Search This Blog

Sunday, January 20, 2019

Philosophy of perception

From Wikipedia, the free encyclopedia

Do we see what is really there? The two areas of the image marked A and B, and the rectangle connecting them, are all of the same shade: our eyes automatically "correct" for the shadow of the cylinder.
 
The philosophy of perception is concerned with the nature of perceptual experience and the status of perceptual data, in particular how they relate to beliefs about, or knowledge of, the world. Any explicit account of perception requires a commitment to one of a variety of ontological or metaphysical views. Philosophers distinguish internalist accounts, which assume that perceptions of objects, and knowledge or beliefs about them, are aspects of an individual's mind, and externalist accounts, which state that they constitute real aspects of the world external to the individual. The position of naïve realism—the 'everyday' impression of physical objects constituting what is perceived—is to some extent contradicted by the occurrence of perceptual illusions and hallucinations and the relativity of perceptual experience as well as certain insights in science. Realist conceptions include phenomenalism and direct and indirect realism. Anti-realist conceptions include idealism and skepticism.

Categories of perception

We may categorize perception as internal or external.
  • Internal perception (proprioception) tells us what is going on in our bodies; where our limbs are, whether we are sitting or standing, whether we are depressed, hungry, tired and so forth.
  • External or sensory perception (exteroception), tells us about the world outside our bodies. Using our senses of sight, hearing, touch, smell, and taste, we perceive colors, sounds, textures, etc. of the world at large. There is a growing body of knowledge of the mechanics of sensory processes in cognitive psychology.
  • Mixed internal and external perception (e.g., emotion and certain moods) tells us about what is going on in our bodies and about the perceived cause of our bodily perceptions.
The philosophy of perception is mainly concerned with exteroception.

Scientific accounts of perception

An object at some distance from an observer will reflect light in all directions, some of which will fall upon the corneas of the eyes, where it will be focused upon each retina, forming an image. The disparity between the electrical output of these two slightly different images is resolved either at the level of the lateral geniculate nucleus or in a part of the visual cortex called 'V1'. The resolved data is further processed in the visual cortex where some areas have specialized functions, for instance area V5 is involved in the modelling of motion and V4 in adding color. The resulting single image that subjects report as their experience is called a 'percept'. Studies involving rapidly changing scenes show the percept derives from numerous processes that involve time delays. Recent fMRI studies  show that dreams, imaginings and perceptions of things such as faces are accompanied by activity in many of the same areas of brain as are involved with physical sight. Imagery that originates from the senses and internally generated imagery may have a shared ontology at higher levels of cortical processing.

Sound is analyzed in term of pressure waves sensed by the cochlea in the ear. Data from the eyes and ears is combined to form a 'bound' percept. The problem of how this is produced, known as the binding problem.

Perception is analyzed as a cognitive process in which information processing is used to transfer information into the mind where it is related to other information. Some psychologists propose that this processing gives rise to particular mental states (cognitivism) whilst others envisage a direct path back into the external world in the form of action (radical behaviorism). Behaviorists such as John B. Watson and B.F. Skinner have proposed that perception acts largely as a process between a stimulus and a response but have noted that Gilbert Ryle's "ghost in the machine of the brain" still seems to exist. "The objection to inner states is not that they do not exist, but that they are not relevant in a functional analysis". This view, in which experience is thought to be an incidental by-product of information processing, is known as epiphenomenalism

Contrary to the behavioralist approach to understanding the elements of cognitive processes, gestalt psychology sought to understand their organization as a whole, studying perception as a process of figure and ground.

Philosophical accounts of perception

Important philosophical problems derive from the epistemology of perception—how we can gain knowledge via perception—such as the question of the nature of qualia. Within the biological study of perception naive realism is unusable. However, outside biology modified forms of naive realism are defended. Thomas Reid, the eighteenth-century founder of the Scottish School of Common Sense, formulated the idea that sensation was composed of a set of data transfers but also declared that there is still a direct connection between perception and the world. This idea, called direct realism, has again become popular in recent years with the rise of postmodernism.

The succession of data transfers involved in perception suggests that sense data are somehow available to a perceiving subject that is the substrate of the percept. Indirect realism, the view held by John Locke and Nicolas Malebranche, proposes that we can only be aware of mental representations of objects. However, this may imply an infinite regress (a perceiver within a perceiver within a perceiver...), though a finite regress is perfectly possible. It also assumes that perception is entirely due to data transfer and information processing, an argument that can be avoided by proposing that the percept does not depend wholly upon the transfer and rearrangement of data. This still involves basic ontological issues of the sort raised by Leibniz, Locke, Hume, Whitehead and others, which remain outstanding particularly in relation to the binding problem, the question of how different perceptions (e.g. color and contour in vision) are "bound" to the same object when they are processed by separate areas of the brain. 

Indirect realism (representational views) provides an account of issues such as perceptual contents, qualia, dreams, imaginings, hallucinations, illusions, the resolution of binocular rivalry, the resolution of multistable perception, the modelling of motion that allows us to watch TV, the sensations that result from direct brain stimulation, the update of the mental image by saccades of the eyes and the referral of events backwards in time. Direct realists must either argue that these experiences do not occur or else refuse to define them as perceptions.

Idealism holds that reality is limited to mental qualities while skepticism challenges our ability to know anything outside our minds. One of the most influential proponents of idealism was George Berkeley who maintained that everything was mind or dependent upon mind. Berkeley's idealism has two main strands, phenomenalism in which physical events are viewed as a special kind of mental event and subjective idealism. David Hume is probably the most influential proponent of skepticism.

A fourth theory of perception in opposition to naive realism, enactivism, attempts to find a middle path between direct realist and indirect realist theories, positing that cognition arises as a result of the dynamic interplay between an organism's sensory-motor capabilities and its environment. Instead of seeing perception as a passive process determined entirely by the features of an independently existing world, enactivism suggests that organism and environment are structurally coupled and co-determining. The theory was first formalized by Francisco Varela, Evan Thompson, and Eleanor Rosch in "The Embodied Mind".

Spatial representation

An aspect of perception that is common to both realists and anti-realists is the idea of mental or perceptual space. David Hume concluded that things appear extended because they have attributes of colour and solidity. A popular modern philosophical view is that the brain cannot contain images so our sense of space must be due to the actual space occupied by physical things. However, as René Descartes noticed, perceptual space has a projective geometry, things within it appear as if they are viewed from a point. The phenomenon of perspective was closely studied by artists and architects in the Renaissance, who relied mainly on the 11th century polymath, Alhazen (Ibn al-Haytham), who affirmed the visibility of perceptual space in geometric structuring projections. Mathematicians now know of many types of projective geometry such as complex Minkowski space that might describe the layout of things in perception (see Peters (2000)) and it has also emerged that parts of the brain contain patterns of electrical activity that correspond closely to the layout of the retinal image (this is known as retinotopy). How or whether these become conscious experience is still unknown (see McGinn (1995)).

