Search This Blog

Friday, July 12, 2019

Electric generator

From Wikipedia, the free encyclopedia
 
U.S. NRC image of a modern steam turbine generator (STG).
 
In electricity generation, a generator is a device that converts motive power (mechanical energy) into electrical power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all of the power for electric power grids

The reverse conversion of electrical energy into mechanical energy is done by an electric motor, and motors and generators have many similarities. Many motors can be mechanically driven to generate electricity and frequently make acceptable manual generators.

Terminology

Early Ganz Generator in Zwevegem, West Flanders, Belgium
 
Electromagnetic generators fall into one of two broad categories, dynamos and alternators.
Mechanically a generator consists of a rotating part and a stationary part:
Rotor
The rotating part of an electrical machine.
 
Stator
The stationary part of an electrical machine, which surrounds the rotor.
One of these parts generates a magnetic field, the other has a wire winding in which the changing field induces an electric current:
Field winding or field (permanent) magnets
The magnetic field producing component of an electrical machine. The magnetic field of the dynamo or alternator can be provided by either wire windings called field coils or permanent magnets. Electrically-excited generators include an excitation system to produce the field flux. A generator using permanent magnets (PMs) is sometimes called a magneto, or permanent magnet synchronous generators (PMSMs).
 
Armature
The power-producing component of an electrical machine. In a generator, alternator, or dynamo, the armature windings generate the electric current, which provides power to an external circuit. The armature can be on either the rotor or the stator, depending on the design, with the field coil or magnet on the other part.

History

Before the connection between magnetism and electricity was discovered, electrostatic generators were invented. They operated on electrostatic principles, by using moving electrically charged belts, plates, and disks that carried charge to a high potential electrode. The charge was generated using either of two mechanisms: electrostatic induction or the triboelectric effect. Such generators generated very high voltage and low current. Because of their inefficiency and the difficulty of insulating machines that produced very high voltages, electrostatic generators had low power ratings, and were never used for generation of commercially significant quantities of electric power. Their only practical applications were to power early X-ray tubes, and later in some atomic particle accelerators.

Faraday disk generator

The Faraday disk was the first electric generator. The horseshoe-shaped magnet (A) created a magnetic field through the disk (D). When the disk was turned, this induced an electric current radially outward from the center toward the rim. The current flowed out through the sliding spring contact m, through the external circuit, and back into the center of the disk through the axle.

The operating principle of electromagnetic generators was discovered in the years of 1831–1832 by Michael Faraday. The principle, later called Faraday's law, is that an electromotive force is generated in an electrical conductor which encircles a varying magnetic flux

He also built the first electromagnetic generator, called the Faraday disk; a type of homopolar generator, using a copper disc rotating between the poles of a horseshoe magnet. It produced a small DC voltage

This design was inefficient, due to self-cancelling counterflows of current in regions of the disk that were not under the influence of the magnetic field. While current was induced directly underneath the magnet, the current would circulate backwards in regions that were outside the influence of the magnetic field. This counterflow limited the power output to the pickup wires, and induced waste heating of the copper disc. Later homopolar generators would solve this problem by using an array of magnets arranged around the disc perimeter to maintain a steady field effect in one current-flow direction. 

Another disadvantage was that the output voltage was very low, due to the single current path through the magnetic flux. Experimenters found that using multiple turns of wire in a coil could produce higher, more useful voltages. Since the output voltage is proportional to the number of turns, generators could be easily designed to produce any desired voltage by varying the number of turns. Wire windings became a basic feature of all subsequent generator designs.

Jedlik and the self-excitation phenomenon

Independently of Faraday, Ányos Jedlik started experimenting in 1827 with the electromagnetic rotating devices which he called electromagnetic self-rotors. In the prototype of the single-pole electric starter (finished between 1852 and 1854) both the stationary and the revolving parts were electromagnetic. It was also the discovery of the principle of dynamo self-excitation, which replaced permanent magnet designs. He also may have formulated the concept of the dynamo in 1861 (before Siemens and Wheatstone) but didn't patent it as he thought he wasn't the first to realize this.

Direct current generators

Hippolyte Pixii's dynamo. The commutator is located on the shaft below the spinning magnet.
 
This large belt-driven high-current dynamo produced 310 amperes at 7 volts. Dynamos are no longer used due to the size and complexity of the commutator needed for high power applications.
 
A coil of wire rotating in a magnetic field produces a current which changes direction with each 180° rotation, an alternating current (AC). However many early uses of electricity required direct current (DC). In the first practical electric generators, called dynamos, the AC was converted into DC with a commutator, a set of rotating switch contacts on the armature shaft. The commutator reversed the connection of the armature winding to the circuit every 180° rotation of the shaft, creating a pulsing DC current. One of the first dynamos was built by Hippolyte Pixii in 1832.

