Search This Blog

Wednesday, December 5, 2018

Energy development

From Wikipedia, the free encyclopedia

Energy development
Schematic of the global sources of energy in 2010
Total Renewables split-up by source
   Fossil
   Renewable
   Nuclear
   Geo-heat
   Hydro
   Ethanol
   Biodiesel
   Wind
   Solar PV
   Solar CSP
   Oceanic
Source: Renewable Energy Policy Network
World total primary energy production
World total primary energy production
  Total world primary energy production (quadrillion Btu)
   China
   Russia
   Africa
   United States
   Europe
   Central and South America
Note the different y-axis for total (left) and regional curves (right)
US Energy Use/Flow in 2011
Estimated US Energy Use/Flow in 2011. Energy flow charts show the relative size of primary energy resources and end uses in the United States, with fuels compared on a common energy unit basis.
Energy flow charts show the relative size of primary energy resources and end uses in the United States, with fuels compared on a common energy unit basis (2011: 97.3 quads).

Compounds and Radiant Energy
   Solar
   Nuclear
   Hydro
   Wind
   Geothermal
   Natural gas
   Coal
   Biomass
   Petroleum

Producing Electrical Currents/Utilizing Effects Transmitted
   Electricity generation
   Residential, Commercial, Industrial, transportation
   Rejected energy (waste heat)
   Energy services

Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include production of conventional, alternative and renewable sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.

Societies use energy for transportation, manufacturing, illumination, heating and air conditioning, and communication, for industrial, commercial, and domestic purposes. Energy resources may be classified as primary resources, where the resource can be used in substantially its original form, or as secondary resources, where the energy source must be converted into a more conveniently usable form. Non-renewable resources are significantly depleted by human use, whereas renewable resources are produced by ongoing processes that can sustain indefinite human exploitation.

Thousands of people are employed in the energy industry. The conventional industry comprises the petroleum industry, the natural gas industry, the electrical power industry, and the nuclear industry. New energy industries include the renewable energy industry, comprising alternative and sustainable manufacture, distribution, and sale of alternative fuels.

Classification of resources

Open System Model (basics)

Energy resources may be classified as primary resources, suitable for end use without conversion to another form, or secondary resources, where the usable form of energy required substantial conversion from a primary source. Examples of primary energy resources are wind power, solar power, wood fuel, fossil fuels such as coal, oil and natural gas, and uranium. Secondary resources are those such as electricity, hydrogen, or other synthetic fuels.

Another important classification is based on the time required to regenerate an energy resource. "Renewable" resources are those that recover their capacity in a time significant by human needs. Examples are hydroelectric power or wind power, when the natural phenomena that are the primary source of energy are ongoing and not depleted by human demands. Non-renewable resources are those that are significantly depleted by human usage and that will not recover their potential significantly during human lifetimes. An example of a non-renewable energy source is coal, which does not form naturally at a rate that would support human use.

Fossil fuels

The Moss Landing Power Plant in California is a fossil-fuel power station that burns natural gas in a turbine to produce electricity

Fossil fuel (primary non-renewable fossil) sources burn coal or hydrocarbon fuels, which are the remains of the decomposition of plants and animals. There are three main types of fossil fuels: coal, petroleum, and natural gas. Another fossil fuel, liquefied petroleum gas (LPG), is principally derived from the production of natural gas. Heat from burning fossil fuel is used either directly for space heating and process heating, or converted to mechanical energy for vehicles, industrial processes, or electrical power generation. These fossil fuels are part of the carbon cycle and thus allow stored solar energy to be used today.

The use of fossil fuels in the 18th and 19th Century set the stage for the Industrial Revolution.

Fossil fuels make up the bulk of the world's current primary energy sources. In 2005, 81% of the world's energy needs was met from fossil sources. The technology and infrastructure already exist for the use of fossil fuels. Liquid fuels derived from petroleum deliver a great deal of usable energy per unit of weight or volume, which is advantageous when compared with lower energy density sources such as a battery. Fossil fuels are currently economical for decentralised energy use.


Energy dependence on imported fossil fuels creates energy security risks for dependent countries. Oil dependence in particular has led to war, funding of radicals, monopolization, and socio-political instability.

Fossil fuels are non-renewable resources, which will eventually decline in production and become exhausted. While the processes that created fossil fuels are ongoing, fuels are consumed far more quickly than the natural rate of replenishment. Extracting fuels becomes increasingly costly as society consumes the most accessible fuel deposits. Extraction of fossil fuels results in environmental degradation, such as the strip mining and mountaintop removal of coal. 

Fuel efficiency is a form of thermal efficiency, meaning the efficiency of a process that converts chemical potential energy contained in a carrier fuel into kinetic energy or work. The fuel economy is the energy efficiency of a particular vehicle, is given as a ratio of distance travelled per unit of fuel consumed. Weight-specific efficiency (efficiency per unit weight) may be stated for freight, and passenger-specific efficiency (vehicle efficiency per passenger). The inefficient atmospheric combustion (burning) of fossil fuels in vehicles, buildings, and power plants contributes to urban heat islands.

Conventional production of oil has peaked, conservatively, between 2007 and 2010. In 2010, it was estimated that an investment in non-renewable resources of $8 trillion would be required to maintain current levels of production for 25 years. In 2010, governments subsidized fossil fuels by an estimated $500 billion a year. Fossil fuels are also a source of greenhouse gas emissions, leading to concerns about global warming if consumption is not reduced.

The combustion of fossil fuels leads to the release of pollution into the atmosphere. The fossil fuels are mainly carbon compounds. During combustion, carbon dioxide is released, and also nitrogen oxides, soot and other fine particulates. Man-made carbon dioxide according to the IPCC contributes to global warming. Other emissions from fossil fuel power station include sulfur dioxide, carbon monoxide (CO), hydrocarbons, volatile organic compounds (VOC), mercury, arsenic, lead, cadmium, and other heavy metals including traces of uranium.

A typical coal plant generates billions of kilowatt hours per year.

Nuclear

Fission

American nuclear powered ships,(top to bottom) cruisers USS Bainbridge, the USS Long Beach and the USS Enterprise, the longest ever naval vessel, and the first nuclear-powered aircraft carrier. Picture taken in 1964 during a record setting voyage of 26,540 nmi (49,190 km) around the world in 65 days without refueling. Crew members are spelling out Einstein's mass-energy equivalence formula E = mc2 on the flight deck.
 
The Russian nuclear-powered icebreaker NS Yamal on a joint scientific expedition with the NSF in 1994

Nuclear power is the use of nuclear fission to generate useful heat and electricity. Fission of uranium produces nearly all economically significant nuclear power. Radioisotope thermoelectric generators form a very small component of energy generation, mostly in specialized applications such as deep space vehicles.

Nuclear power plants, excluding naval reactors, provided about 5.7% of the world's energy and 13% of the world's electricity in 2012.

In 2013, the IAEA report that there are 437 operational nuclear power reactors, in 31 countries, although not every reactor is producing electricity. In addition, there are approximately 140 naval vessels using nuclear propulsion in operation, powered by some 180 reactors. As of 2013, attaining a net energy gain from sustained nuclear fusion reactions, excluding natural fusion power sources such as the Sun, remains an ongoing area of international physics and engineering research. More than 60 years after the first attempts, commercial fusion power production remains unlikely before 2050.

There is an ongoing debate about nuclear power. Proponents, such as the World Nuclear Association, the IAEA and Environmentalists for Nuclear Energy contend that nuclear power is a safe, sustainable energy source that reduces carbon emissions. Opponents, such as Greenpeace International and NIRS, contend that nuclear power poses many threats to people and the environment.

Nuclear power plant accidents include the Chernobyl disaster (1986), Fukushima Daiichi nuclear disaster (2011), and the Three Mile Island accident (1979). There have also been some nuclear submarine accidents. In terms of lives lost per unit of energy generated, analysis has determined that nuclear power has caused less fatalities per unit of energy generated than the other major sources of energy generation. Energy production from coal, petroleum, natural gas and hydropower has caused a greater number of fatalities per unit of energy generated due to air pollution and energy accident effects. However, the economic costs of nuclear power accidents is high, and meltdowns can take decades to clean up. The human costs of evacuations of affected populations and lost livelihoods is also significant.

