Search This Blog

Tuesday, June 3, 2025

Wheat

From Wikipedia, the free encyclopedia

Wheat is a group of wild and domesticated grasses of the genus Triticum (/ˈtrɪtɪkəm/). They are cultivated for their cereal grains, which are staple foods around the world. Well-known wheat species and hybrids include the most widely grown common wheat (T. aestivum), spelt, durum, emmer, einkorn, and Khorasan or Kamut. The archaeological record suggests that wheat was first cultivated in the regions of the Fertile Crescent around 9600 BC.

Wheat is grown on a larger area of land than any other food crop (220.7 million hectares or 545 million acres in 2021). World trade in wheat is greater than that of all other crops combined. In 2021, world wheat production was 771 million tonnes (850 million short tons), making it the second most-produced cereal after maize (known as corn in North America and Australia; wheat is often called corn in countries including Britain). Since 1960, world production of wheat and other grain crops has tripled and is expected to grow further through the middle of the 21st century. Global demand for wheat is increasing because of the usefulness of gluten to the food industry.

Wheat is an important source of carbohydrates. Globally, it is the leading source of vegetable proteins in human food, having a protein content of about 13%, which is relatively high compared to other major cereals but relatively low in protein quality (supplying essential amino acids). When eaten as the whole grain, wheat is a source of multiple nutrients and dietary fibre. In a small part of the general population, gluten – which comprises most of the protein in wheat – can trigger coeliac disease, noncoeliac gluten sensitivity, gluten ataxia, and dermatitis herpetiformis.

Description

A: Plant; B ripe ear of corn; 1 spikelet before flowering; 2 the same, flowering and spread, enlarged; 3 flowers with glumes; 4 stamens 5 pollen; 6 and 7 ovaries with juice scales; 8 and 9 parts of the scar; 10 fruit husks; 11, 12, 13 seeds, natural size and enlarged; 14 the same cut up, enlarged.

Wheat is a stout grass of medium to tall height. Its stem is jointed and usually hollow, forming a straw. There can be many stems on one plant. It has long narrow leaves, their bases sheathing the stem, one above each joint. At the top of the stem is the flower head, containing some 20 to 100 flowers. Each flower contains both male and female parts. The flowers are wind-pollinated, with over 99% of pollination events being self-pollinations and the rest cross-pollinations. The flower is housed in a pair of small leaflike glumes. The two (male) stamens and (female) stigmas protrude outside the glumes. The flowers are grouped into spikelets, each with between two and six flowers. Each fertilised carpel develops into a wheat grain or berry; botanically a caryopsis fruit, it is often called a seed. The grains ripen to a golden yellow; a head of grain is called an ear.

Leaves emerge from the shoot apical meristem in a telescoping fashion until the transition to reproduction i.e. flowering. The last leaf produced by a wheat plant is known as the flag leaf. It is denser and has a higher photosynthetic rate than other leaves, to supply carbohydrate to the developing ear. In temperate countries the flag leaf, along with the second and third highest leaf on the plant, supply the majority of carbohydrate in the grain and their condition is paramount to yield formation. Wheat is unusual among plants in having more stomata on the upper (adaxial) side of the leaf, than on the under (abaxial) side. It has been theorised that this might be an effect of it having been domesticated and cultivated longer than any other plant. Winter wheat generally produces up to 15 leaves per shoot and spring wheat up to 9 and winter crops may have up to 35 tillers (shoots) per plant (depending on cultivar).

Wheat roots are among the deepest of arable crops, extending as far down as 2 metres (6 ft 7 in). While the roots of a wheat plant are growing, the plant also accumulates an energy store in its stem, in the form of fructans, which helps the plant to yield under drought and disease pressure, but it has been observed that there is a trade-off between root growth and stem non-structural carbohydrate reserves. Root growth is likely to be prioritised in drought-adapted crops, while stem non-structural carbohydrate is prioritised in varieties developed for countries where disease is a bigger issue.

Depending on variety, wheat may be awned or not awned. Producing awns incurs a cost in grain number, but wheat awns photosynthesise more efficiently than their leaves with regards to water usage, so awns are much more frequent in varieties of wheat grown in hot drought-prone countries than those generally seen in temperate countries. For this reason, awned varieties could become more widely grown due to climate change. In Europe, however, a decline in climate resilience of wheat has been observed.

History

Origin and 21st century production areas of wheat

Domestication

Hunter-gatherers in West Asia harvested wild wheats for thousands of years before they were domesticated, perhaps as early as 21,000 BC, but they formed a minor component of their diets. In this phase of pre-domestication cultivation, early cultivars were spread around the region and slowly developed the traits that came to characterise their domesticated forms.

Repeated harvesting and sowing of the grains of wild grasses led to the creation of domestic strains, as mutant forms ('sports') of wheat were more amenable to cultivation. In domesticated wheat, grains are larger, and the seeds (inside the spikelets) remain attached to the ear by a toughened rachis during harvesting. In wild strains, a more fragile rachis allows the ear to shatter easily, dispersing the spikelets. Selection for larger grains and non-shattering heads by farmers might not have been deliberately intended, but simply have occurred because these traits made gathering the seeds easier; nevertheless such 'incidental' selection was an important part of crop domestication. As the traits that improve wheat as a food source involve the loss of the plant's natural seed dispersal mechanisms, highly domesticated strains of wheat cannot survive in the wild.

Wild einkorn wheat (T. monococcum subsp. boeoticum) grows across Southwest Asia in open parkland and steppe environments. It comprises three distinct races, only one of which, native to Southeast Anatolia, was domesticated. The main feature that distinguishes domestic einkorn from wild is that its ears do not shatter without pressure, making it dependent on humans for dispersal and reproduction. It also tends to have wider grains. Wild einkorn was collected at sites such as Tell Abu Hureyra (c. 10,700–9000 BC) and Mureybet (c. 9800–9300 BC), but the earliest archaeological evidence for the domestic form comes after c.  8800 BC in southern Turkey, at Çayönü, Cafer Höyük, and possibly Nevalı Çori. Genetic evidence indicates that it was domesticated in multiple places independently.