The dynamo was the first electrical generator capable of delivering power for industry. The Woolrich Electrical Generator of 1844, now in Thinktank, Birmingham Science Museum, is the earliest electrical generator used in an industrial process. It was used by the firm of Elkingtons for commercial electroplating.

The modern dynamo, fit for use in industrial applications, was invented independently by Sir Charles Wheatstone, Werner von Siemens and Samuel Alfred Varley. Varley took out a patent on 24 December 1866, while Siemens and Wheatstone both announced their discoveries on 17 January 1867, the latter delivering a paper on his discovery to the Royal Society.

The "dynamo-electric machine" employed self-powering electromagnetic field coils rather than permanent magnets to create the stator field. Wheatstone's design was similar to Siemens', with the difference that in the Siemens design the stator electromagnets were in series with the rotor, but in Wheatstone's design they were in parallel. The use of electromagnets rather than permanent magnets greatly increased the power output of a dynamo and enabled high power generation for the first time. This invention led directly to the first major industrial uses of electricity. For example, in the 1870s Siemens used electromagnetic dynamos to power electric arc furnaces for the production of metals and other materials. 

The dynamo machine that was developed consisted of a stationary structure, which provides the magnetic field, and a set of rotating windings which turn within that field. On larger machines the constant magnetic field is provided by one or more electromagnets, which are usually called field coils. 

Large power generation dynamos are now rarely seen due to the now nearly universal use of alternating current for power distribution. Before the adoption of AC, very large direct-current dynamos were the only means of power generation and distribution. AC has come to dominate due to the ability of AC to be easily transformed to and from very high voltages to permit low losses over large distances.

Synchronous generators (alternating current generators)

Through a series of discoveries, the dynamo was succeeded by many later inventions, especially the AC alternator, which was capable of generating alternating current. It is commonly known to be the Synchronous Generators (SGs). The synchronous machines are directly connected to the grid and need to be properly synchronized during startup. Moreover, they are excited with special control to enhance the stability of the power system.

Alternating current generating systems were known in simple forms from Michael Faraday's original discovery of the magnetic induction of electric current. Faraday himself built an early alternator. His machine was a "rotating rectangle", whose operation was heteropolar - each active conductor passed successively through regions where the magnetic field was in opposite directions.

Large two-phase alternating current generators were built by a British electrician, J.E.H. Gordon, in 1882. The first public demonstration of an "alternator system" was given by William Stanley, Jr., an employee of Westinghouse Electric in 1886.

Sebastian Ziani de Ferranti established Ferranti, Thompson and Ince in 1882, to market his Ferranti-Thompson Alternator, invented with the help of renowned physicist Lord Kelvin. His early alternators produced frequencies between 100 and 300 Hz. Ferranti went on to design the Deptford Power Station for the London Electric Supply Corporation in 1887 using an alternating current system. On its completion in 1891, it was the first truly modern power station, supplying high-voltage AC power that was then "stepped down" for consumer use on each street. This basic system remains in use today around the world. 

A small early 1900s 75 kVA direct-driven power station AC alternator, with a separate belt-driven exciter generator.
 
After 1891, polyphase alternators were introduced to supply currents of multiple differing phases. Later alternators were designed for varying alternating-current frequencies between sixteen and about one hundred hertz, for use with arc lighting, incandescent lighting and electric motors.

Self-excitation

As the requirements for larger scale power generation increased, a new limitation rose: the magnetic fields available from permanent magnets. Diverting a small amount of the power generated by the generator to an electromagnetic field coil allowed the generator to produce substantially more power. This concept was dubbed self-excitation

The field coils are connected in series or parallel with the armature winding. When the generator first starts to turn, the small amount of remanent magnetism present in the iron core provides a magnetic field to get it started, generating a small current in the armature. This flows through the field coils, creating a larger magnetic field which generates a larger armature current. This "bootstrap" process continues until the magnetic field in the core levels off due to saturation and the generator reaches a steady state power output. 

Very large power station generators often utilize a separate smaller generator to excite the field coils of the larger. In the event of a severe widespread power outage where islanding of power stations has occurred, the stations may need to perform a black start to excite the fields of their largest generators, in order to restore customer power service.

Specialized types of generator

Direct current (DC)

An important class of direct-current generators are the dynamos - these are electrical machines with commutators to produce (DC) direct current, and are self excited - their field electromagnets are powered by the machine's own output. Other types of DC generator use a separate source of direct current to energize their field magnets.

Homopolar generator

A homopolar generator is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between the center of the disc and the rim (or ends of the cylinder), the electrical polarity depending on the direction of rotation and the orientation of the field. 

It is also known as a unipolar generator, acyclic generator, disk dynamo, or Faraday disc. The voltage is typically low, on the order of a few volts in the case of small demonstration models, but large research generators can produce hundreds of volts, and some systems have multiple generators in series to produce an even larger voltage. They are unusual in that they can produce tremendous electric current, some more than a million amperes, because the homopolar generator can be made to have very low internal resistance.

