation syndrome, thereby increasing their ability to survive nuclear fallout. This development reflects the intersection of genetic engineering and military research, with a focus on bioenhancement for military personnel.

CRISPR/Cas9 technologies have garnered attention for their potential applications in military contexts. Various projects are underway, including those focused on protecting soldiers from specific challenges. For instance, researchers are exploring the use of CRISPR/Cas9 to provide protection from frostbite, reduce stress levels, alleviate sleep deprivation, and enhance strength and endurance. The Defense Advanced Research Projects Agency (DARPA) is actively involved in researching and developing these technologies. One of their projects aims to engineer human cells to function as nutrient factories, potentially optimizing soldiers' performance and resilience in challenging environments.

Additionally, military researchers are conducting animal trials to explore the prophylactic treatment for long-term protection against chemical weapons of mass destruction. This involves using non-pathogenic AAV8 vectors to deliver a candidate catalytic bioscavenger, PON1-IF11, into the bloodstream of mice. These initiatives underscore the broader exploration of genetic and molecular interventions to enhance military capabilities and protect personnel from various threats.

In the realm of bioenhancement, concerns have been raised about the use of dietary supplements and other biomedical enhancements by military personnel. A significant portion of American special operations forces reportedly use dietary supplements to enhance performance, but the extent of the use of other bioenhancement methods, such as steroids, human growth hormone, and erythropoietin, remains unclear. The lack of completed safety and efficacy testing for these bioenhancements raises ethical and regulatory questions. This concern is not new, as issues surrounding the off-label use of products like pyridostigmine bromide and botulinum toxoid vaccine during the Gulf War, as well as the DoD's Anthrax Vaccine Immunization Program in 1998, have prompted discussions about the need for thorough FDA approval for specific military applications.

The intersection of genetic engineering, CRISPR/Cas9 technologies, and military research introduces complex ethical considerations regarding the potential augmentation of human capabilities for military purposes. Striking a balance between scientific advancements, ethical standards, and regulatory oversight over classified projects remain crucial as these technologies continue to evolve.

Databases about potential modifications

George Church has compiled a list of potential genetic modifications based on scientific studies for possibly advantageous traits such as less need for sleep, cognition-related changes that protect against Alzheimer's disease, disease resistances, higher lean muscle mass and enhanced learning abilities along with some of the associated studies and potential negative effects.

Women in computing

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Women_in_computing   Women in computing were amon...