Wild emmer wheat (T. turgidum subsp. dicoccoides) is less widespread than einkorn, favouring the rocky basaltic and limestone soils found in the hilly flanks of the Fertile Crescent. It is more diverse, with domesticated varieties falling into two major groups: hulled or non-shattering, in which threshing separates the whole spikelet; and free-threshing, where the individual grains are separated. Both varieties probably existed in prehistory, but over time free-threshing cultivars became more common. Wild emmer was first cultivated in the southern Levant, as early as 9600 BC. Genetic studies have found that, like einkorn, it was domesticated in southeastern Anatolia, but only once. The earliest secure archaeological evidence for domestic emmer comes from Çayönü, c. 8300–7600 BC, where distinctive scars on the spikelets indicated that they came from a hulled domestic variety. Slightly earlier finds have been reported from Tell Aswad in Syria, c. 8500–8200 BC, but these were identified using a less reliable method based on grain size.

Early farming

Sickles with stone microblades were used to harvest wheat in the Neolithic period, c. 8500–4000 BC

Einkorn and emmer are considered two of the founder crops cultivated by the first farming societies in Neolithic West Asia. These communities also cultivated naked wheats (T. aestivum and T. durum) and a now-extinct domesticated form of Zanduri wheat (T. timopheevii), as well as a wide variety of other cereal and non-cereal crops. Wheat was relatively uncommon for the first thousand years of the Neolithic (when barley predominated), but became a staple after around 8500 BC. Early wheat cultivation did not demand much labour. Initially, farmers took advantage of wheat's ability to establish itself in annual grasslands by enclosing fields against grazing animals and re-sowing stands after they had been harvested, without the need to systematically remove vegetation or till the soil. They may also have exploited natural wetlands and floodplains to practice décrue farming, sowing seeds in the soil left behind by receding floodwater. It was harvested with stone-bladed sickles. The ease of storing wheat and other cereals led farming households to become gradually more reliant on it over time, especially after they developed individual storage facilities that were large enough to hold more than a year's supply.

Wheat grain was stored after threshing, with the chaff removed. It was then processed into flour using ground stone mortarsBread made from ground einkorn and the tubers of a form of club rush (Bolboschoenus glaucus) was made as early as 12,400 BC. At Çatalhöyük (c. 7100–6000 BC), both wholegrain wheat and flour was used to prepare bread, porridge and gruel. Apart from food, wheat may also have been important to Neolithic societies as a source of straw, which could be used for fuel, wicker-making, or wattle and daub construction.

Spread

Domestic wheat was quickly spread to regions where its wild ancestors did not grow naturally. Emmer was introduced to Cyprus as early as 8600 BC and einkorn c. 7500 BC; emmer reached Greece by 6500 BC, Egypt shortly after 6000 BC, and Germany and Spain by 5000 BC. "The early Egyptians were developers of bread and the use of the oven and developed baking into one of the first large-scale food production industries." By 4000 BC, wheat had reached the British Isles and Scandinavia. Wheat was also cultivated in India around 3500 BC. Wheat likely appeared in China's lower Yellow River around 2600 BC.

The oldest evidence for hexaploid wheat has been confirmed through DNA analysis of wheat seeds, dating to around 6400–6200 BC, recovered from Çatalhöyük. As of 2023, the earliest known wheat with sufficient gluten for yeasted breads was found in a granary at Assiros in Macedonia dated to 1350 BC. From the Middle East, wheat continued to spread across Europe and to the Americas in the Columbian exchange. In the British Isles, wheat straw (thatch) was used for roofing in the Bronze Age, and remained in common use until the late 19th century. White wheat bread was historically a high status food, but during the nineteenth century it became in Britain an item of mass consumption, displacing oats, barley and rye from diets in the North of the country. It became "a sign of a high degree of culture". After 1860, the enormous expansion of wheat production in the United States flooded the world market, lowering prices by 40%, and (along with the expansion of potato growing) made a major contribution to the nutritional welfare of the poor.

Evolution

Phylogeny

Wheat origins by repeated hybridization and polyploidy. Not all species are shown.

Some wheat species are diploid, with two sets of chromosomes, but many are stable polyploids, with four sets of chromosomes (tetraploid) or six (hexaploid). Einkorn wheat (Triticum monococcum) is diploid (AA, two complements of seven chromosomes, 2n=14). Most tetraploid wheats (e.g. emmer and durum wheat) are derived from wild emmer, T. dicoccoides. Wild emmer is itself the result of a hybridization between two diploid wild grasses, T. urartu and a wild goatgrass such as Ae. speltoides. The hybridization that formed wild emmer (AABB, four complements of seven chromosomes in two groups, 4n=28) occurred in the wild, long before domestication, and was driven by natural selection. Hexaploid wheats evolved in farmers' fields as wild emmer hybridized with another goatgrass, Ae. squarrosa or Ae. tauschii, to make the hexaploid wheats including bread wheat.

A 2007 molecular phylogeny of the wheats gives the following not fully-resolved cladogram of major cultivated species; the large amount of hybridisation makes resolution difficult. Markings like "6N" indicate the degree of polyploidy of each species:

Triticeae

Barley 2N, rye 2N/4N, and other cereals


Wheats


Triticum monococcum (einkorn) 2N



× Aegilotriticum hybrids (Aegilops x Triticum) 6N





Triticum timopheevii (zanduri wheat) and others 4N




Triticum aestivum (common or bread wheat) 6N



Triticum durum/turgidum (durum wheat) 4N



Triticum spelta (spelt) 6N



Triticum turanicum (khorasan wheat) 4N



Triticum dicoccum (emmer) 4N



many other species






Taxonomy

During 10,000 years of cultivation, numerous forms of wheat, many of them hybrids, have developed under a combination of artificial and natural selection. This complexity and diversity of status has led to much confusion in the naming of wheats.

Major species

Hexaploid species (6N)

  • Common wheat or bread wheat (T. aestivum) – The most widely cultivated species in the world.
  • Spelt (T. spelta) – Another species largely replaced by bread wheat, but in the 21st century grown, often organically, for artisanal bread and pasta.

Tetraploid species (4N)

  • Durum (T. durum) – A wheat widely used today, and the second most widely cultivated wheat.
  • Emmer (T. turgidum subsp. dicoccum and T. t. conv. durum) – A species cultivated in ancient times, derived from wild emmer, T. dicoccoides, but no longer in widespread use.
  • Khorasan or Kamut (T. turgidum ssp. turanicum, also called T. turanicum) is an ancient grain type; Khorasan is a historical region in modern-day Afghanistan and the northeast of Iran. The grain is twice the size of modern wheat and has a rich nutty flavor.

Diploid species (2N)

  • Einkorn (T. monococcum). Domesticated from wild einkorn, T. boeoticum, at the same time as emmer wheat.