Magnetohydrodynamic (MHD) generator

A magnetohydrodynamic generator directly extracts electric power from moving hot gases through a magnetic field, without the use of rotating electromagnetic machinery. MHD generators were originally developed because the output of a plasma MHD generator is a flame, well able to heat the boilers of a steam power plant. The first practical design was the AVCO Mk. 25, developed in 1965. The U.S. government funded substantial development, culminating in a 25 MW demonstration plant in 1987. In the Soviet Union from 1972 until the late 1980s, the MHD plant U 25 was in regular commercial operation on the Moscow power system with a rating of 25 MW, the largest MHD plant rating in the world at that time. MHD generators operated as a topping cycle are currently (2007) less efficient than combined cycle gas turbines.

Alternating current (AC)

Induction generator

Induction AC motors may be used as generators, turning mechanical energy into electric current. Induction generators operate by mechanically turning their rotor faster than the synchronous speed, giving negative slip. A regular AC asynchronous motor usually can be used as a generator, without any internal modifications. Induction generators are useful in applications such as minihydro power plants, wind turbines, or in reducing high-pressure gas streams to lower pressure, because they can recover energy with relatively simple controls. They do not require an exciter circuit because the rotating magnetic field is provided by induction from the stator circuit. They also do not require speed governor equipment as they inherently operate at the connected grid frequency.

To operate, an induction generator must be excited with a leading voltage; this is usually done by connection to an electrical grid, or sometimes they are self-excited by using phase correcting capacitors.

Linear electric generator

In the simplest form of linear electric generator, a sliding magnet moves back and forth through a solenoid - a spool of copper wire. An alternating current is induced in the loops of wire by Faraday's law of induction each time the magnet slides through. This type of generator is used in the Faraday flashlight. Larger linear electricity generators are used in wave power schemes.

Variable-speed constant-frequency generators

Many renewable energy efforts attempt to harvest natural sources of mechanical energy (wind, tides, etc.) to produce electricity. Because these sources fluctuate in power applied, standard generators using permanent magnets and fixed windings would deliver unregulated voltage and frequency. The overhead of regulation (whether before the generator via gear reduction or after generation by electrical means) is high in proportion to the naturally-derived energy available. 

New generator designs such as the asynchronous or induction singly-fed generator, the doubly-fed generator, or the brushless wound-rotor doubly-fed generator are seeing success in variable speed constant frequency applications, such as wind turbines or other renewable energy technologies. These systems thus offer cost, reliability and efficiency benefits in certain use cases.

Common use cases

Vehicular generators

Roadway vehicles

Motor vehicles require electrical energy to power their instrumentation, keep the engine itself operating, and recharge their batteries. Until about the 1960s motor vehicles tended to use DC generators with electromechanical regulators. Following the historical trend above and for many of the same reasons, these have now been replaced by alternators with built-in rectifier circuits.

Bicycles

Bicycles require energy to power running lights and other equipment. There are two common kinds of generator in use on bicycles: bottle dynamos which engage the bicycle's tire on an as-needed basis, and hub dynamos which are directly attached to the bicycle's drive train. The name is conventional as these they are small permanent-magnet alternators, not self-excited DC machines as are dynamos. Some electric bicycles are capable of regenerative braking, where the drive motor is used as a generator to recover some energy during braking.

Sailboats

Sailing boats may use a water- or wind-powered generator to trickle-charge the batteries. A small propeller, wind turbine or impeller is connected to a low-power generator to supply currents at typical wind or cruising speeds.

Electric scooters

Electric scooters with regenerative braking have become popular all over the world. Engineers use kinetic energy recovery systems on the scooter to reduce energy consumption and increase its range up to 40-60% by simply recovering energy using the magnetic brake, which generates electric energy for further use. Modern vehicles reach speed up to 25-30 km/h and can run up to 35-40 km.

Genset

An engine-generator is the combination of an electrical generator and an engine (prime mover) mounted together to form a single piece of self-contained equipment. The engines used are usually piston engines, but gas turbines can also be used. And there are even hybrid diesel-gas units, called dual-fuel units. Many different versions of engine-generators are available - ranging from very small portable petrol powered sets to large turbine installations. The primary advantage of engine-generators is the ability to independently supply electricity, allowing the units to serve as backup power solutions.

Human powered electrical generators

A generator can also be driven by human muscle power (for instance, in field radio station equipment). 

