Search This Blog

Saturday, December 28, 2013

Why Consciousness Can't Keep Up with Fear

by Joseph LeDoux      
December 27, 2013, 6:00 AM
Brain_fear
 
Whenever you encounter some sudden danger out there in the world - let’s say it’s a snake on a path - the information from that stimulus goes into your brain through your visual system. It will then rise through the visual system through the standard pathways.  So every sensory system has this very well organized set of circuits that ultimately leads to a stop in the part of the brain called the thalamus on route to reaching the sensory cortex.  So each sensory system has an area in the cortex.  The cortex is that wrinkled part of the brain that you see whenever you see a picture of the brain.  And that’s where we have our perceptions and thoughts and all of that.  
 
In order to have a visual perception, information has to be transmitted from the eye, from the retina, through the optic nerve, into the visual thalamus, and from the visual thalamus to the visual cortex where the processing continues and you can ultimately have the perception.  So, the visual cortex connects directly with the amygdala, and so thats one route by which the information can get in: retina, thalamus, cortex, amygdala.  But one of the first things that I discovered when I started studying fear was that that pathway, the usual pathway that we think about for sensory processing was not the way that fear was elicited, or not the only way.  
 
What we found was that if the cortical pathway was blocked completely, rats could still form a memory about a sound.  We were studying sounds and shocks.  But we’ve also done it with a visual stimulus.  So, what we found was the sound had to go up to the level of the thalamus, but then it didn’t need to go to the auditory cortex or the visual cortex as if it happened to be a visual stimulus. 
Instead, it made an exit from the sensory system and went directly into the amygdala, below the level of the cortex.  That was really important because we generally think that the cortex is required for any kind of conscious experience.  So, this is a way that information was being sent through the brain and triggering emotions unconsciously.  So, the psychoanalysts love this because it vindicated the idea that you could have this unconscious fear that the cortex has no understanding of.  
 
This is important because a lot of people have fears and phobias and anxieties about things they don’t understand.  They don’t know why they’re afraid or anxious in a particular moment.  It may be through various kinds of experiences, the low road gets potentiated in a way that it’s activating fears and phobias outside of conscious awareness and that doesn’t make sense in terms of what the conscious brain is looking at in the world, or hearing in the world because they’ve been separately parsed out.  
 
So, the subcortical pathway, we’ve been able to time all of this very precisely in the rat brain and it takes, in order for a sound to get to the amygdala from the sub cortical pathway takes about 10 or 12 milliseconds.  So, take a second and divide that into 1,000 parts, and after 12 of those little parts, the amygdala was already getting the sound.  For you to be consciously aware of the stimulus, it takes 250-300 milliseconds.  So, the amygdala is being triggered much, much faster than consciousness is processing.  
 
So, the brain ticks in milliseconds, the neurons process information on the level of milliseconds, but the mind is processing things on the order of seconds and half seconds here.  So, if you have a fear response that is being triggered very rapidly like that, consciously you’re going to be interpreting what’s going on, but it’s not going to necessarily match what’s really going on.  
 
In Their Own Words is recorded in Big Think's studio.
Image courtesy of Shutterstock

Lake Vostok: Life in one of the Inhospitable Places on Earth

Posted on December 28, 2013 at 9:00 am
By on Quarks to Quasars

Lake Vostok: Life in one of the most Inhospitable Places on Earth:     

800px-Lake_Vostok_drill_2011
Credit: Nicolle Rager-Fuller / NSF
Credit: Nicolle Rager-Fuller / NSF
 
Located on the seemingly inhospitable continent of Antarctica (a place with the lowest recorded temperature on the Earth at -89 degrees Celsius), lies a subglacial lake that is 160 miles wide and 30 miles across. This lake has been dubbed Lake Vostok. It is believed that the lake formed some 20 million years ago. Isolated from the rest of the world for at LEAST 100 000 years, Lake Vostok was one of the last untouched places on this globe.