Hulled versus free-threshing species

Hulled wheat and einkorn. Note how the einkorn ear breaks down into intact spikelets.

The wild species of wheat, along with the domesticated varieties einkorn, emmer and spelt, have hulls. This more primitive morphology (in evolutionary terms) consists of toughened glumes that tightly enclose the grains, and (in domesticated wheats) a semi-brittle rachis that breaks easily on threshing. The result is that when threshed, the wheat ear breaks up into spikelets. To obtain the grain, further processing, such as milling or pounding, is needed to remove the hulls or husks. Hulled wheats are often stored as spikelets because the toughened glumes give good protection against pests of stored grain. In free-threshing (or naked) forms, such as durum wheat and common wheat, the glumes are fragile and the rachis tough. On threshing, the chaff breaks up, releasing the grains.

As a food

Grain classes

Classification of wheat greatly varies by the producing country.

Argentina's grain classes were formerly related to the production region or port of shipment: Rosafe (grown in Santa Fe province, shipped through Rosario), Bahia Blanca (grown in Buenos Aires and La Pampa provinces and shipped through Bahia Blanca), Buenos Aires (shipped through the port of Buenos Aires). While mostly similar to the US Hard Red Spring wheat, the classification caused inconsistencies, so Argentina introduced three new classes of wheat, with all names using a prefix Trigo Dura Argentina (TDA) and a number.

The grain classification in Australia is within the purview of its National Pool Classification Panel. Australia chose to measure the protein content at 11% moisture basis.

The decisions on the wheat classification in Canada are coordinated by the Variety Registration Office of the Canadian Food Inspection Agency. Like in the US system, the eight classes in Western Canada and six classes in Eastern Canada are based on colour, season, and hardness. Canada has a unique requirement that the varieties of wheat grains should allow for purely visual identification.

The wheat grain classes used in the United States are named by colour, season, and hardness.

Food value and uses

Wheat is used in a wide variety of foods.
Wheat, hard red winter
Nutritional value per 100 g (3.5 oz)
Energy1,368 kJ (327 kcal)

71.18 g
Sugars0.41
Dietary fiber12.2 g

1.54 g

12.61 g

Vitamins and minerals

Other constituentsQuantity
Water13.1 g
Selenium70.7 µg

Percentages estimated using US recommendations for adults, except for potassium, which is estimated based on expert recommendation from the National Academies.

Wheat is a staple cereal worldwide. Raw wheat berries can be ground into flour or, using hard durum wheat only, can be ground into semolina; germinated and dried creating malt; crushed or cut into cracked wheat; parboiled (or steamed), dried, and de-branned into groats, then crushed into bulgur. If the raw wheat is broken into parts at the mill, as is usually done, the outer husk or bran can be used in several ways. Wheat is a major ingredient in baked foods, such as bread, rolls, crackers, biscuits, pancakes, pasta, pies, pastries, pizza, cakes, cookies, and muffins; in fried foods, such as doughnuts; in breakfast cereals, gravy, porridge, and muesli; in semolina; and in drinks such as beer, vodka, and boza (a fermented beverage). In manufacturing wheat products, gluten is valuable to impart viscoelastic functional qualities in dough, enabling the preparation of diverse processed foods such as breads, noodles, and pasta that facilitate wheat consumption.

Nutrition

Raw red winter wheat is 13% water, 71% carbohydrates including 12% dietary fiber, 13% protein, and 2% fat (table). Some 75–80% of the protein content is as gluten. In a reference amount of 100 grams (3.5 oz), wheat provides 1,368 kilojoules (327 kilocalories) of food energy and is a rich source (20% or more of the Daily Value, DV) of multiple dietary minerals, such as manganese, phosphorus, magnesium, zinc, and iron (table). The B vitamins, niacin (36% DV), thiamine (33% DV), and vitamin B6 (23% DV), are present in significant amounts (table).

Wheat is a significant source of vegetable proteins in human food, having a relatively high protein content compared to other major cereals. However, wheat proteins have a low quality for human nutrition, according to the DIAAS protein quality evaluation method. Though they contain adequate amounts of the other essential amino acids, at least for adults, wheat proteins are deficient in the essential amino acid lysine. Because the proteins present in the wheat endosperm (gluten proteins) are particularly poor in lysine, white flours are more deficient in lysine compared with whole grains. Significant efforts in plant breeding are made to develop lysine-rich wheat varieties, without success, as of 2017. Supplementation with proteins from other food sources (mainly legumes) is commonly used to compensate for this deficiency, since the limitation of a single essential amino acid causes the others to break down and become excreted, which is especially important during growth.

Health advisories

Consumed worldwide by billions of people, wheat is a significant food for human nutrition, particularly in the least developed countries where wheat products are primary foods. When eaten as the whole grain, wheat supplies multiple nutrients and dietary fiber recommended for children and adults. In genetically susceptible people, wheat gluten can trigger coeliac disease. Coeliac disease affects about 1% of the general population in developed countries. The only known effective treatment is a strict lifelong gluten-free diet. While coeliac disease is caused by a reaction to wheat proteins, it is not the same as a wheat allergy. Other diseases triggered by eating wheat are non-coeliac gluten sensitivity (estimated to affect 0.5% to 13% of the general population), gluten ataxia, and dermatitis herpetiformis. Certain short-chain carbohydrates present in wheat, known as FODMAPs (mainly fructose polymers), may be the cause of non-coeliac gluten sensitivity. As of 2019, reviews have concluded that FODMAPs only explain certain gastrointestinal symptoms, such as bloating, but not the extra-digestive symptoms that people with non-coeliac gluten sensitivity may develop. Other wheat proteins, amylase-trypsin inhibitors, have been identified as the possible activator of the innate immune system in coeliac disease and non-coeliac gluten sensitivity. These proteins are part of the plant's natural defense against insects and may cause intestinal inflammation in humans.

Production and consumption

Global

Wheat production, 2023
Country Millions of tonnes
 China 136.6
 India 110.6
 Russia 91.5
 United States 49.3
 Australia 41.2
 France 35.9
 Canada 31.9
World 799
Source: UN Food and Agriculture Organization

In 2023, world wheat production was 799 million tonnes, led by China, India, and Russia which collectively provided 42.4% of the world total. As of 2019, the largest exporters were Russia (32 million tonnes), United States (27), Canada (23) and France (20), while the largest importers were Indonesia (11 million tonnes), Egypt (10.4) and Turkey (10.0). In 2021, wheat was grown on 220.7 million hectares or 545 million acres worldwide, more than any other food crop. World trade in wheat is greater than for all other crops combined. Global demand for wheat is increasing due to the unique viscoelastic and adhesive properties of gluten proteins, which facilitate the production of processed foods, whose consumption is increasing as a result of the worldwide industrialization process and westernization of diets.