Protesters at Occupy Wall Street using bicycles connected to a motor and one-way diode to charge batteries for their electronics
 
Human powered direct current generators are commercially available, and have been the project of some DIY enthusiasts. Typically operated by means of pedal power, a converted bicycle trainer, or a foot pump, such generators can be practically used to charge batteries, and in some cases are designed with an integral inverter. An average "healthy human" can produce a steady 75 Watts (0.1 horsepower) for a full eight hour period, while a "first class athlete" can produce approximately 298 Watts (0.4 horsepower) for a similar period. At the end of which an undetermined period of rest and recovery will be required. At 298 Watts the average "healthy human" becomes exhausted within 10 minutes. The net electrical power that can be produced will be less, due to the efficiency of the generator. Portable radio receivers with a crank are made to reduce battery purchase requirements, see clockwork radio. During the mid 20th century, pedal powered radios were used throughout the Australian outback, to provide schooling (School of the Air), medical and other needs in remote stations and towns.

Mechanical measurement

Designed to measure shaft speed, a tachogenerator is a device which produces an output voltage proportional to that speed. Tachogenerators are frequently used to power tachometers to measure the speeds of electric motors, engines, and the equipment they power. speed. With precise construction and design, generators can be built to produce very precise voltages for certain ranges of shaft speeds.

Equivalent circuit

Equivalent circuit of generator and load.
  • G, generator
  • VG, generator open-circuit voltage
  • RG, generator internal resistance
  • VL, generator on-load voltage
  • RL, load resistance
An equivalent circuit of a generator and load is shown in the adjacent diagram. The generator is represented by an abstract generator consisting of an ideal voltage source and an internal resistance. The generator's and parameters can be determined by measuring the winding resistance (corrected to operating temperature), and measuring the open-circuit and loaded voltage for a defined current load. 

This is the simplest model of a generator, further elements may need to be added for an accurate representation. In particular, inductance can be added to allow for the machine's windings and magnetic leakage flux, but a full representation can become much more complex than this.

Water conflict

From Wikipedia, the free encyclopedia
 
Water conflict is a term describing a conflict between countries, states, or groups over an access to water resources. The United Nations recognizes that water disputes result from opposing interests of water users, public or private. A wide range of water conflicts appear throughout history, though rarely are traditional wars waged over water alone. Instead, water has historically been a source of tension and a factor in conflicts that start for other reasons. However, water conflicts arise for several reasons, including territorial disputes, a fight for resources, and strategic advantage. A comprehensive online database of water-related conflicts—the Water Conflict Chronology—has been developed by the Pacific Institute. This database lists violence over water going back nearly 6,000 years. 

These conflicts occur over both freshwater and saltwater, and both between and within nations. However, conflicts occur mostly over freshwater; because freshwater resources are necessary, yet scarce, they are the center of water disputes arising out of need for potable water, irrigation and energy generation. As freshwater is a vital, yet unevenly distributed natural resource, its availability often impacts the living and economic conditions of a country or region. The lack of cost-effective water supply options in areas like the Middle East, among other elements of water crises can put severe pressures on all water users, whether corporate, government, or individual, leading to tension, and possibly aggression. Recent humanitarian catastrophes, such as the Rwandan genocide or the war in Sudanese Darfur, have been linked back to water conflicts.

A recent report "Water Cooperation for a Secure World" published by Strategic Foresight Group concludes that active water cooperation between countries reduces the risk of war. This conclusion is reached after examining trans-boundary water relations in over 200 shared river basins in 148 countries, though as noted below, a growing number of water conflicts are sub-national.

Causes

According to the 1992 International Conference on Water and the Environment, water is a vital element for human life, and human activities are closely connected to availability and quality of water. Unfortunately, water is a limited resource and in the future access "might get worse with climate change, although scientists' projections of future rainfall are notoriously cloudy" writes Roger Harrabin. Moreover, "it is now commonly said that future wars in the Middle East are more likely to be fought over water than over oil," said Lester R. Brown at a previous Stockholm Water Conference.

Water conflicts occur because the demand for water resources and potable water can exceed supply, or because control over access and allocation of water may be disputed. Elements of a water crisis may put pressures on affected parties to obtain more of a shared water resource, causing diplomatic tension or outright conflict.

11% of the global population, or 783 million people, are still without access to improved sources of drinking water which provides the catalyst for potential for water disputes. Besides life, water is necessary for proper sanitation, commercial services, and the production of commercial goods. Thus numerous types of parties can become implicated in a water dispute. For example, corporate entities may pollute water resources shared by a community, or governments may argue over who gets access to a river used as an international or inter-state boundary.

The broad spectrum of water disputes makes them difficult to address. Local and international law, commercial interests, environmental concerns, and human rights questions make water disputes complicated to solve – combined with the sheer number of potential parties, a single dispute can leave a large list of demands to be met by courts and lawmakers.

Economic and trade issues

Water’s viability as a commercial resource, which includes fishing, agriculture, manufacturing, recreation and tourism, among other possibilities, can create dispute even when access to potable water is not necessarily an issue. As a resource, some consider water to be as valuable as oil, needed by nearly every industry, and needed nearly every day. Water shortages can completely cripple an industry just as it can cripple a population, and affect developed countries just as they affect countries with less-developed water infrastructure. Water-based industries are more visible in water disputes, but commerce at all levels can be damaged by a lack of water.