Comparing Nuclear's latent cancer deaths, such as cancer with other energy sources immediate deaths per unit of energy generated(GWeyr). This study does not include fossil fuel related cancer and other indirect deaths created by the use of fossil fuel consumption in its "severe accident" classification, which would be an accident with more than 5 fatalities.

Nuclear power is a low carbon power generation method of producing electricity, with an analysis of the literature on its total life cycle emission intensity finding that it is similar to renewable sources in a comparison of greenhouse gas(GHG) emissions per unit of energy generated. Since the 1970s, nuclear fuel has displaced about 64 gigatonnes of carbon dioxide equivalent(GtCO2-eq) greenhouse gases, that would have otherwise resulted from the burning of oil, coal or natural gas in fossil-fuel power stations.

As of 2012, according to the IAEA, worldwide there were 68 civil nuclear power reactors under construction in 15 countries, approximately 28 of which in the People's Republic of China (PRC), with the most recent nuclear power reactor, as of May 2013, to be connected to the electrical grid, occurring on February 17, 2013 in Hongyanhe Nuclear Power Plant in the PRC. In the United States, two new Generation III reactors are under construction at Vogtle. U.S. nuclear industry officials expect five new reactors to enter service by 2020, all at existing plants. In 2013, four aging, uncompetitive, reactors were permanently closed.

Japan's 2011 Fukushima Daiichi nuclear accident, which occurred in a reactor design from the 1960s, prompted a rethink of nuclear safety and nuclear energy policy in many countries. Germany decided to close all its reactors by 2022, and Italy has banned nuclear power. Following Fukushima, in 2011 the International Energy Agency halved its estimate of additional nuclear generating capacity to be built by 2035.

Recent experiments in extraction of uranium use polymer ropes that are coated with a substance that selectively absorbs uranium from seawater. This process could make the considerable volume of uranium dissolved in seawater exploitable for energy production. Since ongoing geologic processes carry uranium to the sea in amounts comparable to the amount that would be extracted by this process, in a sense the sea-borne uranium becomes a sustainable resource.

Fission economics

The 2011 Fukushima Daiichi nuclear disaster, the second worst nuclear incident, displaced 50,000 households after radioactive material leaked into the air, soil and sea. Radiation checks led to bans on some shipments of vegetables and fish.
 
The economics of new nuclear power plants is a controversial subject, since there are diverging views on this topic, and multibillion-dollar investments ride on the choice of an energy source. Nuclear power plants typically have high capital costs for building the plant, but low direct fuel costs.

In recent years there has been a slowdown of electricity demand growth and financing has become more difficult, which affects large projects such as nuclear reactors, with very large upfront costs and long project cycles which carry a large variety of risks. In Eastern Europe, a number of long-established projects are struggling to find finance, notably Belene in Bulgaria and the additional reactors at Cernavoda in Romania, and some potential backers have pulled out. Where cheap gas is available and its future supply relatively secure, this also poses a major problem for nuclear projects.

refer to caption and image description
Two months after the Fukushima I failures, a global public support survey by Ipsos (2011) for energy sources was published and nuclear/fission was found to be the least popular
 
Analysis of the economics of nuclear power must take into account who bears the risks of future uncertainties. To date all operating nuclear power plants were developed by state-owned or regulated utility monopolies where many of the risks associated with construction costs, operating performance, fuel price, and other factors were borne by consumers rather than suppliers. Many countries have now liberalized the electricity market where these risks, and the risk of cheaper competitors emerging before capital costs are recovered, are borne by plant suppliers and operators rather than consumers, which leads to a significantly different evaluation of the economics of new nuclear power plants.

Two of the four EPRs under construction (in Finland and France) are significantly behind schedule and substantially over cost. Following the 2011 Fukushima Daiichi nuclear disaster, costs are likely to go up for currently operating and new nuclear power plants, due to increased requirements for on-site spent fuel management and elevated design basis threats. While first of their kind designs, such as the EPRs under construction are behind schedule and over-budget, of the seven South Korean APR-1400s presently under construction worldwide, two are in S.Korea at the Hanul Nuclear Power Plant and four are at the largest nuclear station construction project in the world as of 2016, in the United Arab Emirates at the planned Barakah nuclear power plant. The first reactor, Barakah-1 is 85% completed and on schedule for grid-connection during 2017.

Renewable sources

Wind, sun, and hydroelectricity are three renewable energy sources.

Renewable energy is generally defined as energy that comes from resources which are naturally replenished on a human timescale such as sunlight, wind, rain, tides, waves and geothermal heat. Renewable energy replaces conventional fuels in four distinct areas: electricity generation, hot water/space heating, motor fuels, and rural (off-grid) energy services.

About 16% of global final energy consumption presently comes from renewable resources, with 10%  of all energy from traditional biomass, mainly used for heating, and 3.4% from hydroelectricity. New renewables (small hydro, modern biomass, wind, solar, geothermal, and biofuels) account for another 3% and are growing rapidly. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond. Wind power, for example, is growing at the rate of 30% annually, with a worldwide installed capacity of 282,482 megawatts (MW) at the end of 2012. 

Renewable energy resources exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency is resulting in significant energy security, climate change mitigation, and economic benefits. In international public opinion surveys there is strong support for promoting renewable sources such as solar power and wind power.

While many renewable energy projects are large-scale, renewable technologies are also suited to rural and remote areas and developing countries, where energy is often crucial in human development. United Nations' Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.

Hydroelectricity

The 22,500 MW Three Gorges Dam in China – the world's largest hydroelectric power station

Hydroelectricity is electric power generated by hydropower; the force of falling or flowing water. In 2015 hydropower generated 16.6% of the world's total electricity and 70% of all renewable electricity  and is expected to increase about 3.1% each year for the next 25 years.

Hydropower is produced in 150 countries, with the Asia-Pacific region generating 32 percent of global hydropower in 2010. China is the largest hydroelectricity producer, with 721 terawatt-hours of production in 2010, representing around 17 percent of domestic electricity use. There are now three hydroelectricity plants larger than 10 GW: the Three Gorges Dam in China, Itaipu Dam across the Brazil/Paraguay border, and Guri Dam in Venezuela.

The cost of hydroelectricity is relatively low, making it a competitive source of renewable electricity. The average cost of electricity from a hydro plant larger than 10 megawatts is 3 to 5 U.S. cents per kilowatt-hour. Hydro is also a flexible source of electricity since plants can be ramped up and down very quickly to adapt to changing energy demands. However, damming interrupts the flow of rivers and can harm local ecosystems, and building large dams and reservoirs often involves displacing people and wildlife. Once a hydroelectric complex is constructed, the project produces no direct waste, and has a considerably lower output level of the greenhouse gas carbon dioxide than fossil fuel powered energy plants.

Wind

Burbo Bank Offshore Wind Farm in Northwest England
 
Global growth of wind power capacity

Wind power harnesses the power of the wind to propel the blades of wind turbines. These turbines cause the rotation of magnets, which creates electricity. Wind towers are usually built together on wind farms. There are offshore and onshore wind farms. Global wind power capacity has expanded rapidly to 336 GW in June 2014, and wind energy production was around 4% of total worldwide electricity usage, and growing rapidly.

Wind power is widely used in Europe, Asia, and the United States. Several countries have achieved relatively high levels of wind power penetration, such as 21% of stationary electricity production in Denmark, 18% in Portugal, 16% in Spain, 14% in Ireland, and 9% in Germany in 2010. By 2011, at times over 50% of electricity in Germany and Spain came from wind and solar power. As of 2011, 83 countries around the world are using wind power on a commercial basis.

Many of the world's largest onshore wind farms are located in the United States, China, and India. Most of the world's largest offshore wind farms are located in Denmark, Germany and the United Kingdom. The two largest offshore wind farm are currently the 630 MW London Array and Gwynt y Môr

Large onshore wind farms
Wind farm Current
capacity
(MW)
Country
Alta (Oak Creek-Mojave) 1,320  USA
Jaisalmer Wind Park 1,064  India
Roscoe Wind Farm 781  USA
Horse Hollow Wind Energy Center 735  USA
Capricorn Ridge Wind Farm 662  USA
Fântânele-Cogealac Wind Farm 600  Romania
Fowler Ridge Wind Farm 599  USA

Solar

Part of the 354 MW SEGS solar complex in northern San Bernardino County, California
 
The 150 MW Andasol Solar Power Station is a concentrated solar power plant, located in Spain.

Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating, solar photovoltaics, solar thermal electricity, solar architecture and artificial photosynthesis.

Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.

In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared". More than 100 countries use solar PV. 


Photovoltaics (PV) is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Materials presently used for photovoltaics include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium gallium selenide/sulfide. Due to the increased demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years.

Solar photovoltaics is a sustainable energy source. By the end of 2011, a total of 71.1 GW had been installed, sufficient to generate 85 TWh/year. And by end of 2012, the 100 GW installed capacity milestone was achieved. Solar photovoltaics is now, after hydro and wind power, the third most important renewable energy source in terms of globally installed capacity. In 2016, after another year of rapid growth, solar generated 1.3% of global power.

Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaics has declined steadily since the first solar cells were manufactured, and the levelised cost of electricity (LCOE) from PV is competitive with conventional electricity sources in an expanding list of geographic regions. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity, have supported solar PV installations in many countries. The Energy Payback Time (EPBT), also known as energy amortization, depends on the location's annual solar insolation and temperature profile, as well as on the used type of PV-technology. For conventional crystalline silicon photovoltaics, the EPBT is higher than for thin-film technologies such as CdTe-PV or CPV-systems. Moreover, the payback time decreased in the recent years due to a number of improvements such as solar cell efficiency and more economic manufacturing processes. As of 2014, photovoltaics recoup on average the energy needed to manufacture them in 0.7 to 2 years. This results in about 95% of net-clean energy produced by a solar rooftop PV system over a 30-year life-time. Installations may be ground-mounted (and sometimes integrated with farming and grazing) or built into the roof or walls of a building (either building-integrated photovoltaics or simply rooftop).

Biofuels

A bus fueled by biodiesel
 
Information on pump regarding ethanol fuel blend up to 10%, California

A biofuel is a fuel that contains energy from geologically recent carbon fixation. These fuels are produced from living organisms. Examples of this carbon fixation occur in plants and microalgae. These fuels are made by a biomass conversion (biomass refers to recently living organisms, most often referring to plants or plant-derived materials). This biomass can be converted to convenient energy containing substances in three different ways: thermal conversion, chemical conversion, and biochemical conversion. This biomass conversion can result in fuel in solid, liquid, or gas form. This new biomass can be used for biofuels. Biofuels have increased in popularity because of rising oil prices and the need for energy security.

Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn or sugarcane. Cellulosic biomass, derived from non-food sources, such as trees and grasses, is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil. Current plant design does not provide for converting the lignin portion of plant raw materials to fuel components by fermentation.

Biodiesel is made from vegetable oils and animal fats. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. However, research is underway on producing renewable fuels from decarboxylation.

In 2010, worldwide biofuel production reached 105 billion liters (28 billion gallons US), up 17% from 2009, and biofuels provided 2.7% of the world's fuels for road transport, a contribution largely made up of ethanol and biodiesel.[citation needed] Global ethanol fuel production reached 86 billion liters (23 billion gallons US) in 2010, with the United States and Brazil as the world's top producers, accounting together for 90% of global production. The world's largest biodiesel producer is the European Union, accounting for 53% of all biodiesel production in 2010. As of 2011, mandates for blending biofuels exist in 31 countries at the national level and in 29 states or provinces. The International Energy Agency has a goal for biofuels to meet more than a quarter of world demand for transportation fuels by 2050 to reduce dependence on petroleum and coal.

Geothermal


Geothermal energy is thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. The geothermal energy of the Earth's crust originates from the original formation of the planet (20%) and from radioactive decay of minerals (80%). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots γη (ge), meaning earth, and θερμος (thermos), meaning hot. 

Earth's internal heat is thermal energy generated from radioactive decay and continual heat loss from Earth's formation. Temperatures at the core-mantle boundary may reach over 4000 °C (7,200 °F). The high temperature and pressure in Earth's interior cause some rock to melt and solid mantle to behave plastically, resulting in portions of mantle convecting upward since it is lighter than the surrounding rock. Rock and water is heated in the crust, sometimes up to 370 °C (700 °F).

From hot springs, geothermal energy has been used for bathing since Paleolithic times and for space heating since ancient Roman times, but it is now better known for electricity generation. Worldwide, 11,400 megawatts (MW) of geothermal power is online in 24 countries in 2012. An additional 28 gigawatts of direct geothermal heating capacity is installed for district heating, space heating, spas, industrial processes, desalination and agricultural applications in 2010.

Geothermal power is cost effective, reliable, sustainable, and environmentally friendly, but has historically been limited to areas near tectonic plate boundaries. Recent technological advances have dramatically expanded the range and size of viable resources, especially for applications such as home heating, opening a potential for widespread exploitation. Geothermal wells release greenhouse gases trapped deep within the earth, but these emissions are much lower per energy unit than those of fossil fuels. As a result, geothermal power has the potential to help mitigate global warming if widely deployed in place of fossil fuels. 

The Earth's geothermal resources are theoretically more than adequate to supply humanity's energy needs, but only a very small fraction may be profitably exploited. Drilling and exploration for deep resources is very expensive. Forecasts for the future of geothermal power depend on assumptions about technology, energy prices, subsidies, and interest rates. Pilot programs like EWEB's customer opt in Green Power Program show that customers would be willing to pay a little more for a renewable energy source like geothermal. But as a result of government assisted research and industry experience, the cost of generating geothermal power has decreased by 25% over the past two decades. In 2001, geothermal energy cost between two and ten US cents per kWh.

Oceanic

Marine energy or marine power (also sometimes referred to as ocean energy, ocean power, or marine and hydrokinetic energy) refers to the energy carried by ocean waves, tides, salinity, and ocean temperature differences. The movement of water in the world's oceans creates a vast store of kinetic energy, or energy in motion. This energy can be harnessed to generate electricity to power homes, transport and industries.

The term marine energy encompasses both wave power i.e. power from surface waves, and tidal power i.e. obtained from the kinetic energy of large bodies of moving water. Offshore wind power is not a form of marine energy, as wind power is derived from the wind, even if the wind turbines are placed over water. The oceans have a tremendous amount of energy and are close to many if not most concentrated populations. Ocean energy has the potential of providing a substantial amount of new renewable energy around the world.

100% renewable energy

The incentive to use 100% renewable energy, for electricity, transport, or even total primary energy supply globally, has been motivated by global warming and other ecological as well as economic concerns. Renewable energy use has grown much faster than anyone anticipated. The Intergovernmental Panel on Climate Change has said that there are few fundamental technological limits to integrating a portfolio of renewable energy technologies to meet most of total global energy demand. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. Also, Professors S. Pacala and Robert H. Socolow have developed a series of "stabilization wedges" that can allow us to maintain our quality of life while avoiding catastrophic climate change, and "renewable energy sources," in aggregate, constitute the largest number of their "wedges." 

Mark Z. Jacobson says producing all new energy with wind power, solar power, and hydropower by 2030 is feasible and existing energy supply arrangements could be replaced by 2050. Barriers to implementing the renewable energy plan are seen to be "primarily social and political, not technological or economic". Jacobson says that energy costs with a wind, solar, water system should be similar to today's energy costs.

Similarly, in the United States, the independent National Research Council has noted that "sufficient domestic renewable resources exist to allow renewable electricity to play a significant role in future electricity generation and thus help confront issues related to climate change, energy security, and the escalation of energy costs … Renewable energy is an attractive option because renewable resources available in the United States, taken collectively, can supply significantly greater amounts of electricity than the total current or projected domestic demand."

Critics of the "100% renewable energy" approach include Vaclav Smil and James E. Hansen. Smil and Hansen are concerned about the variable output of solar and wind power, but Amory Lovins argues that the electricity grid can cope, just as it routinely backs up nonworking coal-fired and nuclear plants with working ones.

Google spent $30 million on their RE

Increased energy efficiency

A spiral-type integrated compact fluorescent lamp, which has been popular among North American consumers since its introduction in the mid-1990s

Although increasing the efficiency of energy use is not energy development per se, it may be considered under the topic of energy development since it makes existing energy sources available to do work.