Perception

From Wikipedia, the free encyclopedia

The Necker cube and Rubin vase can be perceived in more than one way.
 
Humans are able to have a very good guess on the underlying 3D shape category/identity/geometry given a silhouette of that shape. Computer vision researchers have been able to build computational models for perception that exhibit a similar behavior and are capable of generating and reconstructing sensible 3D shapes from single or multi-view depth maps or silhouettes
 
Perception (from the Latin perceptio) is the organization, identification, and interpretation of sensory information in order to represent and understand the presented information, or the environment.

All perception involves signals that go through the nervous system, which in turn result from physical or chemical stimulation of the sensory system. For example, vision involves light striking the retina of the eye, smell is mediated by odor molecules, and hearing involves pressure waves.

Perception is not only the passive receipt of these signals, but it's also shaped by the recipient's learning, memory, expectation, and attention.

Perception can be split into two processes:
  1. processing the sensory input, which transforms these low-level information to higher-level information (e.g., extracts shapes for object recognition);
  2. processing which is connected with a person's concepts and expectations (or knowledge), restorative and selective mechanisms (such as attention) that influence perception.
Perception depends on complex functions of the nervous system, but subjectively seems mostly effortless because this processing happens outside conscious awareness.

Since the rise of experimental psychology in the 19th century, psychology's understanding of perception has progressed by combining a variety of techniques. Psychophysics quantitatively describes the relationships between the physical qualities of the sensory input and perception. Sensory neuroscience studies the neural mechanisms underlying perception. Perceptual systems can also be studied computationally, in terms of the information they process. Perceptual issues in philosophy include the extent to which sensory qualities such as sound, smell or color exist in objective reality rather than in the mind of the perceiver.

Although the senses were traditionally viewed as passive receptors, the study of illusions and ambiguous images has demonstrated that the brain's perceptual systems actively and pre-consciously attempt to make sense of their input. There is still active debate about the extent to which perception is an active process of hypothesis testing, analogous to science, or whether realistic sensory information is rich enough to make this process unnecessary.

The perceptual systems of the brain enable individuals to see the world around them as stable, even though the sensory information is typically incomplete and rapidly varying. Human and animal brains are structured in a modular way, with different areas processing different kinds of sensory information. Some of these modules take the form of sensory maps, mapping some aspect of the world across part of the brain's surface. These different modules are interconnected and influence each other. For instance, taste is strongly influenced by smell.

Process and terminology

The process of perception begins with an object in the real world, termed the distal stimulus or distal object. By means of light, sound or another physical process, the object stimulates the body's sensory organs. These sensory organs transform the input energy into neural activity—a process called transduction. This raw pattern of neural activity is called the proximal stimulus. These neural signals are transmitted to the brain and processed. The resulting mental re-creation of the distal stimulus is the percept

An example would be a shoe. The shoe itself is the distal stimulus. When light from the shoe enters a person's eye and stimulates the retina, that stimulation is the proximal stimulus. The image of the shoe reconstructed by the brain of the person is the percept. Another example would be a telephone ringing. The ringing of the telephone is the distal stimulus. The sound stimulating a person's auditory receptors is the proximal stimulus, and the brain's interpretation of this as the ringing of a telephone is the percept. The different kinds of sensation such as warmth, sound, and taste are called sensory modalities.

Psychologist Jerome Bruner has developed a model of perception. According to him, people go through the following process to form opinions:
  • when we encounter an unfamiliar target, we are open to different informational cues and want to learn more about the target.
  • in the second step, we try to collect more information about the target. Gradually, we encounter some familiar cues which help us categorize the target.
  • at this stage, the cues become less open and selective. We try to search for more cues that confirm the categorization of the target. We also actively ignore and even distort cues that violate our initial perceptions. Our perception becomes more selective and we finally paint a consistent picture of the target.
According to Alan Saks and Gary Johns, there are three components to perception:
  1. the Perceiver, the person who becomes aware about something and comes to a final understanding. There are 3 factors that can influence his or her perceptions: experience, motivational state and finally emotional state. In different motivational or emotional states, the perceiver will react to or perceive something in different ways. Also in different situations he or she might employ a "perceptual defence" where they tend to "see what they want to see".
  2. the Target. This is the person who is being perceived or judged. "Ambiguity or lack of information about a target leads to a greater need for interpretation and addition."
  3. the Situation also greatly influences perceptions because different situations may call for additional information about the target.
Stimuli are not necessarily translated into a percept and rarely does a single stimulus translate into a percept. An ambiguous stimulus may be translated into multiple percepts, experienced randomly, one at a time, in what is called multistable perception. And the same stimuli, or absence of them, may result in different percepts depending on subject's culture and previous experiences. Ambiguous figures demonstrate that a single stimulus can result in more than one percept; for example the Rubin vase which can be interpreted either as a vase or as two faces. The percept can bind sensations from multiple senses into a whole. A picture of a talking person on a television screen, for example, is bound to the sound of speech from speakers to form a percept of a talking person. "Percept" is also a term used by Leibniz, Bergson, Deleuze, and Guattari to define perception independent from perceivers.

Types

Vision

In many ways, vision is the primary human sense. Light is taken in through each eye and focused in a way which sorts it on the retina according to direction of origin. A dense surface of photosensitive cells, including rods, cones, and intrinsically photosensitive retinal ganglion cells captures information about the intensity, color, and position of incoming light. Some processing of texture and movement occurs within the neurons on the retina before the information is sent to the brain. In total, about 15 differing types of information are then forwarded to the brain proper via the optic nerve.

Sound

Anatomy of the human ear. (The length of the auditory canal is exaggerated in this image)

Hearing (or audition) is the ability to perceive sound by detecting vibrations. Frequencies capable of being heard by humans are called audio or sonic. The range is typically considered to be between 20 Hz and 20,000 Hz. Frequencies higher than audio are referred to as ultrasonic, while frequencies below audio are referred to as infrasonic. The auditory system includes the outer ears which collect and filter sound waves, the middle ear for transforming the sound pressure (impedance matching), and the inner ear which produces neural signals in response to the sound. By the ascending auditory pathway these are led to the primary auditory cortex within the temporal lobe of the human brain, which is where the auditory information arrives in the cerebral cortex and is further processed there.
Sound does not usually come from a single source: in real situations, sounds from multiple sources and directions are superimposed as they arrive at the ears. Hearing involves the computationally complex task of separating out the sources of interest, often estimating their distance and direction as well as identifying them.

Touch

Haptic perception is the process of recognizing objects through touch. It involves a combination of somatosensory perception of patterns on the skin surface (e.g., edges, curvature, and texture) and proprioception of hand position and conformation. People can rapidly and accurately identify three-dimensional objects by touch. This involves exploratory procedures, such as moving the fingers over the outer surface of the object or holding the entire object in the hand. Haptic perception relies on the forces experienced during touch.