International commercial disputes between nations can be addressed through the World Trade Organization (WTO), which has water-specific groups like a Fisheries Center that provide a unified judicial protocol for commercial conflict resolution. Still, water conflict occurring domestically, as well as conflict that may not be entirely commercial in nature may not be suitable for arbitration by the WTO.

Fishing

Historically, fisheries have been the main sources of question, as nations expanded and claimed portions of oceans and seas as territory for ‘domestic’ commercial fishing. Certain lucrative areas, such as the Bering Sea, have a history of dispute; in 1886 Great Britain and the United States clashed over sealing fisheries, and today Russia surrounds a pocket of international water known as the Bering Sea Donut Hole. Conflict over fishing routes and access to the hole was resolved in 1995 by a convention referred to colloquially as the Donut Hole Agreement.

Pollution

Corporate interest often crosses opposing commercial interest, as well as environmental concerns, leading to another form of dispute. In the 1960s, Lake Erie, and to a lesser extent, the other Great Lakes were polluted to the point of massive fish death. Local communities suffered greatly from dismal water quality until the United States Congress passed the Clean Water Act in 1972.

Water pollution poses a significant health risk, especially in heavily industrialized, heavily populated areas like China. In response to a worsening situation in which entire cities lacked safe drinking water, China passed a revised Water Pollution Prevention and Control Law. The possibility of polluted water making it way across international boundaries, as well as unrecognized water pollution within a poorer country brings up questions of human rights, allowing for international input on water pollution. There is no single framework for dealing with pollution disputes local to a nation.

Classifications

According to Aaron Wolf, et all. there were 1831 water conflicts over transboundary basins from 1950–2000. They categorized these events as following:
  • No water-related events on the extremes
  • Most interactions are cooperative
  • Most interactions are mild
  • Water acts as irritant
  • Water acts as unifier
  • Nations cooperate over a wide variety of issues
  • Nations conflict over quantity and infrastructure
A comprehensive chronology of water-related conflicts is maintained by the Pacific Institute in their Water Conflict Chronology, which includes an open-source data set, an interactive map, and full information on citations. These historical examples go back over 4,500 years. In this dataset, water conflicts are categorized as follows:
  • Control of Water Resources (state and non-state actors): where water supplies or access to water is at the root of tensions.
  • Military Tool (state actors): where water resources, or water systems themselves, are used by a nation or state as a weapon during a military action.
  • Political Tool (state and non-state actors): where water resources, or water systems themselves, are used by a nation, state, or non-state actor for a political goal.
  • Terrorism (non-state actors): where water resources, or water systems, are either targets or tools of violence or coercion by non-state actors.
  • Military Target (state actors): where water resource systems are targets of military actions by nations or states.
  • Development Disputes (state and non-state actors): where water resources or water systems are a major source of contention and dispute in the context of economic and social development

Response

International organizations play the largest role in mediating water disputes and improving water management. From scientific efforts to quantify water pollution, to the World Trade Organization’s efforts to resolve trade disputes between nations, the varying types of water disputes can be addressed through current framework. Yet water conflicts that go unresolved become more dangerous as water becomes more scarce and global population increases.

United Nations

The UN International Hydrological Program aims to help improve understanding of water resources and foster effective water management. But by far the most active UN program in water dispute resolution is its Potential Conflict to Co-operation Potential (PCCP) mission, which is in its third phase, training water professionals in the Middle East and organizing educational efforts elsewhere. Its target groups include diplomats, lawmakers, civil society, and students of water studies; by expanding knowledge of water disputes, it hopes to encourage cooperation between nations in dealing with conflicts. 

UNESCO has published a map of trans-boundary aquifers. Academic work focusing on water disputes has yet to yield a consistent method for mediating international disputes, let alone local ones. But UNESCO faces optimistic prospects for the future as water conflicts become more public, and as increasing severity sobers obstinate interests.

World Trade Organization

The World Trade Organization can arbitrate water disputes presented by its member states when the disputes are commercial in nature. The WTO has certain groups, such as its Fisheries Center, that work to monitor and rule on relevant cases, although it is by no means the authority on conflict over water resources. 

Because water is so central to agricultural trade, water disputes may be subtly implicated in WTO cases in the form of virtual water, water used in the production of goods and services but not directly traded between countries. Countries with greater access to water supplies may fare better from an economic standpoint than those facing crisis, which creates the potential for conflict. Outraged by agriculture subsidies that displace domestic produce, countries facing water shortages bring their case to the WTO. 

The WTO plays more of a role in agriculturally based disputes that are relevant to conflict over specific sources of water. Still, it provides an important framework that shapes the way water will play into future economic disputes. One school of thought entertains the notion of war over water, the ultimate progression of an unresolved water dispute—scarce water resources combined with the pressure of exponentially increasing population may outstrip the ability of the WTO to maintain civility in trade issues.