The lake presents itself as an analog for the study of both extremophilic microbial life (and possibly larger organisms) and evolutionary isolation. This inhospitable environment parallels some environments that we think might exist elsewhere in the solar system – either in the subsurface of Mars or on icy moons like Enceladus or even Europa. Ultimately, the search for life on other planets could start here on Earth at Lake Vostok.
Drilling is restricted to 3590 meters (2.2 miles) below the surface ice (just a few hundred meters above the lake) as the lake itself is considered inaccessible due to fears of contamination. A number of scientists have examined ice cores taken from above the lake, focusing on the so-called “accretion ice” at the base of these cores. Accretion ice was once lake water that later froze and adhered to the overlying ice sheet—and what’s in that ice might therefore provide clues to what’s in the lake itself.

Radar satellite image of Lake Vostok (Credit: NASA)
Radar satellite image of Lake Vostok (Credit: NASA)

Lake Vostok has made news again because of its most recent published findings  shared recently in PLOS ONE. Scientists led by Yury Shtarkman, a postdoc at Bowling Green State University in Ohio, identified a startlingly diverse array of microbes in the accretion ice—the most diverse suggested yet.

By cultivating and sequencing nucleic acids found in the ice, they identified more than 3500 unique genetic sequences (mostly from bacteria, but there were some multicellular eukaryotes). And those were similar to those of creatures found in all sorts of habitats on the planet: lakes, marine environments, deep-sea sediments, thermal vents, and, of course, icy environments.

Overall, researchers have generally observed low concentrations of such microbes relative to most environments on Earth. But they found the POTENTIAL for a complex microbial ecosystem of bacteria and fungi, and genetic sequences from crustaceans, mollusks, sea anemones, and fish. Note that Lake Vostok was in contact with the atmosphere millions of years ago, so a complex network of organisms likely populated the lake during that time. The team also found bacteria sequences that are common symbionts (organisms that live in symbiosis of each other) of larger species. There could be the poFEussibility of distinct ecological zones. As they are just studying accretion ice, the idea of fish actually living in the lake remains unclear.

A scientist traversing above the ice miles above the ice of Lake Vostok (Credit: M. Studinger, 2001)
A scientist traversing above the ice miles above the ice of Lake Vostok (Credit: M. Studinger, 2001)

Either way, this lake is far from being devoid of life. This does not conclusively lead us to the conclusion that life exists on other planets and moons in our solar system. But if abiogenesis is correct (still repudiated, but evidence is starting to suggest it is), it makes the case that much stronger for those seeking life beyond our planet.

Fractals and Scale Invariance















 
Fractals are plots of non-linear equations (equations in the result is used as the next input) which can build up to astonishingly complex and beautiful designs.  Typical of fractals is their scale invariance, which means that no matter how you view them, zoom in or zoom out, you will find self-similar and repeating geometric patterns.  This distinguishes from most natural patterns (though some are fractal-like, such as mountains or the branches of a tree, stars in the sky), in which as you zoom in or out completely changes what you see -- e.g., galaxies to stars down to atoms and sub-atomic nuclei and so forth).  Nevertheless, what is most (to me) fascinating about fractals is that they allow us to simulate reality in so many ways.

The Mandelbrot set shown above is the most famous example of fractal design known. 
The Mandelbrot set is a mathematical set of points whose boundary is a distinctive and easily recognizable two-dimensional fractal shape. The set is closely related to Julia sets (which include similarly complex shapes), and is named after the mathematician Benoit Mandelbrot, who studied and popularized it.

Mandelbrot set images are made by sampling complex numbers and determining for each whether the result tends towards infinity when a particular mathematical operation is iterated on it. Treating the real and imaginary parts of each number as image coordinates, pixels are colored according to how rapidly the sequence diverges, if at all.

More precisely, the Mandelbrot set is the set of values of c in the complex plane for which the orbit of 0 under iteration of the complex quadratic polynomial
z n+1 =z n squared +c
remains bounded.[1] That is, a complex number c is part of the Mandelbrot set if, when starting with z0 = 0 and applying the iteration repeatedly, the absolute value of zn remains bounded however large n gets.

