Search This Blog

Wednesday, July 30, 2014

Oklahoma Moms Stage Mass Breastfeeding In Public Park -- ThinkProgress

Oklahoma Moms Stage Mass Breastfeeding In Public Park

Posted on
 
"Oklahoma Moms Stage Mass Breastfeeding In Public Park"
Breastfeeding Photo
CREDIT: Atlanta Journal-Constitution

More than 30 mothers challenged societal norms last weekend at an Oklahoma park when they synchronically pulled out one of their breasts and publicly fed their infants for one minute. The event counted among several gatherings taking place around the world as a part of “The Big Latch On,” an annual effort to promote public breastfeeding.

The Big Latch On launched in 2005 in New Zealand in observance of World Breastfeeding Week, which falls on the first week of August. It has since grown in worldwide popularity, reaching the
United States in 2011 when members of La Leche League of U.S. helped organize mass latch ons in several American cities and towns.

“Get with it. Let’s realize that this is going to be normal,” Carrie Fulgencio, head organizer of Monday’s event, said in the Atlanta Journal-Constitution. “I should not have to take my baby into [a restroom or any other] unsanitary place to feed them, and neither should any other mom. You don’t go eat your lunch there, so why should I take my child?”

Experts say breast milk serves as a unique source of nutrients that infants need to grow and strengthen their immune system. Children that breastfeed in their early years often stave off a host of ailments – including juvenile diabetes, multiple sclerosis, heart disease, and cancer – before the age of 15. Breastfeeding also lowers mothers’ risk of breast, uterine, and ovarian cancer and assists in the loss of weight gained during pregnancy. The American Academy of Pediatrics suggests that breastfeeding an infant within its first year of life ensures fewer doctors’ visits and lower healthcare costs throughout the youngster’s life. Mothers have increasingly become aware of breastfeeding’s health benefits. Data compiled by the Centers for Diseases Control and Prevention shows that breastfeeding among new mothers has increased by more than 60 percent within a 10-year span.

While there’s little question about breastfeeding’s benefits, debates about the manner in which mothers conduct the natural bonding activity have taken place in state legislatures, public gathering places, and online forums for years. In 2003, Jacqueline Mercado and her husband lost custody of their two young children after a clerk at the local Eckerd reported the mother to Child Protective Services in Richardson, Texas upon his discovery of photos that showed Mercado breastfeeding her then one-year-old son. The local district attorney charged the couple with “sexual performance of a child” before dropping charges six months later.

In 2006, Vermont mother Emily Gilette filed a complaint against Freedom Airlines and Delta Air Lines after she said airline officials removed her from a Freedom Airlines flight for not covering herself while breastfeeding her child. In 2010, Jessica Swimeley rallied the support of breastfeeding advocates after she said that administrators at the Ronald McDonald House, a center for sick children based in Houston, threatened to remove her from the premises for breastfeeding her 17-month-old son, then recovering from brain surgery, during an elevator ride.

In June, a Hawaii homeless shelter allegedly threatened to remove a woman from the premises after she refused to cover up while breastfeeding. Earlier this month, a Utah middle school came under fire after its principal wrote a letter to breastfeeding mother Andrea Scannell asking her to “discretely feed the baby, whether with a small blanket or in a more private area while the lunch program is taking place,” citing complaints from parents and other patrons. The incident prompted Scannell to post the letter on social media and stage a nurse-in at the school with the help of Breastfeeding Mama Talk, a breast feeding advocacy organization.

“This kind of shaming, this kind of bullying, it prevents other breastfeeding women from going out in public, from feeding their baby,” said Scannell, according to the Huffington Post. “Not to mention that women can legally breastfeed in public in all 50 states, Utah included.”

Scannell’s right. Today, laws protecting public breastfeeding exist in every state. According to the National Council for State Legislatures, 46 states, the District of Columbia, and the Virgin Islands have laws that allow women to breastfeed publicly. Twenty-nine states – including Arizona, Florida, and Utah – exempt breastfeeding from public indecency laws. The Affordable Care Act also includes provisions that require employers to allow a reasonable break time for an employee to nurse her child for up to one year after its birth.