Notable conflicts

Water conflicts can occur on the intrastate and interstate levels. Interstate conflicts occur between two or more neighboring countries that share a transboundary water source, such as a river, sea, or groundwater basin. For example, the Middle East has only 1% of the world's freshwater shared among 5% of the world's population. Intrastate conflicts take place between two or more parties in the same country. An example would be the conflicts between farmers and industry (agricultural vs industrial use of water). 

According to UNESCO, the current interstate conflicts occur mainly in the Middle East (disputes stemming from the Euphrates and Tigris Rivers among Turkey, Syria, and Iraq; and the Jordan River conflict among Israel, Lebanon, Jordan and the State of Palestine), in Africa (Nile River-related conflicts among Egypt, Ethiopia, and Sudan), as well as in Central Asia (the Aral Sea conflict among Kazakhstan, Uzbekistan, Turkmenistan, Tajikistan and Kyrgyzstan). At a local level, a remarkable example is the 2000 Cochabamba protests in Bolivia, depicted in the 2010 Spanish film Even the Rain by Icíar Bollaín

Some analysts estimate that due to an increase in human consumption of water resources, water conflicts will become increasingly common in the near future.

In 1979, Egyptian President Anwar Sadat said that if Egypt were to ever go to war again it would be over water. Separately, amidst Egypt–Ethiopia relations, Ethiopian Prime Minister Meles Zenawi said: "I am not worried that the Egyptians will suddenly invade Ethiopia. Nobody who has tried that has lived to tell the story."

Recent research into water conflicts

Some research from the International Water Management Institute and Oregon State University has found that water conflicts among nations are less likely than is cooperation, with hundreds of treaties and agreements in place. Water conflicts tend to arise as an outcome of other social issues. Conversely, the Pacific Institute has shown that while interstate (i.e., nation to nation) water conflicts are increasingly less likely, there appears to be a growing risk of sub-national conflicts among water users, regions, ethnic groups, and competing economic interests. Data from the Water Conflict Chronology show these intrastate conflicts to be a larger and growing component of all water disputes, and that the traditional international mechanisms for addressing them, such as bilateral or multilateral treaties, are not as effective.

Strategic Foresight Group in partnership with the Governments of Switzerland and Sweden has developed the Blue Peace approach which seeks to transforms trans-boundary water issues into instruments for cooperation. The Blue Peace framework offers a unique policy structure which promotes sustainable management of water resources combined with cooperation for peace. By making the most of shared water resources through cooperation rather than mere allocation between countries, the chances for peace can be increased. The Blue Peace approach has proven to be effective in cases like the Middle East and the Nile basin.

American Association for the Advancement of Science

From Wikipedia, the free encyclopedia
 
American Association for the Advancement of Science
American Association for the Advancement of Science.svg
AAAS logo
FoundedSeptember 20, 1848 (170 years ago)
FocusScience education and outreach
Location
Members
more than 120,000
WebsiteAAAS.org
Formerly called
Association of American Geologists and Naturalists

Washington, D.C. office of the AAAS
 
The American Association for the Advancement of Science (AAAS) is an American international non-profit organization with the stated goals of promoting cooperation among scientists, defending scientific freedom, encouraging scientific responsibility, and supporting scientific education and science outreach for the betterment of all humanity. It is the world's largest general scientific society, with over 120,000 members, and is the publisher of the well-known scientific journal Science, which had a weekly circulation of 138,549 in 2008.

History

Creation

The American Association for the Advancement of Science was created on September 20, 1848, at the Academy of Natural Sciences in Philadelphia, Pennsylvania. It was a reformation of the Association of American Geologists and Naturalists. The society chose William Charles Redfield as their first president because he had proposed the most comprehensive plans for the organization. According to the first constitution which was agreed to at the September 20 meeting, the goal of the society was to promote scientific dialogue in order to allow for greater scientific collaboration. By doing so the association aimed to use resources to conduct science with increased efficiency and allow for scientific progress at a greater rate. The association also sought to increase the resources available to the scientific community through active advocacy of science. There were only 78 members when the AAAS was formed. As a member of the new scientific body, Matthew Fontaine Maury, USN was one of those who attended the first 1848 meeting.

At a meeting held on Friday afternoon, September 22, 1848, Redfield presided, and Matthew Fontaine Maury gave a full scientific report on his Wind and Current Charts. Maury stated that hundreds of ship navigators were now sending abstract logs of their voyages to the United States Naval Observatory. He added, "Never before was such a corps of observers known." But, he pointed out to his fellow scientists, his critical need was for more "simultaneous observations." "The work," Maury stated, "is not exclusively for the benefit of any nation or age." The minutes of the AAAS meeting reveal that because of the universality of this "view on the subject, it was suggested whether the states of Christendom might not be induced to cooperate with their Navies in the undertaking; at least so far as to cause abstracts of their log-books and sea journals to be furnished to Matthew F. Maury, USN, at the Naval Observatory at Washington." 