In general, a fractal is a mathematical set that typically displays self-similar patterns, which means they are "the same from near as from far".[1] Often, they have an "irregular" and "fractured" appearance, but not always. Fractals may be exactly the same at every scale, or they may be nearly the same at different scales.[2][3][4][5] The definition of fractal goes beyond self-similarity per se to exclude trivial self-similarity and include the idea of a detailed pattern repeating itself.[2]:166; 18[3][6]

One feature of fractals that distinguishes them from "regular" shapes is the amount their spatial content scales, which is the concept of fractal dimension. If the edge lengths of a square are all doubled, the area is scaled by four because squares are two dimensional, similarly if the radius of a sphere is doubled, its volume scales by eight because spheres are three dimensional. In the case of fractals, if all one-dimensional lengths are doubled, the spatial content of the fractal scales by a number which is not an integer. A fractal has a fractal dimension that usually exceeds its topological dimension[7] and may fall between the integers.[2]

As mathematical equations, fractals are usually nowhere differentiable.[2][5][8] An infinite fractal curve can be perceived of as winding through space differently from an ordinary line, still being a 1-dimensional line yet having a fractal dimension indicating it also resembles a surface.[7]:48[2]:15

The mathematical roots of the idea of fractals have been traced through a formal path of published works, starting in the 17th century with notions of recursion, then moving through increasingly rigorous mathematical treatment of the concept to the study of continuous but not differentiable functions in the 19th century, and on to the coining of the word fractal in the 20th century with a subsequent burgeoning of interest in fractals and computer-based modelling in the 21st century.[9][10] The term "fractal" was first used by mathematician Benoît Mandelbrot in 1975. Mandelbrot based it on the Latin frāctus meaning "broken" or "fractured", and used it to extend the concept of theoretical fractional dimensions to geometric patterns in nature.[2]:405[6]

There is some disagreement amongst authorities about how the concept of a fractal should be formally defined. Mandelbrot himself summarized it as "beautiful, damn hard, increasingly useful. That's fractals."[11] The general consensus is that theoretical fractals are infinitely self-similar, iterated, and detailed mathematical constructs having fractal dimensions, of which many examples have been formulated and studied in great depth.[2][3][4] Fractals are not limited to geometric patterns, but can also describe processes in time.[1][5][12] Fractal patterns with various degrees of self-similarity have been rendered or studied in images, structures and sounds[13] and found in nature, technology, art, and law.

Much of this was taken from Wikipedia Mandelbrot Set and Fractal.

Green Technology Depends on Metals with Weird Names

Cover Image: January 2014 Scientific American Magazine
A supply of clean, affordable energy depends on little-known substances
Gold bar surronded by halo of hands
Image: Ross MacDonald
 
There's one problem with the silicon age: its magic depends on elements that are far scarcer than beach sand. Some aren't merely in limited supply: many people have never even heard of them. And yet those elements have become essential to the green economy. Alien-sounding elements such as yttrium, neodymium, europium, terbium and dysprosium are key components of energy-saving lights, powerful permanent magnets and other technologies. And then there are gallium, indium and tellurium, which create the thin-film photovoltaics needed in solar panels. The U.S. Department of Energy now counts those first five elements as “critical materials” crucial to new technology but whose supply is at risk of disruption. The department's experts are closely monitoring global production of the last three and likewise the lithium that provides batteries for pocket flashlights and hybrid cars.

Earlier this year the DoE took a major step by launching the Critical Materials Institute, a $120-million program to avert a supply shortage. Led by the Ames Laboratory in Iowa, with backing from 17 other government laboratories, universities and industry partners, the institute represents a welcome investment in new research. Unfortunately—like the original Manhattan Project—the program is driven more by the threat of international conflict than by ideals of scientific cooperation.
The appropriation made it through Congress almost certainly because of legislators' fear of China's dominance in many critical elements and Bolivia's ambition to become “the Saudi Arabia of lithium.”
The worries are probably inevitable. China—historically a prickly partner at best to the U.S.—effectively has much of the world's critical-materials market at its mercy. Take the rare earth elements neodymium, europium, terbium and dysprosium. Despite their name, rare earths are many times more common than gold or platinum and can be found in deposits around the world. In recent years, however, cheap labor and lax environmental regulation have enabled China to corner the global market, mining and refining well over 90 percent of rare earths.