Gibson defined the haptic system as "The sensibility of the individual to the world adjacent to his body by use of his body". Gibson and others emphasized the close link between haptic perception and body movement: haptic perception is active exploration. The concept of haptic perception is related to the concept of extended physiological proprioception according to which, when using a tool such as a stick, perceptual experience is transparently transferred to the end of the tool.

Taste

Taste (or, the more formal term, gustation) is the ability to perceive the flavor of substances including, but not limited to, food. Humans receive tastes through sensory organs called taste buds, or gustatory calyculi, concentrated on the upper surface of the tongue. The human tongue has 100 to 150 taste receptor cells on each of its roughly ten thousand taste buds. There are five primary tastes: sweetness, bitterness, sourness, saltiness, and umami. Other tastes can be mimicked by combining these basic tastes. The recognition and awareness of umami is a relatively recent development in Western cuisine. The basic tastes contribute only partially to the sensation and flavor of food in the mouth — other factors include smell, detected by the olfactory epithelium of the nose; texture, detected through a variety of mechanoreceptors, muscle nerves, etc.; and temperature, detected by thermoreceptors. All basic tastes are classified as either appetitive or aversive, depending upon whether the things they sense are harmful or beneficial.

Smell

Smell is the process of absorbing molecules through olfactory organs. Humans absorb these molecules through the nose. These molecules diffuse through a thick layer of mucus, come into contact with one of thousands of cilia that are projected from sensory neurons, and are then absorbed into one of, 347 or so, receptors. It is this process that causes humans to understand the concept of smell from a physical standpoint. 

Smell is also a very interactive sense as scientists are have begun to observe that olfaction comes into contact with the other sense in unexpected ways.

Smell is also the most primal of the senses. It has been the discussion of being the sense that drives the most basic of human survival skills as it being the first indicator of safety or danger, friend or foe. It can be a catalyst for human behavior on a subconscious and instinctive level.

Social

Social perception is the part of perception that allows people to understand the individuals and groups of their social world, and thus an element of social cognition.

Speech

Though the phrase "I owe you" can be heard as three distinct words, a spectrogram reveals no clear boundaries.
 
Speech perception is the process by which spoken languages are heard, interpreted and understood. Research in speech perception seeks to understand how human listeners recognize speech sounds and use this information to understand spoken language. The sound of a word can vary widely according to words around it and the tempo of the speech, as well as the physical characteristics, accent and mood of the speaker. Listeners manage to perceive words across this wide range of different conditions. Another variation is that reverberation can make a large difference in sound between a word spoken from the far side of a room and the same word spoken up close. Experiments have shown that people automatically compensate for this effect when hearing speech.

The process of perceiving speech begins at the level of the sound within the auditory signal and the process of audition. The initial auditory signal is compared with visual information — primarily lip movement — to extract acoustic cues and phonetic information. It is possible other sensory modalities are integrated at this stage as well. This speech information can then be used for higher-level language processes, such as word recognition.

Speech perception is not necessarily uni-directional. That is, higher-level language processes connected with morphology, syntax, or semantics may interact with basic speech perception processes to aid in recognition of speech sounds. It may be the case that it is not necessary and maybe even not possible for a listener to recognize phonemes before recognizing higher units, like words for example. In one experiment, Richard M. Warren replaced one phoneme of a word with a cough-like sound. His subjects restored the missing speech sound perceptually without any difficulty and what is more, they were not able to identify accurately which phoneme had been disturbed.

Faces

Facial perception refers to cognitive processes specialized for handling human faces, including perceiving the identity of an individual, and facial expressions such as emotional cues.

Social touch

The somatosensory cortex encodes incoming sensory information from receptors all over the body. Affective touch is a type of sensory information that elicits an emotional reaction and is usually social in nature, such as a physical human touch. This type of information is actually coded differently than other sensory information. Intensity of affective touch is still encoded in the primary somatosensory cortex, but the feeling of pleasantness associated with affective touch activates the anterior cingulate cortex more than the primary somatosensory cortex. Functional magnetic resonance imaging (fMRI) data shows that increased blood oxygen level contrast (BOLD) signal in the anterior cingulate cortex as well as the prefrontal cortex is highly correlated with pleasantness scores of an affective touch. Inhibitory transcranial magnetic stimulation (TMS) of the primary somatosensory cortex inhibits the perception of affective touch intensity, but not affective touch pleasantness. Therefore, the S1 is not directly involved in processing socially affective touch pleasantness, but still plays a role in discriminating touch location and intensity.

Other senses

Other senses enable perception of body balance, acceleration, gravity, position of body parts, temperature, pain, time, and perception of internal senses such as suffocation, gag reflex, intestinal distension, fullness of rectum and urinary bladder, and sensations felt in the throat and lungs.

Reality

In the case of visual perception, some people can actually see the percept shift in their mind's eye. Others, who are not picture thinkers, may not necessarily perceive the 'shape-shifting' as their world changes. The 'esemplastic' nature has been shown by experiment: an ambiguous image has multiple interpretations on the perceptual level. 

This confusing ambiguity of perception is exploited in human technologies such as camouflage, and also in biological mimicry, for example by European peacock butterflies, whose wings bear eyespots that birds respond to as though they were the eyes of a dangerous predator.

There is also evidence that the brain in some ways operates on a slight "delay", to allow nerve impulses from distant parts of the body to be integrated into simultaneous signals.

Perception is one of the oldest fields in psychology. The oldest quantitative laws in psychology are Weber's law – which states that the smallest noticeable difference in stimulus intensity is proportional to the intensity of the reference – and Fechner's law which quantifies the relationship between the intensity of the physical stimulus and its perceptual counterpart (for example, testing how much darker a computer screen can get before the viewer actually notices). The study of perception gave rise to the Gestalt school of psychology, with its emphasis on holistic approach.

Physiology

A sensory system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory receptors, neural pathways, and parts of the brain involved in sensory perception. Commonly recognized sensory systems are those for vision, hearing, somatic sensation (touch), taste and olfaction (smell). It has been suggested that the immune system is an overlooked sensory modality. In short, senses are transducers from the physical world to the realm of the mind. 

The receptive field is the specific part of the world to which a receptor organ and receptor cells respond. For instance, the part of the world an eye can see, is its receptive field; the light that each rod or cone can see, is its receptive field. Receptive fields have been identified for the visual system, auditory system and somatosensory system, so far. Research attention is currently focused not only on external perception processes, but also to "Interoception", considered as the process of receiving, accessing and appraising internal bodily signals. Maintaining desired physiological states is critical for an organism’s well being and survival. Interoception is an iterative process, requiring the interplay between perception of body states and awareness of these states to generate proper self-regulation. Afferent sensory signals continuously interact with higher order cognitive representations of goals, history, and environment, shaping emotional experience and motivating regulatory behavior.