William Barton Rogers, professor at the University of Virginia and later founder of the Massachusetts Institute of Technology, offered a resolution: "Resolved that a Committee of five be appointed to address a memorial to the Secretary of the Navy, requesting his further aid in procuring for Matthew Maury the use of the observations of European and other foreign navigators, for the extension and perfecting of his charts of winds and currents." The resolution was adopted and, in addition to Rogers, the following members of the association were appointed to the committee: Professor Joseph Henry of Washington; Professor Benjamin Peirce of Cambridge, Massachusetts; Professor James H. Coffin of Easton, Pennsylvania, and Professor Stephen Alexander of Princeton, New Jersey. This was scientific cooperation, and Maury went back to Washington with great hopes for the future.

Growth and Civil War dormancy

By 1860, membership increased to over 2,000. The AAAS became dormant during the American Civil War; their August 1861 meeting in Nashville, Tennessee, was postponed indefinitely after the outbreak of the first major engagement of the war at Bull Run. The AAAS did not become a permanent casualty of the war. 

In 1866, Frederick Barnard presided over the first meeting of the resurrected AAAS at a meeting in New York City. Following the revival of the AAAS, the group had considerable growth. The AAAS permitted all people, regardless of scientific credentials, to join. The AAAS did, however, institute a policy of granting the title of "Fellow of the AAAS" to well-respected scientists within the organization. The years of peace brought the development and expansion of other scientific-oriented groups. The AAAS's focus on the unification of many fields of science under a single organization was in contrast to the many new science organizations founded to promote a single discipline. For example, the American Chemical Society, founded in 1876, promotes chemistry

In 1863, the US Congress established the National Academy of Sciences, another multidisciplinary sciences organization. It elects members based on recommendations from colleagues and the value of published works.

Advocacy

Alan I. Leshner, AAAS CEO from 2001 until 2015, published many op-ed articles discussing how many people integrate science and religion in their lives. He has opposed the insertion of non-scientific content, such as creationism or intelligent design, into the scientific curriculum of schools.

In December 2006, the AAAS adopted an official statement on climate change, in which they stated, "The scientific evidence is clear: global climate change caused by human activities is occurring now, and it is a growing threat to society....The pace of change and the evidence of harm have increased markedly over the last five years. The time to control greenhouse gas emissions is now."

In February 2007, the AAAS used satellite images to document human rights abuses in Burma. The next year, AAAS launched the Center for Science Diplomacy to advance both science and the broader relationships among partner countries, by promoting science diplomacy and international scientific cooperation.

In 2012, AAAS published op-eds, held events on Capitol Hill and released analyses of the U.S. federal research-and-development budget, to warn that a budget sequestration would have severe consequences for scientific progress.

Sciences

AAAS covers various areas  of sciences and engineering. It has twelve sections, each with a committee and its chair. These committees are also entrusted with the annual evaluation and selection of Fellows. The sections are:
  • Astronomy
  • Engineering
  • Anthropology
  • Education
  • Medical Sciences
  • Biological Sciences
  • Industrial Science and Technology
  • Geology and Geography
  • History and Philosophy of Science
  • Agriculture, Food & Renewable Resources
  • Linguistics and Language Sciences
  • General Interest in Science and Engineering

Governance

AAAS officers and senior officials in 1947. Left to right, standing: Sinnott, Baitsell, Payne, Lark-Horovitz, Miles, Stakman, sitting: Carlson, Mather, Moulton, Shapley.
 
The most recent Constitution of the AAAS, enacted on January 1, 1973, establishes that the governance of the AAAS is accomplished through four entities: a President, a group of administrative officers, a Council, and a Board of Directors.

Presidents

Individuals elected to the presidency of the AAAS hold a three-year term in a unique way. The first year is spent as President-elect, the second as President and the third as Chairperson of the Board of Directors. In accordance with the convention followed by the AAAS, presidents are referenced by the year in which they left office. 

Geraldine Richmond is the President of AAAS for 2015–16; Phillip Sharp is the Board Chair; and Barbara A. Schaal is the President-Elect. Each took office on the last day of the 2015 AAAS Annual Meeting in February 2015. On the last day of the 2016 AAAS Annual Meeting, February 15, 2016, Richmond will become the Chair, Schaal will become the President, and a new President-Elect will take office. 

Past presidents of AAAS have included some of the most important scientific figures of their time. Among them: explorer and geologist John Wesley Powell (1888); astronomer and physicist Edward Charles Pickering (1912); anthropologist Margaret Mead (1975); and biologist Stephen Jay Gould (2000). 