Dinosaurs doing well before asteroid impact (phys.org)

Dinosaurs doing well before asteroid impact

21 hours ago by Hayley Dunning in phys.org 

Dinosaurs doing well before asteroid impact
Artist's impression of the impact. Credit: John Sibbick.
A new analysis of fossils from the last years of the dinosaurs concludes that extra-terrestrial impact was likely the sole cause of extinction in most cases.
Although some groups of were declining in certain populations, dinosaurs in general were doing well before the impact of a 10km-wide asteroid or comet.

The impact caused huge tsunamis, earthquakes and wildfires. Everything over 25kg went extinct, paving the way for small birds and mammals to flourish in the aftermath.

Other pressures

The impact is well-established as the final cause of the demise of the dinosaurs. However, several other major changes were occurring on Earth at the time, leading to the suggestion that dinosaurs were already declining, and that the impact was the final straw.

Dinosaurs went extinct at the end of the Cretaceous period, 66 million years ago. Over the last few million years of the Cretaceous, environmental changes included huge temperature variations, sea-level swings and massive outpourings of volcanism in India.

Using the most up-to-date records of assemblages occurring in the last 18 million years of the Cretaceous, a team of researchers from some of the top institutions and dinosaur museums around the world, including Dr Paul Barrett from the Natural History Museum, conclude that in most cases the impact was the 'smoking gun for the cause of the extinction.'

Dinosaurs doing well before asteroid impact
Some large herbivores, such as triceratops, may have been declining in certain areas.
 Little decline

In some regions, there was evidence of certain groups of large herbivores declining in species diversity, which could make the communities that depend on them for food more vulnerable to extinction from external pressures such as an impact.

Overall, though, dinosaur species diversity appeared to be relatively stable despite the large-scale changes occurring over the last few million years.

New fields of study

However, the work is based largely on sites in North America, where the most complete and continuous dinosaur fossil records from the end of the Cretaceous have been described.

'It is unusual for so many experts from a consortium of world-leading intuitions to reach consensus over a big question like this,' said Dr Barrett.
                                  
'Having this agreed view helps to set an agenda to guide palaeontologists interested in finding more evidence regarding the speed and structure of the extinction.' This agenda includes looking at regions with the potential for the same detailed records as in North America, including sites in Spain and China.

Zooming in on the cause

The timing of the impact also coincides with a pulse in volcanic activity from India. The dinosaur fossil record is not yet complete enough to say what effect the increase in dust, sulphur and carbon dioxide in the atmosphere from the volcanism would have had on dinosaur communities immediately prior to the impact.

With focused research on this time period across the globe, Dr Barrett is hopeful we can gain an even clearer understanding of the timing and tempo of the .

'This will give us a much clearer picture of our past and perhaps even an understanding of the environmental and ecological factors that could cause or accelerate extinctions in the future.'
Explore further: Dinosaurs fell victim to perfect storm of events, study shows

New molecule puts scientists a step closer to understanding hydrogen storage

New molecule puts scientists a step closer to understanding hydrogen storage

Jul 25, 2014 by phys.org

The Chinese Puzzle Molecule -a twenty eight copper fifteen hydride core wrapped in dithiocarbamate
Australian and Taiwanese scientists have discovered a new molecule which puts the science community one step closer to solving one of the barriers to development of cleaner, greener hydrogen fuel-cells as a viable power source for cars.

Scientists say that the newly-discovered "28copper15hydride" puts us on a path to better understanding hydrogen, and potentially even how to get it in and out of a fuel system, and is stored in a manner which is stable and safe – overcoming Hindenburg-type risks.
"28copper15hydride" is certainly not a name that would be developed by a marketing guru, but while it would send many running for an encyclopaedia (or let's face it, Wikipedia), it has some of the world's most accomplished chemists intrigued.

Its discovery was recently featured on the cover of one of the world's most prestigious chemistry journals, and details are being presented today by Australia's Dr Alison Edwards at the 41st International Conference on Coordination Chemistry, Singapore where 1100 chemists have gathered..
The molecule was synthesised by a team led by Prof Chenwei Liu from the National Dong Hwa University in Taiwan, who developed a partial structure model.
The chemical structure determination was completed by the team at the Australian Nuclear Science and Technology Organisation (ANSTO) using KOALA, one of the world's leading crystallography tools.