Efficient energy use reduces the amount of energy required to provide products and services. For example, insulating a home allows a building to use less heating and cooling energy to maintain a comfortable temperature. Installing fluorescent lamps or natural skylights reduces the amount of energy required for illumination compared to incandescent light bulbs. Compact fluorescent lights use two-thirds less energy and may last 6 to 10 times longer than incandescent lights. Improvements in energy efficiency are most often achieved by adopting an efficient technology or production process.

Reducing energy use may save consumers money, if the energy savings offsets the cost of an energy efficient technology. Reducing energy use reduces emissions. According to the International Energy Agency, improved energy efficiency in buildings, industrial processes and transportation could reduce the world's energy needs in 2050 by one third, and help control global emissions of greenhouse gases.

Energy efficiency and renewable energy are said to be the twin pillars of sustainable energy policy. In many countries energy efficiency is also seen to have a national security benefit because it can be used to reduce the level of energy imports from foreign countries and may slow down the rate at which domestic energy resources are depleted.

It's been discovered "that for OECD countries, wind, geothermal, hydro and nuclear have the lowest hazard rates among energy sources in production".

Transmission

An elevated section of the Alaska Pipeline

While new sources of energy are only rarely discovered or made possible by new technology, distribution technology continually evolves. The use of fuel cells in cars, for example, is an anticipated delivery technology. This section presents the various delivery technologies that have been important to historic energy development. They all rely in way on the energy sources listed in the previous section.

Shipping and pipelines

Coal, petroleum and their derivatives are delivered by boat, rail, or road. Petroleum and natural gas may also be delivered by pipeline, and coal via a Slurry pipeline. Fuels such as gasoline and LPG may also be delivered via aircraft. Natural gas pipelines must maintain a certain minimum pressure to function correctly. The higher costs of ethanol transportation and storage are often prohibitive.

Wired energy transfer

Electrical grid – pylons and cables distribute power
 
Electricity grids are the networks used to transmit and distribute power from production source to end user, when the two may be hundreds of kilometres away. Sources include electrical generation plants such as a nuclear reactor, coal burning power plant, etc. A combination of sub-stations and transmission lines are used to maintain a constant flow of electricity. Grids may suffer from transient blackouts and brownouts, often due to weather damage. During certain extreme space weather events solar wind can interfere with transmissions. Grids also have a predefined carrying capacity or load that cannot safely be exceeded. When power requirements exceed what's available, failures are inevitable. To prevent problems, power is then rationed. 

Industrialised countries such as Canada, the US, and Australia are among the highest per capita consumers of electricity in the world, which is possible thanks to a widespread electrical distribution network. The US grid is one of the most advanced, although infrastructure maintenance is becoming a problem. CurrentEnergy provides a realtime overview of the electricity supply and demand for California, Texas, and the Northeast of the US. African countries with small scale electrical grids have a correspondingly low annual per capita usage of electricity. One of the most powerful power grids in the world supplies power to the state of Queensland, Australia.

Wireless energy transfer

Wireless power transfer is a process whereby electrical energy is transmitted from a power source to an electrical load that does not have a built-in power source, without the use of interconnecting wires. Currently available technology is limited to short distances and relatively low power level.

Orbiting solar power collectors would require wireless transmission of power to Earth. The proposed method involves creating a large beam of microwave-frequency radio waves, which would be aimed at a collector antenna site on the Earth. Formidable technical challenges exist to ensure the safety and profitability of such a scheme.

Storage


Energy storage is accomplished by devices or physical media that store energy to perform useful operation at a later time. A device that stores energy is sometimes called an accumulator.

All forms of energy are either potential energy (e.g. Chemical, gravitational, electrical energy, temperature differential, latent heat, etc.) or kinetic energy (e.g. momentum). Some technologies provide only short-term energy storage, and others can be very long-term such as power to gas using hydrogen or methane and the storage of heat or cold between opposing seasons in deep aquifers or bedrock. A wind-up clock stores potential energy (in this case mechanical, in the spring tension), a battery stores readily convertible chemical energy to operate a mobile phone, and a hydroelectric dam stores energy in a reservoir as gravitational potential energy. Ice storage tanks store ice (thermal energy in the form of latent heat) at night to meet peak demand for cooling. Fossil fuels such as coal and gasoline store ancient energy derived from sunlight by organisms that later died, became buried and over time were then converted into these fuels. Even food (which is made by the same process as fossil fuels) is a form of energy stored in chemical form.

History

Energy generators past and present at Doel, Belgium: 17th-century windmill Scheldemolen and 20th-century Doel Nuclear Power Station

Since prehistory, when humanity discovered fire to warm up and roast food, through the Middle Ages in which populations built windmills to grind the wheat, until the modern era in which nations can get electricity splitting the atom. Man has sought endlessly for energy sources.

Except nuclear, geothermal and tidal, all other energy sources are from current solar isolation or from fossil remains of plant and animal life that relied upon sunlight. Ultimately, solar energy itself is the result of the Sun's nuclear fusion. Geothermal power from hot, hardened rock above the magma of the Earth's core is the result of the decay of radioactive materials present beneath the Earth's crust, and nuclear fission relies on man-made fission of heavy radioactive elements in the Earth's crust; in both cases these elements were produced in supernova explosions before the formation of the solar system.

Since the beginning of the Industrial Revolution, the question of the future of energy supplies has been of interest. In 1865, William Stanley Jevons published The Coal Question in which he saw that the reserves of coal were being depleted and that oil was an ineffective replacement. In 1914, U.S. Bureau of Mines stated that the total production was 5.7 billion barrels (910,000,000 m3). In 1956, Geophysicist M. King Hubbert deduces that U.S. oil production would peak between 1965 and 1970 and that oil production will peak "within half a century" on the basis of 1956 data. In 1989, predicted peak by Colin Campbell In 2004, OPEC estimated, with substantial investments, it would nearly double oil output by 2025.

Sustainability

Energy consumption from 1989 to 1999

The environmental movement has emphasized sustainability of energy use and development. Renewable energy is sustainable in its production; the available supply will not be diminished for the foreseeable future - millions or billions of years. "Sustainability" also refers to the ability of the environment to cope with waste products, especially air pollution. Sources which have no direct waste products (such as wind, solar, and hydropower) are brought up on this point. With global demand for energy growing, the need to adopt various energy sources is growing. Energy conservation is an alternative or complementary process to energy development. It reduces the demand for energy by using it efficiently.

Resilience

Energy consumption per capita (2001). Red hues indicate increase, green hues decrease of consumption during the 1990s.

Some observers contend that idea of "energy independence" is an unrealistic and opaque concept. The alternative offer of "energy resilience" is a goal aligned with economic, security, and energy realities. The notion of resilience in energy was detailed in the 1982 book Brittle Power: Energy Strategy for National Security. The authors argued that simply switching to domestic energy would not be secure inherently because the true weakness is the interdependent and vulnerable energy infrastructure of the United States. Key aspects such as gas lines and the electrical power grid are centralized and easily susceptible to disruption. They conclude that a "resilient energy supply" is necessary for both national security and the environment. They recommend a focus on energy efficiency and renewable energy that is decentralized.

In 2008, former Intel Corporation Chairman and CEO Andrew Grove looked to energy resilience, arguing that complete independence is unfeasible given the global market for energy. He describes energy resilience as the ability to adjust to interruptions in the supply of energy. To that end, he suggests the U.S. make greater use of electricity. Electricity can be produced from a variety of sources. A diverse energy supply will be less affected by the disruption in supply of any one source. He reasons that another feature of electrification is that electricity is "sticky" – meaning the electricity produced in the U.S. is to stay there because it cannot be transported overseas. According to Grove, a key aspect of advancing electrification and energy resilience will be converting the U.S. automotive fleet from gasoline-powered to electric-powered. This, in turn, will require the modernization and expansion of the electrical power grid. As organizations such as The Reform Institute have pointed out, advancements associated with the developing smart grid would facilitate the ability of the grid to absorb vehicles en masse connecting to it to charge their batteries.