Notable Presidents of the AAAS, 1848–2005

Administrative officers

There are three classifications of high-level administrative officials that execute the basic, daily functions of the AAAS. These are the executive officer, the treasurer and then each of the AAAS's section secretaries. The current CEO of AAAS and executive publisher of Science magazine is Rush D. Holt.

Sections of the AAAS

The AAAS has 24 "sections" with each section being responsible for a particular concern of the AAAS. There are sections for agriculture, anthropology, astronomy, atmospheric science, biological science, chemistry, dentistry, education, engineering, general interest in science and engineering, geology and geography, the history and philosophy of science, technology, computer science, linguistics, mathematics, medical science, neuroscience, pharmaceutical science, physics, psychology, science and human rights, social and political science, the social impact of science and engineering, and statistics.

Affiliates

AAAS affiliates include 262 societies and academies of science, serving more than 10 million members, from the Acoustical Society of America to the Wildlife Society, as well as non-mainstream groups like the Parapsychological Association.

The Council

The Council is composed of the members of the Board of Directors, the retiring section chairmen, elected delegates and affiliated foreign council members. Among the elected delegates there are always at least two members from the National Academy of Sciences and one from each region of the country. The President of the AAAS serves as the Chairperson of the Council. Members serve the Council for a term of three years. 

The council meets annually to discuss matters of importance to the AAAS. They have the power to review all activities of the Association, elect new fellows, adopt resolutions, propose amendments to the Association's constitution and bylaws, create new scientific sections, and organize and aid local chapters of the AAAS. The Council recently has new additions to it from different sections which include many youngsters as well. John Kerry of Chicago is the youngest American in the council and Akhil Ennamsetty of India is the youngest foreign council member.

Board of directors

The board of directors is composed of a chairperson, the president, and the president-elect along with eight elected directors, the executive officer of the association and up to two additional directors appointed by elected officers. Members serve a four-year term except for directors appointed by elected officers, who serve three-year terms.

The current chairman is Gerald Fink, Margaret and Herman Sokol Professor at Whitehead Institute, MIT. Fink will serve in the post until the end of the 2016 AAAS Annual Meeting, 15 February 2016. (The chairperson is always the immediate past-president of AAAS.) 

The board of directors has a variety of powers and responsibilities. It is charged with the administration of all association funds, publication of a budget, appointment of administrators, proposition of amendments, and determining the time and place of meetings of the national association. The board may also speak publicly on behalf of the association. The board must also regularly correspond with the council to discuss their actions.

AAAS Fellows

The AAAS council elects every year, its members who are distinguished scientifically, to the grade of fellow (FAAAS). Election to AAAS is an honor bestowed by their peers and elected fellows are presented with a certificate and rosette pin. To limit the effects and tolerance of sexual harassment in the sciences, starting 15 October 2018, a Fellow's status can be revoked "in cases of proven scientific misconduct, serious breaches of professional ethics, or when the Fellow in the view of the AAAS otherwise no longer merits the status of Fellow."

Meetings

Formal meetings of the AAAS are numbered consecutively, starting with the first meeting in 1848. Meetings were not held 1861–1865 during the American Civil War, and also 1942–1943 during World War II. Since 1946, one meeting has occurred annually, now customarily in February.

Awards and fellowships

Each year, the AAAS gives out a number of honorary awards, most of which focus on science communication, journalism, and outreach – sometimes in partnership with other organizations. The awards recognize "scientists, journalists, and public servants for significant contributions to science and to the public’s understanding of science.” The awards are presented each year at the association's annual meeting. 

The AAAS also offers a number of fellowship programs.

Currently active awards include

Publications

The society's flagship publication is Science, a weekly interdisciplinary scientific journal. Other peer-reviewed journals published by the AAAS are Science Signaling, Science Translational Medicine, Science Immunology, Science Robotics and the interdisciplinary Science Advances. They also publish the non-peer-reviewed Science & Diplomacy.

EurekAlert!

In 1996, AAAS launched the EurekAlert! website, an editorially independent, non-profit news release distribution service covering all areas of science, medicine and technology. Eurekalert! provides news in English, Spanish, French, German, Portuguese, Japanese. In 2007, EurekAlert! Chinese was launched.

Working staff journalists and freelancers who meet eligibility guidelines can access the latest studies before publication and obtain embargoed information in compliance with the U.S. Securities and Exchange Commission's Regulation Fair Disclosure policy. By early 2018, more than 14,000 reporters from more than 90 countries have registered for free access to embargoed materials. More than 5,000 active public information officers from 2,300 universities, academic journals, government agencies, and medical centers are credentialed to provide new releases to reporters and the public through the system.

In 1998, European science organizations countered Eurekalert! with a press release distribution service AlphaGalileo.

Eurekalert! has fallen under criticism for lack of press release standards and for generating churnalism.

Streaming algorithm

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Streaming_algorithm ...