Most solid material is made of crystalline structures. The crystals are made up of regular arrangements of atoms stacked up like boxes in a tightly packed warehouse. The science of finding this arrangement, and structure of matter at the atomic level, is crystallography. ANSTO is Australia's home of this science.

ANSTO's Dr Alison Edwards is a Chemical Crystallographer at the Bragg Institute (named after William Bragg and his Australian-born son Lawrence, who were pioneers in this field). She explains the very basic (elementary, if you will!) principles behind the discovery, and the discovery itself:

"Anyone with a textbook understanding of chemistry knows the term 'hydride' describes a compound which results when a hydrogen atom with a negative charge is combined with another element in the periodic table," said Dr Edwards.

"This study revealed that mixing certain copper (Cu) compounds with a hydride of boron (borohydride or (BH4)) - created our newly discovered "Chinese Puzzle molecule" with a new structure that has alternating layers of hydride and copper wrapped in an outer shell of protecting molecules.

"Using our leading KOALA instrument – we identified that this molecule actually contained no less than 15 hydrides in the core - which is almost double the eight we were expecting.

"This new molecule has an unprecedented metal hydride core – it is definitely different and much more stable than many previous hydride compounds, in fact it is stable in air, which many others are not. So, we see there is probably much more yet to learn about the properties, and potential of hydride."

The discovery puts us one step further along a path to developing distribution infrastructure - one of four obstacles to hydrogen fuel-cell technology as a viable power source for low-carbon motor vehicles, as cited by Professor Steven Chu, Nobel Laureate and former Secretary of Energy in the United States.
 The four problems in using hydrogen as fuel can be broadly understood as:
  • Efficiency, because the process of obtaining hydrogen - H2 - costs some of the actual energy content already stored in the source of the hydrogen;
  • Transportation and a lack of adequate mechanism to store large volumes at high density;
  • The fuel cell technology is not yet advanced enough; and
  • The distribution infrastructure has not been established.
ANSTO's KOALA has been uniquely placed in developing a scientific understanding of hydrogen and the potential of hydrides, because the neutron source allows us to see the precise location of hydrogen in structures which is effectively invisible with X-rays.
"This improved understanding of one aspect of the nature of hydride provides an improved fundamental understanding of an aspect of hydrogen which underpins potential technological developments – you cannot have a well-founded "hydrogen economy" unless you understand hydrogen!," said Dr Edwards.

"No one is claiming hydrogen-powered cars are imminent. Perhaps this puts us a step further down the road, but we don't know how long the road is. What this research shows is hydrides may yet help us get in and out of a fuel system, stored in a manner which is stable and safe – overcoming the Hindenburg-type risks.

"As I said before, the implications from the research are actually broader and have impacts beyond car power sources.

"The same synthetic chemistry is being applied in the areas of gold and silver nanoparticle formation, which are currently believed to have wide-ranging potential applications in fields such as catalysis, medical diagnostics and therapeutics."

"Our result suggests there could be much more going on in gold and silver nanoclusters than is currently understood – or at the very least, there is more to be understood about the processes of nanoparticle formation. Through understanding the process, we have the prospect of controlling and even directing it."
Explore further: A new solution for storing hydrogen fuel for alternative energy


Mysterious molecules in space

Mysterious molecules in space

12 hours ago by http://phys.org/news/2014-07-mysterious-molecules-space.html 

Mysterious molecules in space       
This graph shows absorption wavelength as a function of the number of carbon atoms in the silicon-terminated carbon chains SiC_(2n+1)H, for the extremely strong pi-pi electronic transitions.
Over the vast, empty reaches of interstellar space, countless small molecules tumble quietly though the cold vacuum. Forged in the fusion furnaces of ancient stars and ejected into space when those stars exploded, these lonely molecules account for a significant amount of all the carbon, hydrogen, silicon and other atoms in the universe. In fact, some 20 percent of all the carbon in the universe is thought to exist as some form of interstellar molecule.

Many astronomers hypothesize that these are also responsible for an observed phenomenon on Earth known as the "diffuse interstellar bands," spectrographic proof that something out there in the universe is absorbing certain distinct colors of light from stars before it reaches the Earth. But since we don't know the exact chemical composition and atomic arrangements of these mysterious , it remains unproven whether they are, in fact, responsible for the diffuse interstellar bands.