Features

Constancy

Perceptual constancy is the ability of perceptual systems to recognize the same object from widely varying sensory inputs. For example, individual people can be recognized from views, such as frontal and profile, which form very different shapes on the retina. A coin looked at face-on makes a circular image on the retina, but when held at angle it makes an elliptical image. In normal perception these are recognized as a single three-dimensional object. Without this correction process, an animal approaching from the distance would appear to gain in size. One kind of perceptual constancy is color constancy: for example, a white piece of paper can be recognized as such under different colors and intensities of light. Another example is roughness constancy: when a hand is drawn quickly across a surface, the touch nerves are stimulated more intensely. The brain compensates for this, so the speed of contact does not affect the perceived roughness. Other constancies include melody, odor, brightness and words. This constancy is not always total, but the variation in the percept is much less than the variation in the physical stimulus. The perceptual systems of the brain achieve perceptual constancy in a variety of ways, each specialized for the kind of information being processed, with phonemic restoration as a notable example from hearing.

Grouping

Law of Closure. The human brain tends to perceive complete shapes even if those forms are incomplete.

The principles of grouping (or Gestalt laws of grouping) are a set of principles in psychology, first proposed by Gestalt psychologists to explain how humans naturally perceive objects as organized patterns and objects. Gestalt psychologists argued that these principles exist because the mind has an innate disposition to perceive patterns in the stimulus based on certain rules. These principles are organized into six categories: proximity, similarity, closure, good continuation, common fate and good form.

The principle of proximity states that, all else being equal, perception tends to group stimuli that are close together as part of the same object, and stimuli that are far apart as two separate objects. The principle of similarity states that, all else being equal, perception lends itself to seeing stimuli that physically resemble each other as part of the same object, and stimuli that are different as part of a different object. This allows for people to distinguish between adjacent and overlapping objects based on their visual texture and resemblance. The principle of closure refers to the mind's tendency to see complete figures or forms even if a picture is incomplete, partially hidden by other objects, or if part of the information needed to make a complete picture in our minds is missing. For example, if part of a shape's border is missing people still tend to see the shape as completely enclosed by the border and ignore the gaps. The principle of good continuation makes sense of stimuli that overlap: when there is an intersection between two or more objects, people tend to perceive each as a single uninterrupted object. The principle of common fate groups stimuli together on the basis of their movement. When visual elements are seen moving in the same direction at the same rate, perception associates the movement as part of the same stimulus. This allows people to make out moving objects even when other details, such as color or outline, are obscured. The principle of good form refers to the tendency to group together forms of similar shape, pattern, color, etc. Later research has identified additional grouping principles.

Contrast effects

A common finding across many different kinds of perception is that the perceived qualities of an object can be affected by the qualities of context. If one object is extreme on some dimension, then neighboring objects are perceived as further away from that extreme. "Simultaneous contrast effect" is the term used when stimuli are presented at the same time, whereas "successive contrast" applies when stimuli are presented one after another.

The contrast effect was noted by the 17th Century philosopher John Locke, who observed that lukewarm water can feel hot or cold, depending on whether the hand touching it was previously in hot or cold water. In the early 20th Century, Wilhelm Wundt identified contrast as a fundamental principle of perception, and since then the effect has been confirmed in many different areas. These effects shape not only visual qualities like color and brightness, but other kinds of perception, including how heavy an object feels. One experiment found that thinking of the name "Hitler" led to subjects rating a person as more hostile. Whether a piece of music is perceived as good or bad can depend on whether the music heard before it was pleasant or unpleasant. For the effect to work, the objects being compared need to be similar to each other: a television reporter can seem smaller when interviewing a tall basketball player, but not when standing next to a tall building. In the brain, brightness contrast exerts effects on both neuronal firing rates and neuronal synchrony.

Theories

Perception as direct perception

Cognitive theories of perception assume there is a poverty of stimulus. This (with reference to perception) is the claim that sensations are, by themselves, unable to provide a unique description of the world. Sensations require 'enriching', which is the role of the mental model. A different type of theory is the perceptual ecology approach of James J. Gibson. Gibson rejected the assumption of a poverty of stimulus by rejecting the notion that perception is based upon sensations – instead, he investigated what information is actually presented to the perceptual systems. His theory "assumes the existence of stable, unbounded, and permanent stimulus-information in the ambient optic array. And it supposes that the visual system can explore and detect this information. The theory is information-based, not sensation-based." He and the psychologists who work within this paradigm detailed how the world could be specified to a mobile, exploring organism via the lawful projection of information about the world into energy arrays. "Specification" would be a 1:1 mapping of some aspect of the world into a perceptual array; given such a mapping, no enrichment is required and perception is direct perception.

Perception-in-action

An ecological understanding of perception derived from Gibson's early work is that of "perception-in-action", the notion that perception is a requisite property of animate action; that without perception, action would be unguided, and without action, perception would serve no purpose. Animate actions require both perception and motion, and perception and movement can be described as "two sides of the same coin, the coin is action". Gibson works from the assumption that singular entities, which he calls "invariants", already exist in the real world and that all that the perception process does is to home in upon them. A view known as constructivism (held by such philosophers as Ernst von Glasersfeld) regards the continual adjustment of perception and action to the external input as precisely what constitutes the "entity", which is therefore far from being invariant.

Glasersfeld considers an "invariant" as a target to be homed in upon, and a pragmatic necessity to allow an initial measure of understanding to be established prior to the updating that a statement aims to achieve. The invariant does not and need not represent an actuality, and Glasersfeld describes it as extremely unlikely that what is desired or feared by an organism will never suffer change as time goes on. This social constructionist theory thus allows for a needful evolutionary adjustment.

A mathematical theory of perception-in-action has been devised and investigated in many forms of controlled movement, and has been described in many different species of organism using the General Tau Theory. According to this theory, tau information, or time-to-goal information is the fundamental 'percept' in perception.

Evolutionary psychology (EP) and perception

Many philosophers, such as Jerry Fodor, write that the purpose of perception is knowledge, but evolutionary psychologists hold that its primary purpose is to guide action. For example, they say, depth perception seems to have evolved not to help us know the distances to other objects but rather to help us move around in space. Evolutionary psychologists say that animals from fiddler crabs to humans use eyesight for collision avoidance, suggesting that vision is basically for directing action, not providing knowledge.

Building and maintaining sense organs is metabolically expensive, so these organs evolve only when they improve an organism's fitness. More than half the brain is devoted to processing sensory information, and the brain itself consumes roughly one-fourth of one's metabolic resources, so the senses must provide exceptional benefits to fitness. Perception accurately mirrors the world; animals get useful, accurate information through their senses.