Present and future

Outlook—World Energy Consumption by Fuel (as of 2011)
   Liquid fuels incl. Biofuels    Coal    Natural Gas
   Renewable fuels   
Nuclear fuels
Increasing share of energy consumption by developing nations
   Industrialized nations
   Developing nations
   EE/Former Soviet Union

Extrapolations from current knowledge to the future offer a choice of energy futures. Predictions parallel the Malthusian catastrophe hypothesis. Numerous are complex models based scenarios as pioneered by Limits to Growth. Modeling approaches offer ways to analyze diverse strategies, and hopefully find a road to rapid and sustainable development of humanity. Short term energy crises are also a concern of energy development. Extrapolations lack plausibility, particularly when they predict a continual increase in oil consumption.

Energy production usually requires an energy investment. Drilling for oil or building a wind power plant requires energy. The fossil fuel resources that are left are often increasingly difficult to extract and convert. They may thus require increasingly higher energy investments. If investment is greater than the value of the energy produced by the resource, it is no longer an effective energy source. These resources are no longer an energy source but may be exploited for value as raw materials. New technology may lower the energy investment required to extract and convert the resources, although ultimately basic physics sets limits that cannot be exceeded.

Between 1950 and 1984, as the Green Revolution transformed agriculture around the globe, world grain production increased by 250%. The energy for the Green Revolution was provided by fossil fuels in the form of fertilizers (natural gas), pesticides (oil), and hydrocarbon fueled irrigation. The peaking of world hydrocarbon production (peak oil) may lead to significant changes, and require sustainable methods of production. One vision of a sustainable energy future involves all human structures on the earth's surface (i.e., buildings, vehicles and roads) doing artificial photosynthesis (using sunlight to split water as a source of hydrogen and absorbing carbon dioxide to make fertilizer) efficiently than plants.

With contemporary space industry's economic activity and the related private spaceflight, with the manufacturing industries, that go into Earth's orbit or beyond, delivering them to those regions will require further energy development. Researchers have contemplated space-based solar power for collecting solar power for use on Earth. Space-based solar power has been in research since the early 1970s. Space-based solar power would require construction of collector structures in space. The advantage over ground-based solar power is higher intensity of light, and no weather to interrupt power collection.

Nanoarchitectures for lithium-ion batteries

From Wikipedia, the free encyclopedia
 
Nanoarchitectures for lithium-ion batteries are attempts to employ nanotechnology to improve the design of lithium-ion batteries. Research in lithium-ion batteries focuses on improving energy density, power density, safety, durability and cost.

Research areas

Energy density

Increased energy density requires inserting/extracting more ions from the electrodes. Electrode capacities are compared through three different measures: capacity per unit of mass (known as "specific energy" or "gravimetric capacity"), capacity per unit volume ("volumetric capacity"), and area-normalized specific capacity ("areal capacity").

Power density

Separate efforts focus on improving power density (rate of charge/discharge). Power density is based upon mass and charge transport, electronic and ionic conductivity, and electron-transfer kinetics; easy transport through shorter distance and greater surface area improve the rates.

Anodes

Carbon anodes are traditionally used because of lithium's ability to intercalate without unacceptable volumetric expansion. The latter damages the battery and reduces the amount of lithium available for charging. Reduced intercalation limits capacity. Carbon based anodes have a gravimetric capacity of 372 mAh/g for LiC6. 

The specific capacity of silicon is approximately ten times greater than carbon. The atomic radius of Si is 1.46 angstroms, while the atomic radius of Li is 2.05 angstroms. The formation of Li3.75Si causes significant volumetric expansion, progressively destroying the anode. Reducing the anode architecture to the nanoscale offers advantages, including improved cycle life and reduced crack propagation and failure. Nanoscale particles are below the critical flaw size within a conductive binder film. Reducing transport lengths(the distance between the anode and cathode) reduces ohmic losses (resistance). 

Nanostructuring increases the surface area to volume ratio, which improves both energy and power density due to an increase in the electrochemically active area and a reduction in transport lengths. However, the increase also increases side reactions between the electrode and the electrolyte, causing higher self-discharge, reduced charge/discharge cycles and lower calendar life. Some recent work focused on developing materials that are electrochemically active within the range where electrolyte decomposition or electrolyte/electrode reactions do not occur.

Nonconventional architectures

A research concept has been proposed, in which the major parts of lithium-ion batteries, that is, anode, electrolyte and cathode are combined in one functional molecule. A layer of such functional molecules aligned by the use of Langmuir-Blodgett method than placed in between two current collectors. The feasibility is not confirmed yet.

Nanostructured architectures

A significant majority of battery designs are two–dimensional and rely on layered construction. Recent research has taken the electrodes into three-dimensions. This allows for significant improvements in battery capacity; a significant increase in areal capacity occurs between a 2d thick film electrode and a 3d array electrode.

Three-dimensional thin–films

Solid state batteries employ geometry most similar to traditional thin-film batteries. Three-dimensional thin-films use the third dimension to increase the electrochemically active area. Thin film two dimensional batteries are restricted to between 2-5 micrometres, limiting areal capacity to significantly less than that of three-dimensional geometries. 

Dimensionality is increased by using a perforated substrate. One way to create perforations is through inductive coupled plasma etching on silicon.

Another approached used highly anisotropic etching of a silicon substrate through electrochemical or reactive ion etching to create deep trenches. The requisite layers, an anode, separator, and cathode, for a battery were then added by low-pressure chemical vapor deposition. The battery consists of a thin active silicon layer separated from a thin cathodic layer by a solid-state electrolyte. The electrochemically active area consists of 50 nm nanoparticles, smaller than the critical size for crack propagation.

Interdigitated electrodes

Another architecture is a periodic grouping of anodic and cathodic poles. For this design power and energy density is maximized by minimizing electrode separation. An innate non-uniform current density occurs and lowers cell efficiencies, reduces stability and produces non-uniform heating within the cell. Relative to a two dimensional battery the length (L) over which transport must occur is decreased by two-thirds, which improves kinetics and reduces ohmic loses. Optimization of L can lead to significant improvement in areal capacity; an L on the size scale of 500 micrometres results in a 350% increase in capacity over a comparable two dimensional battery. However, ohmic losses increase with L, eventually offsetting the enhancement achieved through increasing L.

For this geometry, four main designs were proposed: rows of anodes and cathodes, alternating anodes and cathodes, hexagonally packed 1:2 anodes:cathodes, and alternating anodic and cathodic triangular poles where the nearest neighbors in the row are rotated 180 degrees. 

The row design has a large, non-uniform current distribution. The alternating design exhibits better uniformity, given a high number of electrodes of opposite polarity. For systems with an anode or cathode that is sensitive to non-uniform current density, non-equal numbers of cathodes and anodes can be used; the 2:1 hexagonal design allows for a uniform current density at the anode but a non-uniform current distribution at the cathode. Performance can be increased through changing the shape of the poles. The triangular design improves cell capacity and power by sacrificing current uniformity. A similar system uses interdigitated plates instead of poles.

In 2013 researchers used additive manufacturing to create stacked, interdigitated electrodes. The battery was no larger than a grain of sand. The process placed anodes and cathodes closer to each other than before. The ink for the anode was nanoparticles of one lithium metal oxide compound, and the ink for the cathode from nanoparticles of another. The printer deposited the inks onto the teeth of two gold combs, forming an interlaced stack of anodes and cathodes.

Concentric electrodes

The concentric cylinder design is similar to interdigitated poles. Instead of discrete anode and cathode poles, the anode or cathode is kept as a pole that is coated by electrolyte. The other electrode serves as the continuous phase in which the anode/cathode resides. The main advantage is that the amount of electrolyte is reduced, increasing energy density. This design maintains a short transport distance like the interdigitated system and thus has a similar benefit to charge and mass transport, while minimizing ohmic loses.

Inverse opal

A version of the concentric cylinder packed particles or close-packed polymer to create a three-dimensionally ordered macroporous (3DOM) carbon anode. This system is fabricated by using colloidal crystal templating, electrochemical thin-film growth, and soft sol–gel chemistry. 3DOM materials have a unique structure of nanometer thick walls that surround interconnected and closed-packed sub-micrometer voids. The 3DOM structure is coated with a thin polymer layer and then filled with second conducting phase. This method leads to a battery with short transport lengths, high ionic conductivity and reasonable electrical conductivity. It removes the need for additives that do not contribute to electrochemical performance. Performance can be improved by coating with tin oxide nanoparticles to enhance the initial capacity. The coating infiltrates the network formed by the 3DOM structure to produce uniform thickness.