Now in a paper appearing this week in The Journal of Chemical Physics, from AIP Publishing, a group of scientists led by researchers at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. has offered a tantalizing new possibility: these mysterious molecules may be silicon-capped hydrocarbons like SiC3H, SiC4H and SiC5H, and they present data and theoretical arguments to back that hypothesis.

At the same time, the group cautions that history has shown that while many possibilities have been proposed as the source of diffuse interstellar bands, none has been proven definitively.
"There have been a number of explanations over the years, and they cover the gamut," said Michael
McCarthy a senior physicist at the Harvard-Smithsonian Center for Astrophysics who led the study.

Molecules in Space and How We Know They're There

Astronomers have long known that interstellar molecules containing carbon atoms exist and that by their nature they will absorb light shining on them from stars and other luminous bodies. Because of this, a number of scientists have previously proposed that some type of interstellar molecules are the source of diffuse interstellar bands—the hundreds of dark absorption lines seen in color spectrograms taken from Earth.

In showing nothing, these dark bands reveal everything. The missing colors correspond to photons of given wavelengths that were absorbed as they travelled through the vast reaches of space before reaching us. More than that, if these photons were filtered by falling on space-based molecules, the wavelengths reveal the exact energies it took to excite the electronic structures of those absorbing molecules in a defined way.

Armed with that information, scientists here on Earth should be able to use spectroscopy to identify those interstellar molecules—by demonstrating which molecules in the laboratory have the same absorptive "fingerprints." But despite decades of effort, the identity of the molecules that account for the diffuse interstellar bands remains a mystery. Nobody has been able to reproduce the exact same absorption spectra in laboratories here on Earth.

"Not a single one has been definitively assigned to a specific molecule," said Neil Reilly, a former postdoctoral fellow at Harvard-Smithsonian Center for Astrophysics and a co-author of the new paper.

Now Reilly, McCarthy and their colleagues are pointing to an unusual set of molecules—silicon-terminated carbon chain radicals—as a possible source of these mysterious bands.

As they report in their new paper, the team first created silicon-containing carbon chains SiC3H, SiC4H and SiC5H in the laboratory using a jet-cooled silane-acetylene discharge. They then analyzed their spectra and carried out theoretical calculations to predict that longer chains in this family might account for some portion of the diffuse interstellar bands.

However, McCarthy cautioned that the work has not yet revealed the smoking gun source of the diffuse interstellar bands. In order to prove that these larger silicon capped are such a source, more work needs to be done in the laboratory to define the exact types of transitions these molecules undergo, and these would have to be directly related to astronomical observations. But the study provides a tantalizing possibility for finding the elusive source of some of the mystery absorption bands—and it reveals more of the rich molecular diversity of space.

"The is a fascinating environment," McCarthy said. "Many of the things that are quite abundant there are really unknown on Earth."

Explore further: Organic conundrum in Large Magellanic Cloud      

More information: The Journal of Chemical Physics, July 29, 2014. DOI: 10.1063/1.4883521

Journal reference: Journal of Chemical Physics


Read more at: http://phys.org/news/2014-07-mysterious-molecules-space.html#jCp

Hymenoptera -- That Most Amazing Order of Insects

Hymenoptera

From Wikipedia, the free encyclopedia
   
Hymenoptera
Temporal range: Triassic – Recent 251–0Ma
O
S
D
C
P
T
J
K
N
Orange Caterpillar Parasite Wasp.jpg
female Netelia producta
Scientific classification e
Kingdom:Animalia
Phylum:Arthropoda
Class:Insecta
Superorder:Hymenopterida
Order:Hymenoptera
Linnaeus, 1758
Suborders
Apocrita
Symphyta

The Hymenoptera are one of the largest orders of insects, comprising the sawflies, wasps, bees and ants. Over 150,000 species are recognized, with many more remaining to be described. The name refers to the wings of the insects, and is derived from the Ancient Greek ὑμήν (hymen): membrane and πτερόν (pteron): wing. The hind wings are connected to the fore wings by a series of hooks called hamuli.

Females typically have a special ovipositor for inserting eggs into hosts or otherwise inaccessible places. The ovipositor is often modified into a stinger. The young develop through holometabolism, (complete metamorphosis) — that is, they have a worm-like larval stage and an inactive pupal stage before they mature.