Scientists who study perception and sensation have long understood the human senses as adaptations. Depth perception consists of processing over half a dozen visual cues, each of which is based on a regularity of the physical world. Vision evolved to respond to the narrow range of electromagnetic energy that is plentiful and that does not pass through objects. Sound waves provide useful information about the sources of and distances to objects, with larger animals making and hearing lower-frequency sounds and smaller animals making and hearing higher-frequency sounds. Taste and smell respond to chemicals in the environment that were significant for fitness in the environment of evolutionary adaptedness. The sense of touch is actually many senses, including pressure, heat, cold, tickle, and pain. Pain, while unpleasant, is adaptive. An important adaptation for senses is range shifting, by which the organism becomes temporarily more or less sensitive to sensation. For example, one's eyes automatically adjust to dim or bright ambient light. Sensory abilities of different organisms often coevolve, as is the case with the hearing of echo locating bats and that of the moths that have evolved to respond to the sounds that the bats make.

Evolutionary psychologists claim that perception demonstrates the principle of modularity, with specialized mechanisms handling particular perception tasks. For example, people with damage to a particular part of the brain suffer from the specific defect of not being able to recognize faces (prospagnosia). EP suggests that this indicates a so-called face-reading module.

Closed-loop perception

Here perception is proposed to be a dynamic motor-sensory closed-loop process in which information flows through the environment and the brain in continuous loops, converging towards steady-state percepts.

Theories of perception

Effect of experience

With experience, organisms can learn to make finer perceptual distinctions, and learn new kinds of categorization. Wine-tasting, the reading of X-ray images and music appreciation are applications of this process in the human sphere. Research has focused on the relation of this to other kinds of learning, and whether it takes place in peripheral sensory systems or in the brain's processing of sense information. Empirical research show that specific practices (such as yoga, mindfulness, Tai Chi, meditation, Daoshi and other mind-body disciplines) can modify human perceptual modality. Specifically, these practices enable perception skills to switch from the external (exteroceptive field) towards a higher ability to focus on internal signals (proprioception). Also, when asked to provide verticality judgments, highly self-transcendent yoga practitioners were significantly less influenced by a misleading visual context. Increasing self-transcendence may enable yoga practitioners to optimize verticality judgment tasks by relying more on internal (vestibular and proprioceptive) signals coming from their own body, rather than on exteroceptive, visual cues.

Past actions and events that transpire right before an encounter or any form of stimulation have a strong degree of influence on how sensory stimuli are processed and perceived. On a basic level, the information our senses receive is often ambiguous and incomplete. However, they are grouped together in order for us to be able to understand the physical world around us. But it is these various forms of stimulation, combined with our previous knowledge and experience that allows us to create our overall perception. For example, when engaging in conversation, we attempt to understand their message and words by not only paying attention to what we hear through our ears but also from the previous shapes we have seen our mouths make. Another example would be if we had a similar topic come up in another conversation, we would use our previous knowledge to guess the direction the conversation is headed in.

Effect of motivation and expectation

A perceptual set, also called perceptual expectancy or just set is a predisposition to perceive things in a certain way. It is an example of how perception can be shaped by "top-down" processes such as drives and expectations. Perceptual sets occur in all the different senses. They can be long term, such as a special sensitivity to hearing one's own name in a crowded room, or short term, as in the ease with which hungry people notice the smell of food. A simple demonstration of the effect involved very brief presentations of non-words such as "sael". Subjects who were told to expect words about animals read it as "seal", but others who were expecting boat-related words read it as "sail".

Sets can be created by motivation and so can result in people interpreting ambiguous figures so that they see what they want to see. For instance, how someone perceives what unfolds during a sports game can be biased if they strongly support one of the teams. In one experiment, students were allocated to pleasant or unpleasant tasks by a computer. They were told that either a number or a letter would flash on the screen to say whether they were going to taste an orange juice drink or an unpleasant-tasting health drink. In fact, an ambiguous figure was flashed on screen, which could either be read as the letter B or the number 13. When the letters were associated with the pleasant task, subjects were more likely to perceive a letter B, and when letters were associated with the unpleasant task they tended to perceive a number 13.

Perceptual set has been demonstrated in many social contexts. People who are primed to think of someone as "warm" are more likely to perceive a variety of positive characteristics in them, than if the word "warm" is replaced by "cold". When someone has a reputation for being funny, an audience is more likely to find them amusing. Individual's perceptual sets reflect their own personality traits. For example, people with an aggressive personality are quicker to correctly identify aggressive words or situations.

One classic psychological experiment showed slower reaction times and less accurate answers when a deck of playing cards reversed the color of the suit symbol for some cards (e.g. red spades and black hearts).

Philosopher Andy Clark explains that perception, although it occurs quickly, is not simply a bottom-up process (where minute details are put together to form larger wholes). Instead, our brains use what he calls 'predictive coding'. It starts with very broad constraints and expectations for the state of the world, and as expectations are met, it makes more detailed predictions (errors lead to new predictions, or learning processes). Clark says this research has various implications; not only can there be no completely "unbiased, unfiltered" perception, but this means that there is a great deal of feedback between perception and expectation (perceptual experiences often shape our beliefs, but those perceptions were based on existing beliefs). Indeed, predictive coding provides an account where this type of feedback assists in stabilizing our inference-making process about the physical world, such as with perceptual constancy examples.

Time perception

From Wikipedia, the free encyclopedia

A contemporary quartz watch
 
Time perception is a field of study within psychology, cognitive linguistics and neuroscience that refers to the subjective experience, or sense, of time, which is measured by someone's own perception of the duration of the indefinite and unfolding of events. The perceived time interval between two successive events is referred to as perceived duration. Though directly experiencing or understanding another person's perception of time is not possible, such a perception can be objectively studied and inferred through a number of scientific experiments. Time perception is a construction of the sapient brain, but one that is manipulable and distortable under certain circumstances. These temporal illusions help to expose the underlying neural mechanisms of time perception.

Pioneering work, emphasizing species-specific differences, was conducted by Karl Ernst von Baer.

In other words time can be perceived or understood as Subjective Time and Objective Time.

Theories

William J. Friedman (1993) also contrasted two theories for a sense of time:
  • The strength model of time memory. This posits a memory trace that persists over time, by which one might judge the age of a memory (and therefore how long ago the event remembered occurred) from the strength of the trace. This conflicts with the fact that memories of recent events may fade more quickly than more distant memories.
  • The inference model suggests the time of an event is inferred from information about relations between the event in question and other events whose date or time is known.
Another theory involves the brain's subconscious tallying of "pulses" during a specific interval, forming a biological stopwatch. This theory alleges that the brain can run multiple biological stopwatches at one time depending on the type of task one is involved in. The location of these pulses and what these pulses actually consist of is unclear. This model is only a metaphor and does not stand up in terms of brain physiology or anatomy.