Nanowires and nanotubes

Nanowire and nanotubes have been integrated with various battery components. The reason for this interest is because of shortened transport lengths, resistance to degradation and storage. For carbon nanotubes (CNT), lithium-ions can be stored on the exterior surface, in the interstitial sites between the nanotubes and on the tube's interior.

Nanowires have been incorporated into the anode/cathode matrix to provide a builtin conductive charge collector and enhancing capacity. The nanowires were incorporated through a solution-based method that allows the active material to be printed on a substrate.

Another approach uses a CNT-cellulose composite. CNTs were grown on a silicon substrate by thermal-CVD and then embedded in cellulose. Finally a lithium electrode is added on top of the cellulose across from the CNTs.

In 2007 Si nanowires were fabricated on a steel substrate by a vapor-liquid solid growth method. These nanowires exhibited close to the theoretical value for silicon and showed only minimal fading after a 20% drop between the first to second cycles. This performance is attributed to the facile strain relaxation that allows for accommodations of large strains, while maintaining good contact with the current collector and efficient 1D electron transport along the nanowire.

Aperoidic electrodes

Periodic structures lead to non-uniform current densities that lower efficiency and decrease stability. The aperoidic structure is typically made of either aerogels or somewhat more dense ambigels that forms a porous aperiodic sponge. Aerogels and ambigels are formed from wet gels; aerogels are formed when wet gels are dried such that no capillary forces are established, while ambigels are wet gels dried under conditions that minimize capillary forces. Aerogels and ambigels are unique in that 75-99% of the material is ‘open’ but interpenetrated by a solid that is on the order of 10 nm, resulting in pores on the order of 10 to 100 nm. The solid is covalently networked and resistant to agglomeration and sintering. Beyond aperiodicity, these structures are used because the porous structure allows for rapid diffusion throughout the material, and the porous structure provides a large reaction surface. Fabrication is through coating the ambigel with a polymer electrolyte and then filling the void space with RuO2 colloids that act as an anode.

Conformal coatings

Most designs were half-cell experiments; testing only the anode or cathode. As geometries become more complex, non-line-of-sight methods to in-fill the design with electrolyte materials supply the oppositely charged electrode is essential. These batteries can be coated with various materials to improve their performance and stability. However, chemical and physical heterogeneity leaves molecular-level control a significant challenge, especially since the electrochemistry for energy storage is not defect-tolerant.

Layer-by-layer (LbL)

LbL approaches are used to coat 3d nanoarchitecture. Electrostatically binding a charged polymer to an oppositely charged surface coats the surface with polymer. Repeated steps of oppositely charged polymer build up a well-controlled thick layer. Polyelectrolyte films and ultrathin (less than 5 nm) of electroactive polymers have been deposited on planar substrates using this method. However, problems exist with the deposition of polymers within complex geometries, e.g. pores, on the size scale of 50-300 nm, resulting in defective coatings. One potential solution is to use self-limiting approaches.

Atomic layer deposition (ALD)

Another approach to coating is ALD which coats the substrate layer-by-layer with atomic precision. The precision is because reactions are confined to the surface containing an active chemical moiety that reacts with a precursor; this limits thickness to one monolayer. This self-limiting growth is essential for complete coatings since deposition does not inhibit the access by other polymeric units to non-coated sites. Thicker samples can be produced by cycling gases in a similar manner to alternating with oppositely charged polymers in LbL. In practice ALD may require a few cycles in order to achieve the desired coverage and can result in varied morphologies such as islands, isolated crystallites, or nanoparticles. Morphology can alter electrochemical behavior and therefore must be carefully controlled.

ALD was also used to deposit iron oxide on 3DOM carbon to enhance reactivity between lithium and oxygen. The iron was then coatedwith palladium nanoparticles, which effectively reduced carbon's destructive reaction with oxygen and improved the discharge cycle. Wang said the findings show 3DOm carbon can meet new performance standards when it is stabilized.

Electropolymerization

Electropolymerization supplies a thin polymer film, 10 to 100 nm. The electropolymerization of an insulating polymer results in self-limiting deposition as the active moiety is protected; the deposition can also be self-limiting if the polymer can block the solubilized monomer and prohibit continued growth. Through the control of electrochemical variables, polyaniline and polythiophene can be deposited in a controlled manner. Styrene, methyl methacrylate, phenols and other electrically insulating polymers have been deposited on the electrodes to act as a separator that allows ionic transport, but inhibits electrical transport to prevent shorts. Mesoporous manganese dioxide ambigels have been protected by 7-9 nm films of polymer such that dissolution of the manganese dioxide in aqueous acid was avoided. Uniform coatings require the architecture to be wetted by the monomer solution; this can be achieved through a solution that displays a similar surface energy to that of the porous solid. As the scale continuous to decrease and transport through the solid becomes more difficult, pre-equilibration is needed to ensure coating uniformity.

Lithium battery

From Wikipedia, the free encyclopedia

CR2032 lithium button cell battery
Lithium 9 volt, AA, and AAA sizes. The top unit has three lithium-manganese dioxide cells internally, the bottom two are lithium-iron disulfide single cells physically and electrically compatible with 1.5 volt zinc batteries.

Lithium batteries are primary batteries that have lithium as an anode. These types of batteries are also referred to as lithium-metal batteries.

They stand apart from other batteries in their high charge density (long life) and high cost per unit. Depending on the design and chemical compounds used, lithium cells can produce voltages from 1.5 V (comparable to a zinc–carbon or alkaline battery) to about 3.7 V.

Disposable primary lithium batteries must be distinguished from secondary lithium-ion, lithium iron phosphate and lithium-polymer, which are rechargeable batteries. Lithium is especially useful, because its ions can be arranged to move between the anode and the cathode, using an intercalated lithium compound as the cathode material but without using lithium metal as the anode material. Pure lithium will instantly react with water, or even moisture in the air; the lithium in lithium ion batteries is in a less reactive compound.

Lithium batteries are widely used in portable consumer electronic devices, and in electric vehicles ranging from full sized vehicles to radio controlled toys.

Description

The term "lithium battery" refers to a family of different lithium-metal chemistries, comprising many types of cathodes and electrolytes but all with metallic lithium as the anode. The battery requires from 0.15 to 0.3 kg of lithium per kWh. 

Diagram of lithium button cell battery with MnO2 (manganese dioxide) at cathode

The most common type of lithium cell used in consumer applications uses metallic lithium as anode and manganese dioxide as cathode, with a salt of lithium dissolved in an organic solvent

Inside pieces of a coin battery, refer to caption
Disassembled CR2032 battery From left — negative cup from inner side with layer of lithium (oxidized in air), separator (porous material), cathode (manganese dioxide), metal grid — current collector, metal casing (+) (damaged while opening the cell), on the bottom is plastic insulation ring

Another type of lithium cell having a large energy density is the lithium-thionyl chloride cell. Invented by Adam Heller in 1973, Lithium-thionyl chloride batteries are generally not sold to the consumer market, and find more use in commercial/industrial: automatic meter reading (AMR) and medical: automatic external defibrillators (AEDs) applications. The electrolyte chemistry below isn't rechargeable. The cell contains a liquid mixture of thionyl chloride (SOCl2), lithium tetrachloroaluminate (LiAlCl
4
), and niobium pentachloride (NbCl
5
) which act as the catholyte, electrolyte, electron sink, and dendrite preventive during reverse voltage condition, electrolyte, respectively. A porous carbon material serves as a cathode current collector which receives electrons from the external circuit. Lithium-thionyl chloride batteries are well suited to extremely low-current or moderate pulse applications where a service life of up to 40 years is necessary.