Evolution

Hymenoptera originated in the Triassic, the oldest fossils belonging to the family Xyelidae. Social hymenopterans appeared during the Cretaceous.[1] The evolution of this group has been intensively studied by A. Rasnitsyn, M. S. Engel, G. Dlussky, and others.

Anatomy

Hymenopterans range in size from very small to large insects, and usually have two pairs of wings. Their mouthparts are adapted for chewing, with well-developed mandibles (ectognathous mouthparts). Many species have further developed the mouthparts into a lengthy proboscis, with which they can drink liquids, such as nectar. They have large compound eyes, and typically three simple eyes, (ocelli).

The forward margin of the hind wing bears a number of hooked bristles, or "hamuli", which lock onto the fore wing, keeping them held together. The smaller species may have only two or three hamuli on each side, but the largest wasps may have a considerable number, keeping the wings gripped together especially tightly. Hymenopteran wings have relatively few veins compared with many other insects, especially in the smaller species.

In the more ancestral hymenopterans, the ovipositor is blade-like, and has evolved for slicing plant tissues. In the majority, however, it is modified for piercing, and, in some cases, is several times the length of the body. In some species, the ovipositor has become modified as a stinger, and the eggs are laid from the base of the structure, rather than from the tip, which is used only to inject venom. The sting is typically used to immobilise prey, but in some wasps and bees may be used in defense.[2]

The larvae of the more ancestral hymenopterans resemble caterpillars in appearance, and like them, typically feed on leaves. They have large chewing mandibles, three thoracic limbs, and, in most cases, a number of abdominal prolegs. Unlike caterpillars, however, the prolegs have no grasping spines, and the antennae are reduced to mere stubs.

The larvae of other hymenopterans, however, more closely resemble maggots, and are adapted to life in a protected environment. This may be the body of a host organism, or a cell in a nest, where the adults will care for the larva. Such larvae have soft bodies with no limbs. They are also unable to defecate until they reach adulthood due to having an incomplete digestive tract, presumably to avoid contaminating their environment.[2]

Sex determination

Among most or all hymenopterans, sex is determined by the number of chromosomes an individual possesses.[3] Fertilized eggs get two sets of chromosomes (one from each parent's respective gametes), and so develop into diploid females, while unfertilized eggs only contain one set (from the mother), and so develop into haploid males; the act of fertilization is under the voluntary control of the egg-laying female.[2] This phenomenon is called haplodiploidy.

However, the actual genetic mechanisms of haplodiploid sex determination may be more complex than simple chromosome number. In many Hymenoptera, sex is actually determined by a single gene locus with many alleles.[3] In these species, haploids are male and diploids heterozygous at the sex locus are female, but occasionally a diploid will be homozygous at the sex locus and develop as a male instead. This is especially likely to occur in an individual whose parents were siblings or other close relatives. Diploid males are known to be produced by inbreeding in many ant, bee and wasp species. Diploid biparental males are usually sterile but a few species that have fertile diploid males are known.[4]

One consequence of haplodiploidy is that females on average actually have more genes in common with their sisters than they do with their own daughters. Because of this, cooperation among kindred females may be unusually advantageous, and has been hypothesized to contribute to the multiple origins of eusociality within this order.[2] In many colonies of bees, ants, and wasps, worker females will remove eggs laid by other workers due to increased relatedness to direct siblings, a phenomenon known as worker policing.[5]

Diet

Different species of Hymenoptera show a wide range of feeding habits. The most primitive forms are typically herbivorous, feeding on leaves or pine needles. Stinging wasps are predators, and will provision their larvae with immobilised prey, while bees feed on nectar and pollen.

A number of species are parasitoid as larvae. The adults inject the eggs into a paralysed host, which they begin to consume after hatching. Some species are even hyperparasitoid, with the host itself being another parasitoid insect. Habits intermediate between those of the herbivorous and parasitoid forms are shown in some hymenopterans, which inhabit the galls or nests of other insects, stealing their food, and eventually killing and eating the occupant.[2]

Classification

Symphyta

The suborder Symphyta includes the sawflies, horntails, and parasitic wood wasps. The group may be paraphyletic, as it has been suggested that the family Orussidae may be the group from which the Apocrita arose. They have an unconstricted junction between the thorax and abdomen. The larvae are herbivorous free-living eruciforms, with three pairs of true legs, prolegs (on every segment, unlike Lepidoptera) and ocelli. The prolegs do not have crochet hooks at the ends unlike the larvae of the Lepidoptera.