At the same time, China has consistently fallen short of its own production quotas. In 2012 the U.S., the European Union and Japan, suspecting China was manipulating the market, filed a formal complaint with the World Trade Organization (WTO). China argues that production cutbacks were necessary for environmental cleanup. At press time, a preliminary ruling in October 2013 against China will likely be appealed. Meanwhile Japan has announced discovery of vast undersea deposits of rare earths, and the Americans, among others, are working to restart their own disused facilities. The shortages won't last.

Bolivia's lithium is a different story. The impoverished, landlocked country needs no artificial shortages to boost the market. As the lightest metal, lithium has unmatched ability to form compounds that can store electricity in a minimal weight and volume. At least half the world's known reserves are located in a relatively small stretch of the Andes Mountains, where Bolivia and Argentina share a border with Chile.

There's more at stake here than fancy gadgets for the rich. The point of critical materials is to use energy more efficiently. One fifth of the world still lives without access to clean, affordable electricity, a problem that unimpeded supplies of rare earths and lithium could eventually remedy. The hard part will be to prevent old international feuds from getting in the way of that goal. The U.S. can help by embracing the spirit of international development and cooperation. A start could be with the U.S. National Science Foundation, which already maintains an active office in Beijing. We need more such channels to encourage collaborative research on rare earths. Similarly, the strained relations between Washington and La Paz could benefit from signs of sincere U.S. willingness to assist Bolivia in developing the Uyuni salt flats, where a pilot processing plant began operating early in 2013.

Similar modest gestures could bring the world closer to a full-scale treaty on global mineral-supply security. A foundation of sorts has already been laid by efforts such as the Minamata Convention on Mercury, the recently adopted international pact to reduce emissions and use of the toxic metal.
Humanity's health and prosperity depend on the wise harnessing of natural resources. Narrow national interests and rivalries can only obstruct that process, ultimately leaving us all just that much poorer. The need for critical materials should catalyze international cooperation. After all, those materials can enlighten the world—literally.

Friday, December 27, 2013

The Benefits of Colonizing Space: Space Habitats and The O’Neill Cylinder


Posted on From Quarks to Quasars, December 27, 2013 at 5:00 am
By
                             
1280px-Spacecolony3edit
Image credit: Rick Guidice

Many argue that the world is in a state of crisis and that the human race is the cause. As a species, we are approaching an important turning point in our history, and if we make the wrong decisions we might be facing a future of deprivation, over population, hunger, and instability. Ultimately, many believe that we will eventually be forced to colonize space. Last year, the 100 Starship Symposium set on course a project to design and build an economical and practical spacecraft for interstellar travel.

But with the very immediate worries about over population, it might not be a good idea to wait for interstellar travel and the colonization of other worlds. Fortunately, there are also many suggestions in place for large space structures designed as places for people to live in their millions, much like a city is on Earth. Of course, building a space habitat comes with thousands of challenges, including: construction in space, recreating a livable atmosphere, recycling waste, producing artificial gravity, transporting food and materials to the habitat, and convincing people such a venture is worth it.


Image credit: Mars One graphics

There’s no strict definition for a ‘space habitat’, but it’s generally agreed to be a permanent human living facility on a celestial body such as ‘Mars One’ (extra-terrestrial planets, moons, or in a spaceship orbiting the Earth). We may have no choice but to build one of these in the future, be it initiated as a matter of survival or an undeniable demand because of our desire to explore and gain new knowledge by expanding in space. Ultimately, there are a number of incentives to building such a habitat.

For governmental bodies and world leaders faced with a huge and unsustainable population, the concept of a space habitat would be attractive. Using the materials available in the Solar System, there is the potential to build enough surface area within space habitats to possibly house billions and even trillions of people. Populations would have the space to expand sustainably without destroying any current ecosystems, as well as relieving the pressure off Earth to provide resources. The planetary population could be stabilized and supported with the extra space to inhabit and develop agricultural plantations for food.