Chemistries

Chemistry Cathode Electrolyte Nominal voltage Open-circuit voltage Wh/kg Wh/L
Li-MnO2
(IEC code: C),
"CR"
Heat-treated manganese dioxide Lithium perchlorate in an organic solvent (propylene carbonate and dimethoxyethane in many common but not all products) 3 V 3.3 V 280 580
"Li-Mn". The most common consumer-grade lithium battery, about 80% of the lithium battery market. Uses inexpensive materials. Suitable for low-drain, long-life, low-cost applications. High energy density per both mass and volume. Operational temperature ranges from -30 °C to 60 °C. Can deliver high pulse currents. With discharge, the internal impedance rises and the terminal voltage decreases. High self-discharge at high temperatures. 1,2 dimethoxyethane is a REACH Candidate Substance of Very High Concern.
Li-(CF)x
(IEC code: B),
"BR"
Carbon monofluoride Lithium tetrafluoroborate in propylene carbonate, dimethoxyethane, or gamma-butyrolactone 3 V 3.1 V 360–500 1000
Cathode material formed by high-temperature intercalation of fluorine gas into graphite powder. Compared to manganese dioxide (CR), which has the same nominal voltage, it provides more reliability. Used for low to moderate current applications in memory and clock backup batteries. Used in aerospace applications, qualified for space since 1976, military applications both terrestrial and marine, in missiles, and in artificial cardiac pacemakers. Operates up to around 80 °C. Very low self-discharge (<0 .5="" 1970s="" 60="" 85="" a="" at="" by="" class="mw-redirect" developed="" href="https://en.wikipedia.org/wiki/Panasonic_Corporation" in="" the="" title="Panasonic Corporation" year="" yr="">Matsushita
. Li-FeS2
(IEC code: F),
"FR"
Iron disulfide Propylene carbonate, dioxolane, dimethoxyethane 1.4–1.6 V 1.8 V 297
"Lithium-iron", "Li/Fe". Called "voltage-compatible" lithium, because it can work as a replacement for alkaline batteries with its 1.5 V nominal voltage. As such, Energizer lithium cells of AA and AAA size employ this chemistry. 2.5 times higher lifetime for high current discharge regime than alkaline batteries, better storage life due to lower self-discharge, 10–20 years storage time. FeS2 is cheap. Cathode often designed as a paste of iron sulfide powder mixed with powdered graphite. Variant is Li-CuFeS2. Li-SOCl2
(IEC code: E)
Thionyl chloride Lithium tetrachloroaluminate in thionyl chloride 3.5 V 3.65 V 500–700 1200 Liquid cathode. For low temperature applications. Can operate down to −55 °C, where it retains over 50% of its rated capacity. Negligible amount of gas generated in nominal use, limited amount under abuse. Has relatively high internal impedance and limited short-circuit current. High energy density, about 500 Wh/kg. Toxic. Electrolyte reacts with water. Low-current cells used for portable electronics and memory backup. High-current cells used in military applications. In long storage, forms passivation layer on anode, which may lead to temporary voltage delay when put into service. High cost and safety concerns limit use in civilian applications. Can explode when shorted. Underwriters Laboratories require trained technician for replacement of these batteries. Hazardous waste, Class 9 Hazmat shipment. Not used for consumer or general-purpose batteries. Li-SOCl2,BrCl, Li-BCX
(IEC code: E)
Thionyl chloride with bromine chloride Lithium tetrachloroaluminate in thionyl chloride 3.7–3.8 V 3.9 V 350 770 Liquid cathode. A variant of the thionyl chloride battery, with 300 mV higher voltage. The higher voltage drops back to 3.5 V soon as the bromine chloride gets consumed during the first 10–20% of discharge. The cells with added bromine chloride are thought to be safer when abused. Li-SO2Cl2 Sulfuryl chloride
3.7 V 3.95 V 330 720 Liquid cathode. Similar to thionyl chloride. Discharge does not result in build-up of elemental sulfur, which is thought to be involved in some hazardous reactions, therefore sulfuryl chloride batteries may be safer. Commercial deployment hindered by tendency of the electrolyte to corrode the lithium anodes, reducing the shelf life. Chlorine is added to some cells to make them more resistant to abuse. Sulfuryl chloride cells give less maximum current than thionyl chloride ones, due to polarization of the carbon cathode. Sulfuryl chloride reacts violently with water, releasing hydrogen chloride and sulfuric acid. Li-SO2 Sulfur dioxide on teflon-bonded carbon Lithium bromide in sulfur dioxide with small amount of acetonitrile 2.85 V 3.0 V 250 400 Liquid cathode. Can operate down to −55 °C and up to +70 °C. Contains liquid SO2 at high pressure. Requires safety vent, can explode in some conditions. High energy density. High cost. At low temperatures and high currents, performs better than Li-MnO2. Toxic. Acetonitrile forms lithium cyanide, and can form hydrogen cyanide in high temperatures. Used in military applications. Addition of bromine monochloride can boost the voltage to 3.9 V and increase energy density.
Li-I2 Iodine that has been mixed and heated with poly-2-vinylpyridine (P2VP) to form a solid organic charge transfer complex. A solid monomolecular layer of crystalline Lithium iodide that conducts lithium ions from the anode to the cathode but does not conduct Iodine. 2.8 V 3.1 V

Solid electrolyte. Very high reliability and low self discharge rate. Used in medical applications that need a long life, e.g. pacemakers. Does not generate gas even under short circuit. Solid-state chemistry, limited short-circuit current, suitable only for low-current applications. Terminal voltage decreases with degree of discharge due to precipitation of lithium iodide. Li-Ag2CrO4 Silver chromate Lithium perchlorate solution 3.1/2.6 V 3.45 V

Very high reliability. Has a 2.6 V plateau after reaching certain percentage of discharge, provides early warning of impending discharge. Developed specifically for medical applications, for example, implanted pacemakers. Li-Ag2V4O11, Li-SVO, Li-CSVO Silver oxide+vanadium pentoxide (SVO) lithium hexafluorophosphate or lithium hexafluoroarsenate in propylene carbonate with dimethoxyethane



Used in medical applications, like implantable defibrillators, neurostimulators, and drug infusion systems. Also projected for use in other electronics, such as emergency locator transmitters. High energy density. Long shelf life. Capable of continuous operation at nominal temperature of 37 °C. Two-stage discharge with a plateau. Output voltage decreasing proportionally to the degree of discharge. Resistant to abuse. Li-CuO
(IEC code: G),
"GR"
Copper(II) oxide Lithium Perchlorate dissolved in Dioxolane 1.5 V 2.4 V

Can operate up to 150 °C. Developed as a replacement of zinc-carbon and alkaline batteries. "Voltage up" problem, high difference between open-circuit and nominal voltage. Produced until the mid-1990s, replaced by lithium-iron sulfide. Current use limited. Li-Cu4O(PO4)2 Copper oxyphosphate




See Li-CuO Li-CuS Copper sulfide Lithium metal 1.5 V lithium salt or a salt such as tetralkylammonium chloride dissolved in LiClO4 in an organic solvent that is a mixture of 1,2-dimethoxy ethane, 1,3-dioxolane and 2,5-dimethyloxazole as a stabilizer 

Li-PbCuS Lead sulfide and copper sulfide
1.5 V 2.2 V

Li-FeS Iron sulfide Propylene carbonate, dioxolane, dimethoxyethane 1.5–1.2 V


"Lithium-iron", "Li/Fe". used as a replacement for alkaline batteries. See lithium-iron disulfide. Li-Bi2Pb2O5 Lead bismuthate
1.5 V 1.8 V

Replacement of silver-oxide batteries, with higher energy density, lower tendency to leak, and better performance at higher temperatures. Li-Bi2O3 Bismuth trioxide
1.5 V 2.04 V

Li-V2O5 Vanadium pentoxide
3.3/2.4 V 3.4 V 120/260 300/660 Two discharge plateaus. Low-pressure. Rechargeable. Used in reserve batteries. Li-CuCl2 Copper chloride LiAlCl4 or LiGaCl4 in SO2, a liquid, inorganic, non-aqueous electrolyte.



Rechargeable. This cell has three voltage plateaus as it discharges (3.3 V, 2.9 V and 2.5 V). Discharging below the first plateau reduces the life of the cell. The complex salt dissolved in SO2 has a lower vapor pressure at room temperature than pure sulfur dioxide, making the construction simpler and safer than Li-SO2 batteries. Li/Al-MnO2, "ML" Manganese dioxide
3 V


Rechargeable. Anode is a Lithium-Aluminum alloy. Mainly marketed by Maxell. Li/Al-V2O5, "VL" Vanadium pentoxide
3 V


Rechargeable. Anode is a Li-Al alloy. Li-Se Selenium non-aqueous carbonate electrolytes 1.9 V .