Philosophical perspectives

The specious present is the time duration wherein a state of consciousness is experienced as being in the present. The term was first introduced by the philosopher E. R. Clay in 1882 (E. Robert Kelly), and was further developed by William James. James defined the specious present to be "the prototype of all conceived times... the short duration of which we are immediately and incessantly sensible". In "Scientific Thought" (1930), C. D. Broad further elaborated on the concept of the specious present and considered that the specious present may be considered as the temporal equivalent of a sensory datum. A version of the concept was used by Edmund Husserl in his works and discussed further by Francisco Varela based on the writings of Husserl, Heidegger, and Merleau-Ponty.

Neuroscientific perspectives

Although the perception of time is not associated with a specific sensory system, psychologists and neuroscientists suggest that humans do have a system, or several complementary systems, governing the perception of time. Time perception is handled by a highly distributed system involving the cerebral cortex, cerebellum and basal ganglia. One particular component, the suprachiasmatic nucleus, is responsible for the circadian (or daily) rhythm, while other cell clusters appear to be capable of shorter (ultradian) timekeeping. There is some evidence that very short (millisecond) durations are processed by dedicated neurons in early sensory parts of the brain.

Professor Warren Meck devised a physiological model for measuring the passage of time. He found the representation of time to be generated by the oscillatory activity of cells in the upper cortex. The frequency of these cells' activity is detected by cells in the dorsal striatum at the base of the forebrain. His model separated explicit timing and implicit timing. Explicit timing is used in estimating the duration of a stimulus. Implicit timing is used to gauge the amount of time separating one from an impending event that is expected to occur in the near future. These two estimations of time do not involve the same neuroanatomical areas. For example, implicit timing often occurs to achieve a motor task, involving the cerebellum, left parietal cortex, and left premotor cortex. Explicit timing often involves the supplementary motor area and the right prefrontal cortex.

Two visual stimuli, inside someone's field of view, can be successfully regarded as simultaneous up to five milliseconds.

In the popular essay "Brain Time", David Eagleman explains that different types of sensory information (auditory, tactile, visual, etc.) are processed at different speeds by different neural architectures. The brain must learn how to overcome these speed disparities if it is to create a temporally unified representation of the external world: "if the visual brain wants to get events correct timewise, it may have only one choice: wait for the slowest information to arrive. To accomplish this, it must wait about a tenth of a second. In the early days of television broadcasting, engineers worried about the problem of keeping audio and video signals synchronized. Then they accidentally discovered that they had around a hundred milliseconds of slop: As long as the signals arrived within this window, viewers' brains would automatically resynchronize the signals". He goes on to say that "This brief waiting period allows the visual system to discount the various delays imposed by the early stages; however, it has the disadvantage of pushing perception into the past. There is a distinct survival advantage to operating as close to the present as possible; an animal does not want to live too far in the past. Therefore, the tenth-of- a-second window may be the smallest delay that allows higher areas of the brain to account for the delays created in the first stages of the system while still operating near the border of the present. This window of delay means that awareness is postdictive, incorporating data from a window of time after an event and delivering a retrospective interpretation of what happened."

Experiments have shown that rats can successfully estimate a time interval of approximately 40 seconds, despite having their cortex entirely removed. This suggests that time estimation may be a low level process.

Types of temporal illusions

A temporal illusion is a distortion in the perception of time. Time perception refers to a variety of time-related tasks. For example:
  • estimating time intervals, e.g., "When did you last see your primary care physician?";
  • estimating time duration, e.g., "How long were you waiting at the doctor's office?"; and
  • judging the simultaneity of events (see below for examples).
Short list of types of temporal illusions:
  • Telescoping effect: People tend to recall recent events as occurring further back in time than they actually did (backward telescoping) and distant events as occurring more recently than they actually did (forward telescoping)
  • Vierordt's law: Shorter intervals tend to be overestimated while longer intervals tend to be underestimated
  • Time intervals associated with more changes may be perceived as longer than intervals with fewer changes
  • Perceived temporal length of a given task may shorten with greater motivation
  • Perceived temporal length of a given task may stretch when broken up or interrupted
  • Auditory stimuli may appear to last longer than visual stimuli
  • Time duration may appear longer with greater stimulus intensity (e.g., auditory loudness or pitch)
  • Simultaneity judgments can be manipulated by repeated exposure to non-simultaneous stimuli

Kappa effect

The Kappa effect or perceptual time dilation is a form of temporal illusion verifiable by experiment, wherein the temporal duration between a sequence of consecutive stimuli is thought to be relatively longer or shorter than its actual elapsed time, due to the spatial/auditory/tactile separation between each consecutive stimuli. The kappa effect can be displayed when considering a journey made in two parts that take an equal amount of time. Between these two parts, the journey that covers more distance may appear to take longer than the journey covering less distance, even though they take an equal amount of time.

Eye movements and "Chronostasis"

The perception of space and time undergoes distortions during rapid saccadic eye movements.

Chronostasis is a type of temporal illusion in which the first impression following the introduction of a new event or task demand to the brain appears to be extended in time. For example, chronostasis temporarily occurs when fixating on a target stimulus, immediately following a saccade (e.g., quick eye movement). This elicits an overestimation in the temporal duration for which that target stimulus (i.e., post-saccade stimulus) was perceived. This effect can extend apparent duration by up to 500 ms and is consistent with the idea that the visual system models events prior to perception. The most well-known version of this illusion is known as the stopped-clock illusion, wherein a subject's first impression of the second-hand movement of an analog clock, subsequent to one's directed attention (i.e., saccade) to the clock, is the perception of a slower-than-normal second-hand movement rate (the seconds hand of the clock may seemingly temporarily freeze in place after initially looking at it).

The occurrence of chronostasis extends beyond the visual domain into the auditory and tactile domains. In the auditory domain, chronostasis and duration overestimation occur when observing auditory stimuli. One common example is a frequent occurrence when making telephone calls. If, while listening to the phone's dial tone, research subjects move the phone from one ear to the other, the length of time between rings appears longer. In the tactile domain, chronostasis has persisted in research subjects as they reach for and grasp objects. After grasping a new object, subjects overestimate the time in which their hand has been in contact with this object. In other experiments, subjects turning a light on with a button were conditioned to experience the light before the button press.

Oddball effect

The perception of the duration of an event seems to be modulated by our recent experiences. Humans typically overestimate the perceived duration of the initial event in a stream of identical events and unexpected “oddball” stimuli seem to be perceived as longer in duration, relative to expected or frequently presented “standard” stimuli.

The oddball effect may serve an evolutionarily adapted “alerting” function and is consistent with reports of time slowing down in threatening situations. The effect seems to be strongest for images that are expanding in size on the retina, in other words, that are "looming" or approaching the viewer, and the effect can be eradicated for oddballs that are contracting or perceived to be receding from the viewer. The effect is also reduced or reversed with a static oddball presented among a stream of expanding stimuli.