19th century

Wheat prices in England, 1264–1996

Wheat became a central agriculture endeavor in the worldwide British Empire in the 19th century, and remains of great importance in Australia, Canada and India. In Australia, with vast lands and a limited work force, expanded production depended on technological advances, especially regarding irrigation and machinery. By the 1840s there were 900 growers in South Australia. They used "Ridley's Stripper", a reaper-harvester perfected by John Ridley in 1843, to remove the heads of grain. In Canada, modern farm implements made large scale wheat farming possible from the late 1840s. By 1879, Saskatchewan was the center, followed by Alberta, Manitoba and Ontario, as the spread of railway lines allowed easy exports to Britain. By 1910, wheat made up 22% of Canada's exports, rising to 25% in 1930 despite the sharp decline in prices during the worldwide Great Depression. Efforts to expand wheat production in South Africa, Kenya and India were stymied by low yields and disease. However, by 2000 India had become the second largest producer of wheat in the world. In the 19th century the American wheat frontier moved rapidly westward. By the 1880s 70% of American exports went to British ports. The first successful grain elevator was built in Buffalo in 1842. The cost of transport fell rapidly. In 1869 it cost 37 cents to transport a bushel of wheat from Chicago to Liverpool. In 1905 it was 10 cents.

Late 20th century yields

In the 20th century, global wheat output expanded by about 5-fold, but until about 1955 most of this reflected increases in wheat crop area, with lesser (about 20%) increases in crop yields per unit area. After 1955 however, there was a ten-fold increase in the rate of wheat yield improvement per year, and this became the major factor allowing global wheat production to increase. Thus technological innovation and scientific crop management with synthetic nitrogen fertilizer, irrigation and wheat breeding were the main drivers of wheat output growth in the second half of the century. There were some significant decreases in wheat crop area, for instance in North America. Better seed storage and germination ability (and hence a smaller requirement to retain harvested crop for next year's seed) is another 20th-century technological innovation. In medieval England, farmers saved one-quarter of their wheat harvest as seed for the next crop, leaving only three-quarters for food and feed consumption. By 1999, the global average seed use of wheat was about 6% of output. In the 21st century, rising temperatures associated with global warming are reducing wheat yield in several locations.

Agronomy

Growing wheat

Wheat is an annual crop. It can be planted in autumn and harvested in early summer as winter wheat in climates that are not too severe, or planted in spring and harvested in autumn as spring wheat. It is normally planted after tilling the soil by ploughing and then harrowing to kill weeds and create an even surface. The seeds are then scattered on the surface, or drilled into the soil in rows. Winter wheat lies dormant during a winter freeze. It needs to develop to a height of 10 to 15 cm before the cold intervenes, so as to be able to survive the winter; it requires a period with the temperature at or near freezing, its dormancy then being broken by the thaw or rise in temperature. Spring wheat does not undergo dormancy. Wheat requires a deep soil, preferably a loam with organic matter, and available minerals including soil nitrogen, phosphorus, and potassium. An acid and peaty soil is not suitable. Wheat needs some 30 to 38 cm of rain in the growing season to form a good crop of grain.

The farmer may intervene while the crop is growing to add fertilizer, water by irrigation, or pesticides such as herbicides to kill broad-leaved weeds or insecticides to kill insect pests. The farmer may assess soil minerals, soil water, weed growth, or the arrival of pests to decide timely and cost-effective corrective actions, and crop ripeness and water content to select the right moment to harvest. Harvesting involves reaping, cutting the stems to gather the crop; and threshing, breaking the ears to release the grain; both steps are carried out by a combine harvester. The grain is then dried so that it can be stored safe from mould fungi.

Crop development

Wheat developmental stages on the BBCH and Zadok's scales

Wheat normally needs between 110 and 130 days between sowing and harvest, depending upon climate, seed type, and soil conditions. Optimal crop management requires that the farmer have a detailed understanding of each stage of development in the growing plants. In particular, spring fertilizers, herbicides, fungicides, and growth regulators are typically applied only at specific stages of plant development. For example, it is currently recommended that the second application of nitrogen is best done when the ear (not visible at this stage) is about 1 cm in size (Z31 on Zadoks scale). Knowledge of stages is also important to identify periods of higher risk from the climate. Farmers benefit from knowing when the 'flag leaf' (last leaf) appears, as this leaf represents about 75% of photosynthesis reactions during the grain filling period, and so should be preserved from disease or insect attacks to ensure a good yield. Several systems exist to identify crop stages, with the Feekes and Zadoks scales being the most widely used. Each scale is a standard system which describes successive stages reached by the crop during the agricultural season. For example, the stage of pollen formation from the mother cell, and the stages between anthesis and maturity, are susceptible to high temperatures, and this adverse effect is made worse by water stress.

Farming techniques

Technological advances in soil preparation and seed placement at planting time, use of crop rotation and fertilizers to improve plant growth, and advances in harvesting methods have all combined to promote wheat as a viable crop. When the use of seed drills replaced broadcasting sowing of seed in the 18th century, another great increase in productivity occurred. Yields of pure wheat per unit area increased as methods of crop rotation were applied to land that had long been in cultivation, and the use of fertilizers became widespread.

Improved agricultural husbandry has more recently included pervasive automation, starting with the use of threshing machines, and progressing to large and costly machines like the combine harvester which greatly increased productivity. At the same time, better varieties such as Norin 10 wheat, developed in Japan in the 1930s, or the dwarf wheat developed by Norman Borlaug in the Green Revolution, greatly increased yields.

In addition to gaps in farming system technology and knowledge, some large wheat grain-producing countries have significant losses after harvest at the farm and because of poor roads, inadequate storage technologies, inefficient supply chains and farmers' inability to bring the produce into retail markets dominated by small shopkeepers. Some 10% of total wheat production is lost at farm level, another 10% is lost because of poor storage and road networks, and additional amounts are lost at the retail level.