Li–air (Lithium–air battery) Porous carbon Organic, aqueous, glass-ceramic (polymer-ceramic composites)

1800–660  1600–600  Rechargeable. No commercial implementation is available as of 2012 due to difficulties in achieving multiple discharge cycles without losing capacity. There are multiple possible implementations, each having different energy capacities, advantages and disadvantages. In November 2015, a team of University of Cambridge researchers furthered work on lithium-air batteries by developing a charging process capable of prolonging the battery life and battery efficiency. Their work resulted in a battery that delivered high energy densities, more than 90% efficiency, and could be recharged for up to 2,000 times. The lithium-air batteries are described as the "ultimate" batteries because they propose a high theoretical energy density of up to ten times the energy offered by regular lithium-ion batteries. They were first developed in a research environment by Abraham & Jiang in 1996. The technology, however, as of November 2015, will not be immediately available in any industry and it could take up to 10 years for lithium-air batteries to equip devices. The immediate challenge facing scientists involved in its invention is that the battery needs a special porous graphene electrode, among other chemical components, and a narrow voltage gap between charge and discharge to significantly increase efficiency.

The liquid organic electrolyte is a solution of an ion-forming inorganic lithium compound in a mixture of a high-permittivity solvent (propylene carbonate) and a low-viscosity solvent (dimethoxyethane).

Engineers at the University of California San Diego have developed a breakthrough in electrolyte chemistry that enables lithium batteries to run at temperatures as low as -60 degrees Celsius with excellent performance. The new electrolytes also enable electrochemical capacitors to run as low as -80 degrees Celsius — their current low-temperature limit is -40 degrees Celsius. While the technology enables extreme low-temperature operation, high performance at room temperature is still maintained. The new electrolyte chemistry could also increase the energy density and improve the safety of lithium batteries and electrochemical capacitors. 

Applications

Lithium batteries find application in many long-life, critical devices, such as pacemakers and other implantable electronic medical devices. These devices use specialized lithium-iodide batteries designed to last 15 or more years. But for other, less critical applications such as in toys, the lithium battery may actually outlast the device. In such cases, an expensive lithium battery may not be cost-effective.

Lithium batteries can be used in place of ordinary alkaline cells in many devices, such as clocks and cameras. Although they are more costly, lithium cells will provide much longer life, thereby minimizing battery replacement. However, attention must be given to the higher voltage developed by the lithium cells before using them as a drop-in replacement in devices that normally use ordinary zinc cells. 

CR2450.jpg

Lithium batteries also prove valuable in oceanographic applications. While lithium battery packs are considerably more expensive than standard oceanographic packs, they hold up to three times the capacity of alkaline packs. The high cost of servicing remote oceanographic instrumentation (usually by ships) often justifies this higher cost.

Sizes and formats

Small lithium batteries are very commonly used in small, portable electronic devices, such as PDAs, watches, camcorders, digital cameras, thermometers, calculators, personal computer BIOS (firmware), communication equipment and remote car locks. They are available in many shapes and sizes, with a common variety being the 3 volt "coin" type manganese variety, typically 20 mm in diameter and 1.6–4 mm thick.

The heavy electrical demands of many of these devices make lithium batteries a particularly attractive option. In particular, lithium batteries can easily support the brief, heavy current demands of devices such as digital cameras, and they maintain a higher voltage for a longer period than alkaline cells.

Popularity

Lithium primary batteries account for 28% of all primary battery sales in Japan but only 1% of all battery sales in Switzerland. In the EU only 0.5% of all battery sales including secondary types are lithium primaries.

Safety issues and regulation

The computer industry's drive to increase battery capacity can test the limits of sensitive components such as the membrane separator, a polyethylene or polypropylene film that is only 20-25 µm thick. The energy density of lithium batteries has more than doubled since they were introduced in 1991. When the battery is made to contain more material, the separator can undergo stress.

Rapid-discharge problems

Lithium batteries can provide extremely high currents and can discharge very rapidly when short-circuited. Although this is useful in applications where high currents are required, a too-rapid discharge of a lithium battery can result in overheating of the battery, rupture, and even an explosion. Lithium-thionyl chloride batteries are particularly susceptible to this type of discharge. Consumer batteries usually incorporate overcurrent or thermal protection or vents to prevent an explosion.

Air travel

From January 1, 2013, much stricter regulations were introduced by IATA regarding the carriage of lithium batteries by air. They were adopted by the International Postal Union; however, some countries, e.g. the UK, have decided that they will not accept lithium batteries unless they are included with the equipment they power.

Because of the above risks, shipping and carriage of lithium batteries is restricted in some situations, particularly transport of lithium batteries by air.

The United States Transportation Security Administration announced restrictions effective January 1, 2008 on lithium batteries in checked and carry-on luggage. The rules forbid lithium batteries not installed in a device from checked luggage and restrict them in carry-on luggage by total lithium content.

Australia Post prohibited transport of lithium batteries in air mail during 2010.

UK regulations for the transport of lithium batteries were amended by the National Chemical Emergency Centre in 2009.

In late 2009, at least some postal administrations restricted airmail shipping (including Express Mail Service) of lithium batteries, lithium-ion batteries and products containing these (such as laptops and cell phones). Among these countries are Hong Kong, United States, and Japan.

Methamphetamine labs

Unused lithium batteries provide a convenient source of lithium metal for use as a reducing agent in methamphetamine labs. Some jurisdictions have passed laws to restrict lithium battery sales or asked businesses to make voluntary restrictions in an attempt to help curb the creation of illegal meth labs. In 2004 Wal-Mart stores were reported to limit the sale of disposable lithium batteries to three packages in Missouri and four packages in other states.

Health issues on ingestion

Button cell batteries are attractive to small children and often ingested. In the past 20 years, although there has not been an increase in the total number of button cell batteries ingested in a year, researchers have noted a 6.7-fold increase in the risk that an ingestion would result in a moderate or major complication and 12.5-fold increase in fatalities comparing the last decade to the previous one.

The primary mechanism of injury with button battery ingestions is the generation of hydroxide ions, which cause severe chemical burns, at the anode. This is an electrochemical effect of the intact battery, and does not require the casing to be breached or the contents released. Complications include oesophageal strictures, tracheo-oesophageal fistulas, vocal cord paralysis, aorto-oesophageal fistulas, and death. The majority of ingestions are not witnessed; presentations are non-specific; battery voltage has increased; the 20 to 25 mm button battery size are more likely to become lodged at the cricopharyngeal junction; and severe tissue damage can occur within 2 hours. The 3 V, 20 mm CR2032 lithium battery has been implicated in many of the complications from button battery ingestions by children of less than 4 years of age. While the only cure for an esophageal impaction is endoscopic removal, a 2018 study out of Children's Hospital of Philadelphia by Rachel R. Anfang and colleagues found that early and frequent ingestion of honey or sucralfate suspension prior to the battery's removal can reduce the injury severity to a significant degree. As a result, US-based National Capital Poison Center (Poison Control) recommends the use of honey and sucralfate after known or suspected ingestions to reduce the risk and severity of injury to esophagus, and consequently its nearby structures. Button batteries can also cause significant necrotic injury when stuck in the nose or ears. Prevention efforts in the US by the National Button Battery Task force in cooperation with industry leaders have led to changes in packaging and battery compartment design in electronic devices to reduce a child's access to these batteries. However, there still is a lack of awareness across the general population and medical community to its dangers. Central Manchester University Hospital Trust warns that "a lot of doctors are unaware that this can cause harm".

Disposal

Regulations for disposal and recycling of batteries vary widely; local governments may have additional requirements over those of national regulations. In the United States, one manufacturer of lithium iron disulfide primary batteries advises that consumer quantities of used cells may be discarded in municipal waste, as the battery does not contain any substances controlled by US Federal regulations. Another manufacturer states that "button" size lithium batteries contain perchlorate, which is regulated as a hazardous waste in California; regulated quantities would not be found in typical consumer use of these cells.

As lithium in used but non working (i.e. extended storage) button cells is still likely to be in the cathode cup, it is possible to extract commercially useful quantities of the metal from such cells as well as the manganese dioxide and specialist plastics. From experiment the usual failure mode is that they will read 3.2V or above but be unable to generate useful current (less than 5mA versus more than 40mA for a good new cell) Some also alloy the lithium with magnesium (Mg) to cut costs and these are particularly prone to the mentioned failure mode.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...