The expansion into space also offers up a wealth of privatized opportunities, such as access to energy and other interplanetary resources. On Earth, utilizing the Sun’s energy via solar cells is a disappointingly inefficient process with unavoidable problems associated with the atmosphere and night. In space, solar panels would have access to nearly continuous light from the Sun, and in Earth’s orbit this would give us 1400 watts of power per square meter (with 100% efficiency). This abundance of energy would mean that we could travel throughout much of the Solar System without a terribly significant drop in power.

Image credit: Ricky

Material resources would also be in abundance throughout the entire Solar System (especially if you include mining opportunities on Mars, Luna, and other moons). Asteroids contain almost all of the stable elements in the periodic table, and without gravity, extracting and transporting them for our uses could be done with ease. NASA is working on a project where one could manufacture fuel, building materials, water, and oxygen just from resources found the Moon. The shift from Earth based manufacturing and plantation to industries in space may not just become feasible, but incredibly economically beneficial.

So now that we’ve laid down some reasons as to why organisations may want to unite and build a space habitat, I want to introduce you to the O’Neill cylinder. My personal favourite suggestion is the O’Neill cylinder, a space settlement design proposed by Gerard K. O’Neill nearly 40 years ago, in 1976, when he published his book ‘The High Frontier: Human Colonies in Space’Gerard K. O’Neill was a lecturer at Princeton University, as well as a physicist and space activist. He designed and built the first mass driver prototype, and he developed new concepts to explore particle physics at higher energies than what had ever been possible (he was quite an awesome guy). But his lasting legacy was based in his work on space colonization. He founded the Space Studies Institute, an organisation devoted to research into this field.

Image credit: Rick Guidice

The design for his cylinder was spawned from a task that he set a group of physics and architectural students. The goal was to invent large structures that could be used for long term human habitation, and the results inspired the idea of the cylinder. The title is a little misleading, because it is actually two cylinders that rotate on bearings in opposing directions (to cancel gyroscopic effects). Each one would be 20 miles long and 8km in diameter, with 6 stripes along its length (3 windows and 3 habitable surfaces). Industrial processes and recreational facilities were envisaged to be on the central axis where it would effectively be a zero-gravity zone.

One difference between a planetary/moon-based space habitat and a man-made structure is the need for artificial gravity, and the O’Neill cylinder does this in a beautiful manipulation of basic Newtonian physics. As the two colossal cylinders rotate on their axis it utilizes the centripetal force on any object on the inner surface to create the appearance of gravity! Using the dimensions of the cylinder, the equation a=v²/r and the acceleration due to gravity on Earth (9.81m/s²), we can deduce that the cylinder will only need to rotate around 28 times every hour in order to simulate an equal force (though about 40 times is what the plans suggest).

Image credit: Donald Davis

The next box on the check list for a planetary habitat is maintaining an atmosphere with a composition and pressure that is similar to that of Earth’s. The cylinder is designed to have a carefully controlled ratio of gases much the same as Earth, but the pressure will be half of that at sea level. This will create a minor difference to how we breathe, but the advantages are the need for less gas and less of a requirement for thick walls. It also thought that the habitat will be able to generate its own micro-climate and weather systems that we could control using mirrors and by changing the ratios of gases in the cylinder.

Habitats also have to deal with a variety of problems that come as a consequence of living in space. With the colony situated in a vacuum the cylinder essentially turns into a giant thermos flask! O’Neill’s design to overcome this issue uses a series of mirrors hinged to each of the 3 windows. They are able to direct sunlight into the cylinder to simulate day time and warm the air, and turn away at ‘night’ so that the windows look out onto the blackness of space. This period of ‘night’ would allow heat in infrastructure, and that produced biologically, to radiate out just as the Earth’s atmosphere does (at night time too).

Another serious issue is that of small meteoroids or even man-made space debris. Radar systems based all around the outer skin of the cylinders will continuously map the region around the habitat to locate possible dangers. It was predicted that small scale collisions are inevitable; so to counteract the effect the windows would be built up of small panes built around a strong steel frame. The loss of gas would be so insignificant compared to the volume of the cylinder that repair jobs would not be an emergency. Though much larger pieces of rock would be a threat to the habitat, and methods of deflection or vaporization would be required.