In the Punjab region of the Indian subcontinent, as well as North China, irrigation has been a major contributor to increased grain output. More widely over the last 40 years, a massive increase in fertilizer use together with the increased availability of semi-dwarf varieties in developing countries, has greatly increased yields per hectare. In developing countries, use of (mainly nitrogenous) fertilizer increased 25-fold in this period. However, farming systems rely on much more than fertilizer and breeding to improve productivity. A good illustration of this is Australian wheat growing in the southern winter cropping zone, where, despite low rainfall (300 mm), wheat cropping is successful even with relatively little use of nitrogenous fertilizer. This is achieved by crop rotation with leguminous pastures. The inclusion of a canola crop in the rotations has boosted wheat yields by a further 25%. In these low rainfall areas, better use of available soil-water (and better control of soil erosion) is achieved by retaining the stubble after harvesting and by minimizing tillage.

Pests and diseases

Pests and diseases consume 21.47% of the world's wheat crop annually.

Diseases

Rust-affected wheat seedlings

There are many wheat diseases, mainly caused by fungi, bacteria, and virusesPlant breeding to develop new disease-resistant varieties, and sound crop management practices are important for preventing disease. Fungicides, used to prevent the significant crop losses from fungal disease, can be a significant variable cost in wheat production. Estimates of the amount of wheat production lost owing to plant diseases vary between 10 and 25% in Missouri. A wide range of organisms infect wheat, of which the most important are viruses and fungi.

The main wheat-disease categories are:

A historically significant disease of cereals including wheat, though commoner in rye is ergot; it is unusual among plant diseases in also causing sickness in humans who ate grain contaminated with the fungus involved, Claviceps purpurea.

Animal pests

Pupa of the wheat weevil, Sitophilus granarius, inside a wheat kernel

Among insect pests of wheat is the wheat stem sawfly, a chronic pest in the Northern Great Plains of the United States and in the Canadian Prairies. Wheat is the food plant of the larvae of some Lepidoptera (butterfly and moth) species including the flame, rustic shoulder-knot, setaceous Hebrew character and turnip moth. Early in the season, many species of birds and rodents feed upon wheat crops. These animals can cause significant damage to a crop by digging up and eating newly planted seeds or young plants. They can also damage the crop late in the season by eating the grain from the mature spike. Recent post-harvest losses in cereals amount to billions of dollars per year in the United States alone, and damage to wheat by various borers, beetles and weevils is no exception. Rodents can also cause major losses during storage, and in major grain growing regions, field mice numbers can sometimes build up explosively to plague proportions because of the ready availability of food. To reduce the amount of wheat lost to post-harvest pests, Agricultural Research Service scientists have developed an "insect-o-graph", which can detect insects in wheat that are not visible to the naked eye. The device uses electrical signals to detect the insects as the wheat is being milled. The new technology is so precise that it can detect 5–10 infested seeds out of 30,000 good ones.

Breeding objectives

In traditional agricultural systems, wheat populations consist of landraces, informal farmer-maintained populations that often maintain high levels of morphological diversity. Although landraces of wheat are no longer extensively grown in Europe and North America, they continue to be important elsewhere. The origins of formal wheat breeding lie in the nineteenth century, when single line varieties were created through selection of seed from a single plant noted to have desired properties. Modern wheat breeding developed in the first years of the twentieth century and was closely linked to the development of Mendelian genetics. The standard method of breeding inbred wheat cultivars is by crossing two lines using hand emasculation, then selfing or inbreeding the progeny. Selections are identified (shown to have the genes responsible for the varietal differences) ten or more generations before release as a variety or cultivar.

Major breeding objectives include high grain yield, good quality, disease- and insect resistance and tolerance to abiotic stresses, including mineral, moisture and heat tolerance. Wheat has been the subject of mutation breeding, with the use of gamma-, x-rays, ultraviolet light (collectively, radiation breeding), and sometimes harsh chemicals. The varieties of wheat created through these methods are in the hundreds (going as far back as 1960), more of them being created in higher populated countries such as China. Bread wheat with high grain iron and zinc content has been developed through gamma radiation breeding, and through conventional selection breeding. International wheat breeding is led by the International Maize and Wheat Improvement Center in Mexico. ICARDA is another major public sector international wheat breeder, but it was forced to relocate from Syria to Lebanon in the Syrian Civil War.

Pathogens and wheat are in a constant process of coevolutionSpore-producing wheat rusts are substantially adapted towards successful spore propagation, which is essentially to say its R0. These pathogens tend towards high-R0 evolutionary attractors.

For higher yields

Breeding has increased yields over time

The presence of certain versions of wheat genes has been important for crop yields. Genes for the 'dwarfing' trait, first used by Japanese wheat breeders to produce Norin 10 short-stalked wheat, have had a huge effect on wheat yields worldwide, and were major factors in the success of the Green Revolution in Mexico and Asia, an initiative led by Norman Borlaug. Dwarfing genes enable the carbon that is fixed in the plant during photosynthesis to be diverted towards seed production, and they also help prevent the problem of lodging. "Lodging" occurs when an ear stalk falls over in the wind and rots on the ground, and heavy nitrogenous fertilization of wheat makes the grass grow taller and become more susceptible to this problem. By 1997, 81% of the developing world's wheat area was planted to semi-dwarf wheats, giving both increased yields and better response to nitrogenous fertilizer.

T. turgidum subsp. polonicum, known for its longer glumes and grains, has been bred into main wheat lines for its grain size effect, and likely has contributed these traits to Triticum petropavlovskyi and the Portuguese landrace group Arrancada. As with many plants, MADS-box influences flower development, and more specifically, as with other agricultural Poaceae, influences yield. Despite that importance, as of 2021 little research has been done into MADS-box and other such spikelet and flower genetics in wheat specifically.

The world record wheat yield is about 17 tonnes per hectare (15,000 pounds per acre), reached in New Zealand in 2017. A project in the UK, led by Rothamsted Research has aimed to raise wheat yields in the country to 20 t/ha (18,000 lb/acre) by 2020, but in 2018 the UK record stood at 16 t/ha (14,000 lb/acre), and the average yield was just 8 t/ha (7,100 lb/acre).

For disease resistance

Different strains have been infected with the stem rust fungus. The strains bred to be resistant have their leaves unaffected or relatively unaffected by the fungus.

Wild grasses in the genus Triticum and related genera, and grasses such as rye have been a source of many disease-resistance traits for cultivated wheat breeding since the 1930s. Some resistance genes have been identified against Pyrenophora tritici-repentis, especially races 1 and 5, those most problematic in KazakhstanWild relative, Aegilops tauschii is the source of several genes effective against TTKSK/Ug99 - Sr33, Sr45, Sr46, and SrTA1662 - of which Sr33 and SrTA1662 are the work of Olson et al., 2013, and Sr45 and Sr46 are also briefly reviewed therein.