Initial studies suggested that this oddball-induced “subjective time dilation” expanded the perceived duration of oddball stimuli by 30–50% but subsequent research has reported more modest expansion of around 10% or less. The direction of the effect, whether the viewer perceives an increase or a decrease in duration, also seems to be dependent upon the stimulus used.

Effects of emotional states

Awe

Research has suggested the feeling of awe has the ability to expand one's perceptions of time availability. Awe can be characterized as an experience of immense perceptual vastness that coincides with an increase in focus. Consequently, it is conceivable that one's temporal perception would slow down when experiencing awe.

Fear

Possibly related to the oddball effect, research suggests that time seems to slow down for a person during dangerous events (such as a car accident, a robbery, or when a person perceives a potential predator or mate), or when a person skydives or bungee jumps, where they're capable of complex thoughts in what would normally be the blink of an eye (See Fight-or-flight response). This reported slowing in temporal perception may have been evolutionarily advantageous because it may have enhanced one's ability to intelligibly make quick decisions in moments that were of critical importance to our survival. However, even though observers commonly report that time seems to have moved in slow motion during these events, it is unclear whether this is a function of increased time resolution during the event, or instead an illusion created by the remembering of an emotionally salient event.

A strong time dilation effect has been reported for perception of objects that were looming, but not of those retreating, from the viewer, suggesting that the expanding discs — which mimic an approaching object — elicit self-referential processes which act to signal the presence of a possible danger. Anxious people, or those in great fear, experience greater "time dilation" in response to the same threat stimuli due to higher levels of epinephrine, which increases brain activity (an adrenaline rush). In such circumstances, an illusion of time dilation could assist an efficacious escape. When exposed to a threat, three-year-old children were observed to exhibit a similar tendency to overestimate elapsed time.

Research suggests that the effect appears only at the point of retrospective assessment, rather than occurring simultaneously with events as they happened. Perceptual abilities were tested during a frightening experience — a free fall — by measuring people's sensitivity to flickering stimuli. The results showed that the subjects' temporal resolution was not improved as the frightening event was occurring. Events appear to have taken longer only in retrospect, possibly because memories were being more densely packed during the frightening situation.

People shown extracts from films known to induce fear often overestimated the elapsed time of a subsequently presented visual stimulus, whereas people shown emotionally neutral clips (weather forecasts and stock market updates) or those known to evoke feelings of sadness showed no difference. It is argued that fear prompts a state of arousal in the amygdala, which increases the rate of a hypothesized "internal clock". This could be the result of an evolved defensive mechanism triggered by a threatening situation.

Empathy

The perception of another persons' emotions can also change our sense of time. The theory of embodied mind (or cognition), caused by mirror neurons, helps explain how the perception of other people's emotions has the ability to change one's own sense of time. Embodied cognition hinges on an internal process that mimics or simulates an other's emotional state. For example, if person #1 spends time with person #2 who speaks and walks incredibly slowly, person #1's internal clock may slow down.

Depression

Depression may increase one's ability to perceive time accurately. One study assessed this concept by asking subjects to estimate the amount of time that passed during intervals ranging from 3 seconds to 65 seconds. Results indicated that depressed subjects more accurately estimated the amount of time that had passed than non-depressed patients; non-depressed subjects overestimated the passing of time. This difference was hypothesized to be because depressed subjects focused less on external factors that may skew their judgment of time. The authors termed this hypothesized phenomenon "depressive realism."

Changes with age

Psychologists have found that the subjective perception of the passing of time tends to speed up with increasing age in humans. This often causes people to increasingly underestimate a given interval of time as they age. This fact can likely be attributed to a variety of age-related changes in the aging brain, such as the lowering in dopaminergic levels with older age; however, the details are still being debated. In an experimental study involving a group of subjects aged between 19 and 24 and a group between 60 and 80, the participants' abilities to estimate 3 minutes of time were compared. The study found that an average of 3 minutes and 3 seconds passed when participants in the younger group estimated that 3 minutes had passed, whereas the older group's estimate for when 3 minutes had passed came after an average of 3 minutes and 40 seconds.

Very young children literally "live in time" before gaining an awareness of its passing. A child will first experience the passing of time when he or she can subjectively perceive and reflect on the unfolding of a collection of events. A child's awareness of time develops during childhood when the child's attention and short-term memory capacities form — this developmental process is thought to be dependent on the slow maturation of the prefrontal cortex and hippocampus.

One day to an 11-year-old would be approximately 1/4,000 of their life, while one day to a 55-year-old would be approximately 1/20,000 of their life. This helps to explain why a random, ordinary day may therefore appear longer for a young child than an adult. The short term appears to go faster in proportion to the square root of the perceiver's age. So a year would be experienced by a 55-year-old as passing approximately 2¼ times more quickly than a year experienced by an 11-year-old. If long-term time perception is based solely on the proportionality of a person's age, then the following four periods in life would appear to be quantitatively equal: ages 5–10 (1x), ages 10–20 (2x), ages 20–40 (4x), age 40–80 (8x).

The common explanation is that most external and internal experiences are new for young children but repetitive for adults. Children have to be extremely engaged (i.e. dedicate many neural resources or significant brain power) in the present moment because they must constantly reconfigure their mental models of the world to assimilate it and manage behaviour properly. Adults however may rarely need to step outside mental habits and external routines. When an adult frequently experiences the same stimuli, they seem "invisible" because already sufficiently and effectively mapped by the brain. This phenomenon is known as neural adaptation. Thus, the brain will record fewer densely rich memories during these frequent periods of disengagement from the present moment. Consequently, the subjective perception is often that time passes by at a faster rate with age.

Effects of drugs

Stimulants produce overestimates of time duration, whereas depressants and anaesthetics produce underestimates of time duration.

Psychoactive drugs can alter the judgment of time. These include traditional psychedelics such as LSD, psilocybin, and mescaline as well as the dissociative class of psychedelics such as PCP, ketamine and dextromethorphan. At higher doses time may appear to slow down, speed up or seem out of sequence. In a 2007 study, psilocybin was found to significantly impair the ability to reproduce interval durations longer than 2.5 seconds, significantly impair synchronizing motor actions (taps on a computer keyboard) with regularly occurring tones, and impair the ability to keep tempo when asked to tap on a key at a self-paced but consistent interval. In 1955, British MP Christopher Mayhew took mescaline hydrochloride in an experiment under the guidance of his friend, Dr Humphry Osmond. On the BBC documentary The Beyond Within, he described that half a dozen times during the experiment, he had "a period of time that didn't end for [him]". 