Stephen Hawking said that he has predicted the extinction of the human race within the next thousand years, unless we build habitats in space or on other planets/moons in the next two hundred. That’s quite a statement, and with the current economic problems facing many developed countries around the world, it is highly unlikely that any big projects such as an O’Neill cylinder will be started soon. But with pioneers such as SpaceX and Mars One, what do you think the human race will do in the next 100 years?

Targeted synthesis of natural products with light

Targeted synthesis of natural products with light
Dec 17, 2013 
           Targeted synthesis of natural products with light       
The bulky Lewis acid (above) shields one side of the substrate (bottom) pushing the photoreaction in to the direction of the desired product. Furthermore the complex of Lewis acid and substrate requires a lower excitation energy than the substrate alone.
Radiating the complex with light of this wavelength favors the formation of the desired substance while it delivers not enough energy for the non-specific photoreaction of the uncomplexed substrate. Credit: Richard Brimioulle
 
Photoreactions are driven by light energy and are vital to the synthesis of many natural substances. Since many of these substances are also useful as active medical agents, chemists try to produce them synthetically. But in most cases only one of the possible products has the right spatial structure to make it effective. Researchers at the Technische Universitaet Muenchen (TUM) have now developed a methodology for one of these photoreactions that allows them to produce only the specific molecular variant desired.

For chemists, are compounds formed by organisms to fulfill the myriad biological functions. This biological activity makes them very interesting for industrial applications, for example as active agents in medication or as plant protection agents. However, since many natural substances are difficult to extract from nature, chemists are working on creating these substances in their laboratories.

A key criterion in the manufacture of natural substances is that they can be produced with the desired spatial configuration. But photoreactions often create two mirror-image variants of the target molecule that can have very different properties. Since only one of theses molecules shows the desired effect, researchers would like to avoid producing the other.

A special catalyst
Thorsten Bach, professor for Organic Chemistry, and his doctoral student Richard Brimioulle have discovered a particularly elegant way of doing this. Their trick was to add a small amount of an electron-deficient compound, a so-called Lewis acid, as a catalyst. The bulky catalyst has a specific spatial structure and forms a complex with the starting substance.

What makes this reaction so special is that the complex of Lewis acid and substrate requires a lower excitation energy than the substrate alone. "Radiating the substance with light of this wavelength favors the formation of the desired substance," says Richard Brimioulle. "The energy is not sufficient for the non-specific reaction of the uncomplexed substrate." A further advantage of the synthesis: The Lewis acid is released upon formation of the product and can react with the next molecule of the starting substance. In addition, the reaction takes place in a single step – an important criterion for subsequent industrial deployment.

Elegant pathway to natural substances
Applying photoreactions to the production of natural substances has been a long aspired goal of the scientists headed by Professor Bach. Using this kind of reaction, even unusually complicated molecular frameworks can be produced quickly and efficiently from simple starting materials. One such molecule is grandisol, a pheromone of the cotton boll weevil. It is already being used as a plant protection agent. Many other agents that inhibit the growth of cancer cells or kill bacteria contain similar kinds of structures and could thus be suitable as medication.

Since other substrates also exhibit reduced excitation energies in the presence of Lewis acids, Bach and Brimioulle suspect that the new method can be used to synthesize many different substances selectively. In future work, the researchers plan to apply the catalysts to other types of photoreactions to give this type of reaction a fixed position among the synthesis methods of .
Explore further: New catalyst class uses halogen bridges for environmentally friendlier production

More information: R. Brimioulle and T. Bach: Enantioselective Lewis Acid Catalysis of Intramolecular Enone [2+2] Photocycloaddition Reactions, Science 2013, Vol. 342 no. 6160 pp. 840-843 - DOI: 10.1126/science.1244809
Journal reference: Science

Baisden

If you have hurt someone call them and tell them you're sorry. After that, move on!

Too often we torture ourselves over and over again for the same mistake. Suffering doesn't cleanse you it only makes you more dis-eased. You've suffered enough, it's time to move on to make new mistakes. ~ Michael Baisden

Algorithmic information theory

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Algorithmic_information_theory ...