Resistance to Fusarium head blight (FHB, Fusarium ear blight) is also an important breeding target. Marker-assisted breeding panels involving kompetitive allele specific PCR can be used. Singh et al. 2019 identify a KASP genetic marker for a pore-forming toxin-like gene providing FHB resistance.

In 2003 the first resistance genes against fungal diseases in wheat were isolated. In 2021, novel resistance genes were identified in wheat against powdery mildew and wheat leaf rust.Modified resistance genes have been tested in transgenic wheat and barley plants.

To create hybrid vigor

Because wheat self-pollinates, creating hybrid seed to provide the possible benefits of heterosis, hybrid vigor (as in the familiar F1 hybrids of maize), is extremely labor-intensive; the high cost of hybrid wheat seed relative to its moderate benefits have kept farmers from adopting them widely despite nearly 90 years of effort. Commercial hybrid wheat seed has been produced using chemical hybridizing agents, plant growth regulators that selectively interfere with pollen development, or naturally occurring cytoplasmic male sterility systems. Hybrid wheat has been a limited commercial success in Europe (particularly France), the United States and South Africa.

Synthetic hexaploids made by crossing the wild goatgrass wheat ancestor Aegilops tauschii, and other Aegilops, and various durum wheats are now being deployed, and these increase the genetic diversity of cultivated wheats.

For gluten content

Modern bread wheat varieties have been cross-bred to contain greater amounts of gluten, which affords significant advantages for improving the quality of breads and pastas from a functional point of view. However, a 2020 study that grew and analyzed 60 wheat cultivars from between 1891 and 2010 found no changes in albumin/globulin and gluten contents over time. "Overall, the harvest year had a more significant effect on protein composition than the cultivar. At the protein level, we found no evidence to support an increased immunostimulatory potential of modern winter wheat."

For water efficiency

Stomata (or leaf pores) are involved in both uptake of carbon dioxide gas from the atmosphere and water vapor losses from the leaf due to water transpiration. Basic physiological investigation of these gas exchange processes has yielded carbon isotope based method used for breeding wheat varieties with improved water-use efficiency. These varieties can improve crop productivity in rain-fed dry-land wheat farms.

For insect resistance

The complex genome of wheat has made its improvement difficult. Comparison of hexaploid wheat genomes using a range of chromosome pseudomolecule and molecular scaffold assemblies in 2020 has enabled the resistance potential of its genes to be assessed. Findings include the identification of "a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire" which contributes to disease resistance, while the gene Sm1 provides a degree of insect resistance, for instance against the orange wheat blossom midge.

Genomics

Decoding the genome

In 2010, 95% of the genome of Chinese Spring line 42 wheat was decoded. This genome was released in a basic format for scientists and plant breeders to use but was not fully annotated. In 2012, an essentially complete gene set of bread wheat was published. Random shotgun libraries of total DNA and cDNA from the T. aestivum cv. Chinese Spring (CS42) were sequenced to generate 85 Gb of sequence (220 million reads) and identified between 94,000 and 96,000 genes. In 2018, a more complete Chinese Spring genome was released by a different team. In 2020, 15 genome sequences from various locations and varieties around the world were reported, with examples of their own use of the sequences to localize particular insect and disease resistance factors. Wheat Blast Resistance is controlled by R genes which are highly race-specific.

Genetic engineering

For decades, the primary genetic modification technique has been non-homologous end joining (NHEJ). However, since its introduction, the CRISPR/Cas9 tool has been extensively adopted, for example:

As of 2021 these examples illustrate the rapid deployment and results that CRISPR/Cas9 has shown in wheat disease resistance improvement.

In art

Wheatfield with Crows, an 1890 painting by Vincent van Gogh. Van Gogh Museum, Amsterdam

The Dutch artist Vincent van Gogh created the series Wheat Fields between 1885 and 1890, consisting of dozens of paintings made mostly in different parts of rural France. They depict wheat crops, sometimes with farm workers, in varied seasons and styles, sometimes green, sometimes at harvest. Wheatfield with Crows was one of his last paintings, and is considered to be among his greatest works.

In 1967, the American artist Thomas Hart Benton made his oil on wood painting Wheat, showing a row of uncut wheat plants, occupying almost the whole height of the painting, between rows of freshly-cut stubble. The painting is held by the Smithsonian American Art Museum.

In 1982, the American conceptual artist Agnes Denes grew a two-acre field of wheat at Battery Park, Manhattan. The ephemeral artwork has been described as an act of protest. The harvested wheat was divided and sent to 28 world cities for an exhibition entitled "The International Art Show for the End of World Hunger".

Molecular breeding

From Wikipedia, the free encyclopedia

Molecular breeding is the application of molecular biology tools, often in plant breeding and animal breeding. In the broad sense, molecular breeding can be defined as the use of genetic manipulation performed at the level of DNA to improve traits of interest in plants and animals, and it may also include genetic engineering or gene manipulation, molecular marker-assisted selection, and genomic selection. More often, however, molecular breeding implies molecular marker-assisted breeding (MAB) and is defined as the application of molecular biotechnologies, specifically molecular markers, in combination with linkage maps and genomics, to alter and improve plant or animal traits on the basis of genotypic assays.

The areas of molecular breeding include:

Constituent methods

Marker assisted breeding

Methods in marker assisted breeding include:

Genotyping and creating molecular maps - genomics

The commonly used markers include simple sequence repeats (or microsatellites), single nucleotide polymorphisms (SNP). The process of identification of plant genotypes is known as genotyping.

Development of SNPs has revolutionized the molecular breeding process as it helps to create dense markers. Another area that is developing is genotyping by sequencing.

Phenotyping - phenomics

To identify genes associated with traits, it is important to measure the trait value - known as phenotype. The "omics" for measurement of phenotypes is called phenomics. The phenotype can be indicative of the measurement of the trait itself or an indirectly related or correlated trait.

QTL mapping or association mapping

Genes (Quantitative trait loci (abbreviated as QTL) or quantitative trait genes or minor genes or major genes) involved in controlling trait of interest are identified. The process is known as mapping. Mapping of such genes can be done using molecular markers. QTL mapping can involve single large family, unrelated individuals or multiple families (see: Family based QTL mapping). The basic idea is to identify genes or markers associated with genes that correlate to a phenotypic measurement and that can be used in marker assisted breeding / selection.