Stimulants can lead both humans and rats to overestimate time intervals, while depressants can have the opposite effect. The level of activity in the brain of neurotransmitters such as dopamine and norepinephrine may be the reason for this. Dopamine has a particularly strong connection with one's perception of time. Drugs that activate dopamine receptors speed up one's perception of time, while dopamine antagonists cause one to feel that time is passing slowly.

The effect of cannabis on time perception has been studied with inconclusive results.

Effects of body temperature

Time perception may speed up as body temperature rises, and slow down as body temperature lowers. This is especially true during stressful events.

Reversal of temporal order judgment

Numerous experimental findings suggest that temporal order judgments of actions preceding effects can be reversed under special circumstances. Experiments have shown that sensory simultaneity judgments can be manipulated by repeated exposure to non-simultaneous stimuli. In an experiment conducted by David Eagleman, a temporal order judgment reversal was induced in subjects by exposing them to delayed motor consequences. In the experiment, subjects played various forms of video games. Unknown to the subjects, the experimenters introduced a fixed delay between the mouse movements and the subsequent sensory feedback. For example, a subject may not see a movement register on the screen until 150 milliseconds after the mouse had moved. Participants playing the game quickly adapted to the delay and felt as though there was less delay between their mouse movement and the sensory feedback. Shortly after the experimenters removed the delay, the subjects commonly felt as though the effect on the screen happened just before they commanded it. This work addresses how the perceived timing of effects is modulated by expectations, and the extent to which such predictions are quickly modifiable. In an experiment conducted by Haggard and colleagues in 2002, participants pressed a button that triggered a flash of light at a distance after a slight delay of 100 milliseconds. By repeatedly engaging in this act, participants had adapted to the delay (i.e., they experienced a gradual shortening in the perceived time interval between pressing the button and seeing the flash of light). The experimenters then showed the flash of light instantly after the button was pressed. In response, subjects often thought that the flash (the effect) had occurred before the button was pressed (the cause). Additionally, when the experimenters slightly reduced the delay, and shortened the spatial distance between the button and the flash of light, participants had often claimed again to have experienced the effect before the cause. 

Several experiments also suggest that temporal order judgment of a pair of tactile stimuli delivered in rapid succession, one to each hand, is noticeably impaired (i.e., misreported) by crossing the hands over the mid-line. However, congenitally blind subjects showed no trace of temporal order judgment reversal after crossing the arms. These results suggest that tactile signals taken in by the congenitally blind are ordered in time without being referred to a visuospatial representation. Unlike the congenitally blind subjects, the temporal order judgments of the late-onset blind subjects were impaired when crossing the arms to a similar extent as non-blind subjects. These results suggest that the associations between tactile signals and visuospatial representation is maintained once it is accomplished during infancy. Some research studies have also found that the subjects showed reduced deficit in tactile temporal order judgments when the arms were crossed behind their back than when they were crossed in front.

Flash-lag effect

In an experiment, participants were told to stare at an "x" symbol on a computer screen whereby a moving blue doughnut-like ring repeatedly circled the fixed "x" point. Occasionally, the ring would display a white flash for a split second that physically overlapped the ring's interior. However, when asked what was perceived, participants responded that they saw the white flash lagging behind the center of the moving ring. In other words, despite the reality that the two retinal images were actually spatially aligned, the flashed object was usually observed to trail a continuously moving object in space — a phenomenon referred to as the flash-lag effect.

The first proposed explanation, called the 'motion extrapolation' hypothesis, is that the visual system extrapolates the position of moving objects but not flashing objects when accounting for neural delays (i.e., the lag time between the retinal image and the observer's perception of the flashing object). The second proposed explanation by David Eagleman and Sejnowski, called the 'latency difference' hypothesis, is that the visual system processes moving objects at a faster rate than flashed objects. In the attempt to disprove the first hypothesis, David Eagleman conducted an experiment in which the moving ring suddenly reverses direction to spin in the other way as the flashed object briefly appears. If the first hypothesis were correct, we would expect that, immediately following reversal, the moving object would be observed as lagging behind the flashed object. However, the experiment revealed the opposite — immediately following reversal, the flashed object was observed as lagging behind the moving object. This experimental result supports of the 'latency difference' hypothesis. A recent study tries to reconcile these different approaches by approaching perception as an inference mechanism aiming at describing what is happening at the present time.

Effects of clinical disorders

Parkinson's disease, schizophrenia, and attention deficit hyperactivity disorder (ADHD) have been linked to abnormalities in dopamine levels in the brain as well as to noticeable impairments in time perception. Neuropharmacological research indicates that the internal clock, used to time durations in the seconds-to-minutes range, is linked to dopamine function in the basal ganglia. Studies in which children with ADHD are given time estimation tasks shows that time passes very slowly for them. Children with Tourette’s Syndrome, in contrast, who need to use the pre-frontal cortex to help them control their tics, are better at estimating intervals of time just over a second than other children. 

In his book Awakenings, the neurologist Dr. Oliver Sacks discussed how patients with Parkinson's disease experience deficits in their awareness of time and tempo. For example, Mr E, when asked to clap his hands steadily and regularly, did so for the first few claps before clapping faster and irregularly, culminating in an apparent freezing of motion. When he finished, Mr E asked if his observers were glad he did it correctly, to which they replied "no". Mr E was offended by this because to him, his claps were regular and steady.

Dopamine is also theorized to play a role in the attention deficits present with attention deficit hyperactivity disorder. Specifically, dopaminergic systems are involved in working memory and inhibitory processes, both of which are believed central to ADHD pathology. Children with ADHD have also been found to be significantly impaired on time discrimination tasks (telling the difference between two stimuli of different temporal lengths) and respond earlier on time reproduction tasks (duplicating the duration of a presented stimulus) than controls.

Along with other perceptual abnormalities, it has been noted by psychologists that schizophrenia patients have an altered sense of time. This was first described in psychology by Minkowski in 1927. Many schizophrenic patients stop perceiving time as a flow of causally linked events. It has been suggested that there is usually a delay in time perception in schizophrenic patients compared to normal subjects.

These defects in time perception may play a part in the hallucinations and delusions experienced by schizophrenic patients according to some studies. Some researchers suggest that "abnormal timing judgment leads to a deficit in action attribution and action perception."

Sleep

The perception of time is temporarily suspended during sleep, or more often during REM sleep. This can be attributed to the altered state of consciousness associated with sleep that prevents awareness of the surroundings, which would make it difficult to remain informed of the passing of time — new memories are rarely made during sleep. Therefore, upon waking up in the morning a person subjectively feels no time has passed but reasons that many hours have elapsed simply because it is now light outside. The passing of time must be inferred by observations of objects (e.g., the sun’s location, the moon, a clock's time) relative to the previous evening. So, time may feel as passing "faster" during sleep due to the lack of reference points. Another experience sometimes reported is a long dream seeming to go on for hours when it actually lasted only a few seconds or minutes.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...