Marker assisted selection or genetic selection

Once genes or markers are identified, they can be used for genotyping and selection decisions can be made.

Marker-assisted backcrossing (MABC)

Backcrossing is crossing an F1 with its parents to transfer a limited number of loci (e.g. transgene, disease resistance loci, etc.) from one genetic background to another. Usually the recipient of such genes is a cultivar that is already well performing - except for the gene that is to be transferred. So we want to keep the genetic background of the recipient genotypes, which is done by 4-6 rounds of repeated backcrosses while selecting for the gene of interest. We can use markers from the whole genome to recover the genome quickly in 2-3 rounds of backcrossing might be good enough in such situation.

Genomic selection

Genomic selection is a novel approach to traditional marker-assisted selection where selection is made based on only a few markers. Rather than seeking to identify individual loci significantly associated with a trait, genomics uses all marker data as predictors of performance and consequently delivers more accurate predictions. Selection can be based on genomic selection predictions, potentially leading to more rapid and lower cost gains from breeding. Genomic prediction combines marker data with phenotypic and pedigree data (when available) in an attempt to increase the accuracy of the prediction of breeding and genotypic values.

Genetic transformation or Genetic engineering

Transfer of genes makes possible the horizontal transfer of genes from one organism to another. Thus plants can receive genes from humans or algae or any other organism. This provides limitless opportunities in breeding crop plants.

By organism

Molecular breeding resources (including multiomics data) are available for:

 

Marker-assisted selection

From Wikipedia, the free encyclopedia

Marker assisted selection or marker aided selection (MAS) is an indirect selection process where a trait of interest is selected based on a marker (morphological, biochemical or DNA/RNA variation) linked to a trait of interest (e.g. productivity, disease resistance, abiotic stress tolerance, and quality), rather than on the trait itself. This process has been extensively researched and proposed for plant- and animal- breeding.

For example, using MAS to select individuals with disease resistance involves identifying a marker allele that is linked with disease resistance rather than the level of disease resistance. The assumption is that the marker associates at high frequency with the gene or quantitative trait locus (QTL) of interest, due to genetic linkage (close proximity, on the chromosome, of the marker locus and the disease resistance-determining locus). MAS can be useful to select for traits that are difficult or expensive to measure, exhibit low heritability and/or are expressed late in development. At certain points in the breeding process the specimens are examined to ensure that they express the desired trait.

Marker types

The majority of MAS work in the present era uses DNA-based markers. However, the first markers that allowed indirect selection of a trait of interest were morphological markers. In 1923, Karl Sax first reported association of a simply inherited genetic marker with a quantitative trait in plants when he observed segregation of seed size associated with segregation for a seed coat color marker in beans (Phaseolus vulgaris L.). In 1935, J. Rasmusson demonstrated linkage of flowering time (a quantitative trait) in peas with a simply inherited gene for flower color.

Markers may be:

  • Morphological — These were the first markers loci available that have an obvious impact on the morphology of plants. These markers are often detectable by eye, by simple visual inspection. Examples of this type of marker include the presence or absence of an awn, leaf sheath coloration, height, grain color, aroma of rice etc. In well-characterized crops like maize, tomato, pea, barley or wheat, tens or hundreds of genes that determine morphological traits have been mapped to specific chromosome locations.
  • Biochemical — A protein that can be extracted and observed; for example, isozymes and storage proteins.
  • Cytological — Cytological markers are chromosomal features that can be identified through microscopy. These generally take the form of chromosome bands, regions of chromatin that become impregnated with specific dyes used in cytology. The presence or absence of a chromosome band can be correlated with a particular trait, indicating that the locus responsible for the trait is located within or near (tightly linked) to the banded region. Morphological and cytological markers formed the backbone of early genetic studies in crops such as wheat and maize.
  • DNA-based — Including microsatellites (also known as short tandem repeats, STRs, or simple sequence repeats, SSRs), restriction fragment length polymorphism (RFLP), random amplification of polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and single nucleotide polymorphisms (SNPs).

Positive and negative selectable markers

The following terms are generally less relevant to discussions of MAS in plant and animal breeding, but are highly relevant in molecular biology research:

  • Positive selectable markers are selectable markers that confer selective advantage to the host organism. An example would be antibiotic resistance, which allows the host organism to survive antibiotic selection.
  • Negative selectable markers are selectable markers that eliminate or inhibit growth of the host organism upon selection. An example would be thymidine kinase, which makes the host sensitive to ganciclovir selection.

A distinction can be made between selectable markers (which eliminate certain genotypes from the population) and screenable markers (which cause certain genotypes to be readily identifiable, at which point the experimenter must "score" or evaluate the population and act to retain the preferred genotypes). Most MAS uses screenable markers rather than selectable markers.

Gene vs marker

The gene of interest directly causes production of protein(s) or RNA that produce a desired trait or phenotype, whereas markers (a DNA sequence or the morphological or biochemical markers produced due to that DNA) are genetically linked to the gene of interest. The gene of interest and the marker tend to move together during segregation of gametes due to their proximity on the same chromosome and concomitant reduction in recombination (chromosome crossover events) between the marker and gene of interest. For some traits, the gene of interest has been discovered and the presence of desirable alleles can be directly assayed with a high level of confidence. However, if the gene of interest is not known, markers linked to the gene of interest can still be used to select for individuals with desirable alleles of the gene of interest. When markers are used there may be some inaccurate results due to inaccurate tests for the marker. There also can be false positive results when markers are used, due to recombination between the marker of interest and gene (or QTL). A perfect marker would elicit no false positive results. The term 'perfect marker' is sometimes used when tests are performed to detect a SNP or other DNA polymorphism in the gene of interest, if that SNP or other polymorphism is the direct cause of the trait of interest. The term 'marker' is still appropriate to use when directly assaying the gene of interest, because the test of genotype is an indirect test of the trait or phenotype of interest.

Important properties of ideal markers for MAS

An ideal marker:

  • Has easy recognition of phenotypes - ideally all possible phenotypes (homo- and heterozygotes) from all possible alleles
  • Demonstrates measurable differences in expression between trait types or gene of interest alleles, early in the development of the organism
  • Testing for the marker does not have variable success depending on the allele at the marker locus or the allele at the target locus (the gene of interest that determines the trait of interest).
  • Low or null interaction among the markers allowing the use of many at the same time in a segregating population
  • Abundant in number
  • Polymorphic

Drawbacks of morphological markers

Morphological markers are associated with several general deficits that reduce their usefulness including:

  • the delay of marker expression until late into the development of the organism
  • allowing dominance to mask the underlying genetics
  • pleiotropy, which does not allow easy and parsimonious inferences to be drawn from one gene to one trait
  • confounding effects of genes unrelated to the gene or trait of interest but which also affect the morphological marker (epistasis)
  • frequent confounding effects of environmental factors which affect the morphological characteristics of the organism

To avoid problems specific to morphological markers, DNA-based markers have been developed. They are highly polymorphic, exhibit simple inheritance (often codominant), are abundant throughout the genome, are easy and fast to detect, exhibit minimum pleiotropic effects, and detection is not dependent on the developmental stage of the organism. Numerous markers have been mapped to different chromosomes in several crops including rice, wheat, maize, soybean and several others, and in livestock such as cattle, pigs and chickens. Those markers have been used in diversity analysis, parentage detection, DNA fingerprinting, and prediction of hybrid performance. Molecular markers are useful in indirect selection processes, enabling manual selection of individuals for further propagation.

Selection for major genes linked to markers

'Major genes' that are responsible for economically important characteristics are frequent in the plant kingdom. Such characteristics include disease resistance, male sterility, self-incompatibility, and others related to shape, color, and architecture of whole plants and are often of mono- or oligogenic in nature. The marker loci that are tightly linked to major genes can be used for selection and are sometimes more efficient than direct selection for the target gene. Such advantages in efficiency may be due for example, to higher expression of the marker mRNA in such cases that the marker is itself a gene. Alternatively, in such cases that the target gene of interest differs between two alleles by a difficult-to-detect single nucleotide polymorphism, an external marker (be it another gene or a polymorphism that is easier to detect, such as a short tandem repeat) may present as the most realistic option.

Situations that are favorable for molecular marker selection

There are several indications for the use of molecular markers in the selection of a genetic trait.

Situations such as:

  • The selected character is expressed late in plant development, like fruit and flower features or adult characters with a juvenile period (so that it is not necessary to wait for the organism to become fully developed before arrangements can be made for propagation)
  • The expression of the target gene is recessive (so that individuals which are heterozygous positive for the recessive allele can be crossed to produce some homozygous offspring with the desired trait)
  • There are special conditions for expression of the target gene(s), as in the case of breeding for disease and pest resistance (where inoculation with the disease or subjection to pests would otherwise be required). Sometimes inoculation methods are unreliable and sometimes field inoculation with the pathogen is not even allowed for safety reasons. Moreover, sometimes expression is dependent on environmental conditions.
  • The phenotype is affected by two or more unlinked genes (epistatis). For example, selection for multiple genes which provide resistance against diseases or insect pests for gene pyramiding.

The cost of genotyping (for example, the molecular marker assays needed here) is decreasing thus increasing the attractiveness of MAS as the development of the technology continues. (Additionally, the cost of phenotyping performed by a human is a labor burden, which is higher in a developed country and increasing in a developing country.)

Steps for MAS

Generally the first step is to map the gene or quantitative trait locus (QTL) of interest first by using different techniques and then using this information for marker assisted selection. Generally, the markers to be used should be close to gene of interest (<5 recombination unit or cM) in order to ensure that only minor fraction of the selected individuals will be recombinants. Generally, not only a single marker but rather two markers are used in order to reduce the chances of an error due to homologous recombination. For example, if two flanking markers are used at same time with an interval between them of approximately 20cM, there is higher probability (99%) for recovery of the target gene.

QTL mapping techniques

In plants QTL mapping is generally achieved using bi-parental cross populations; a cross between two parents which have a contrasting phenotype for the trait of interest are developed. Commonly used populations are near isogenic lines (NILs), recombinant inbred lines (RILs), doubled haploids (DH), back cross and F2. Linkage between the phenotype and markers which have already been mapped is tested in these populations in order to determine the position of the QTL. Such techniques are based on linkage and are therefore referred to as "linkage mapping".A

Single step MAS and QTL mapping

In contrast to two-step QTL mapping and MAS, a single-step method for breeding typical plant populations has been developed.

In such an approach, in the first few breeding cycles, markers linked to the trait of interest are identified by QTL mapping and later the same information is used in the same population. In this approach, pedigree structure is created from families that are created by crossing number of parents (in three-way or four way crosses). Both phenotyping and genotyping is done using molecular markers mapped the possible location of QTL of interest. This will identify markers and their favorable alleles. Once these favorable marker alleles are identified, the frequency of such alleles will be increased and response to marker assisted selection is estimated. Marker allele(s) with desirable effect will be further used in next selection cycle or other experiments.

High-throughput genotyping techniques

Recently high-throughput genotyping techniques are developed which allows marker aided screening of many genotypes. This will help breeders in shifting traditional breeding to marker aided selection. One example of such automation is using DNA isolation robots, capillary electrophoresis and pipetting robots.

One recent example of capllilary system is Applied Biosystems 3130 Genetic Analyzer. This is the latest generation of 4-capillary electrophoresis instruments for the low to medium throughput laboratories.

High-throughput MAS is needed for crop breeding because current techniques are not cost effective. Arrays have been developed for rice by Masouleh et al 2009; wheat by Berard et al 2009, Bernardo et al 2015, and Rasheed et al 2016; legumes by Varshney et al 2016; and various other crops, but all of these have also problems with customization, cost, flexibility, and equipment costs.

Use of MAS for backcross breeding

A minimum of five or six-backcross generations are required to transfer a gene of interest from a donor (may not be adapted) to a recipient (recurrent – adapted cultivar). The recovery of the recurrent genotype can be accelerated with the use of molecular markers. If the F1 is heterozygous for the marker locus, individuals with the recurrent parent allele(s) at the marker locus in first or subsequent backcross generations will also carry a chromosome tagged by the marker.

Marker assisted gene pyramiding

Gene pyramiding has been proposed and applied to enhance resistance to disease and insects by selecting for two or more than two genes at a time. For example, in rice such pyramids have been developed against bacterial blight and blast. The advantage of use of markers in this case allows to select for QTL-allele-linked markers that have same phenotypic effect.

MAS has also been proved useful for livestock improvement.

A coordinated effort to implement wheat (Durum (Triticum turgidum) and common wheat (Triticum aestivum)) marker assisted selection in the U.S. as well as a resource for marker assisted selection exists at the Wheat CAP (Coordinated Agricultural Project) website.

Israeli–Palestinian conflict

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Israeli%E2%80%93Palestinian_conflict   ...