Apocrita

The wasps, bees, and ants together make up the suborder Apocrita, characterized by a constriction between the first and second abdominal segments called a wasp-waist (petiole), also involving the fusion of the first abdominal segment to the thorax. Also, the larvae of all Apocrita do not have legs, prolegs, or ocelli.

Polytetrafluoroethylene

Polytetrafluoroethylene

From Wikipedia, the free encyclopedia
Polytetrafluoroethylene
Teflon structure.PNG
Perfluorodecyl-chain-from-xtal-Mercury-3D-balls.png
Identifiers
AbbreviationsPTFE
CAS number9002-84-0 YesY
KEGGD08974 N=
ChEBICHEBI:53251 N
Properties
Molecular formula(C2F4)n
Density2200 kg/m3
Melting point600 K
Thermal conductivity0.25 W/(m·K)
Hazards
MSDSExternal MSDS
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 1: Exposure would cause irritation but only minor residual injury. E.g., turpentine Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
0
1
0
Supplementary data page
Structure and
properties
n, εr, etc.
Thermodynamic
data
Phase behaviour
Solid, liquid, gas
Spectral dataUV, IR, NMR, MS
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N (verify) (what is: YesY/N?)
Infobox references
Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer of tetrafluoroethylene that has numerous applications. The best known brand name of PTFE-based formulas is Teflon by DuPont Co., who discovered the compound.

PTFE is a fluorocarbon solid, as it is a high-molecular-weight compound consisting wholly of carbon and fluorine. PTFE is hydrophobic: neither water nor water-containing substances wet PTFE, as fluorocarbons demonstrate mitigated London dispersion forces due to the high electronegativity of fluorine. PTFE has one of the lowest coefficients of friction against any solid.

PTFE is used as a non-stick coating for pans and other cookware. It is very non-reactive, partly because of the strength of carbon–fluorine bonds and so it is often used in containers and pipework for reactive and corrosive chemicals. Where used as a lubricant, PTFE reduces friction, wear and energy consumption of machinery. It is also commonly used as a graft material in surgical interventions.


History

External audio
“From stove tops to outer space... Teflon touches every one of us some way almost every day.”, Roy Plunkett, Chemical Heritage Foundation
Teflon thermal cover showing impact craters, from NASA's Ultra Heavy Cosmic Ray Experiment (UHCRE)
 
PTFE was accidentally discovered in 1938 by Roy Plunkett while he was working in New Jersey for Kinetic Chemicals. As Plunkett attempted to make a new chlorofluorocarbon refrigerant, the tetrafluoroethylene gas in its pressure bottle stopped flowing before the bottle's weight had dropped to the point signaling "empty." Since Plunkett was measuring the amount of gas used by weighing the bottle, he became curious as to the source of the weight, and finally resorted to sawing the bottle apart. He found the bottle's interior coated with a waxy white material that was oddly slippery.
Analysis showed that it was polymerized perfluoroethylene, with the iron from the inside of the container having acted as a catalyst at high pressure. Kinetic Chemicals patented the new fluorinated plastic (analogous to the already known polyethylene) in 1941,[2] and registered the Teflon trademark in 1945.[3][4]

By 1948, DuPont, which founded Kinetic Chemicals in partnership with General Motors, was producing over two million pounds (900 tons) of Teflon brand PTFE per year in Parkersburg, West Virginia.[5] An early use was in the Manhattan Project as a material to coat valves and seals in the pipes holding highly reactive uranium hexafluoride at the vast K-25 uranium enrichment plant in Oak Ridge, Tennessee.[6]

In 1954, the wife of French engineer Marc Grégoire urged him to try the material he had been using on fishing tackle on her cooking pans. He subsequently created the first Teflon-coated, non-stick pans under the brandname Tefal (combining "Tef" from "Teflon" and "al" from aluminum).[7] In the United States, Marion A. Trozzolo, who had been using the substance on scientific utensils, marketed the first US-made Teflon-coated pan, "The Happy Pan", in 1961.[8]

However, Tefal was not the only company to utilize PTFE in nonstick cookware coatings. In subsequent years, many cookware manufacturers developed proprietary PTFE-based formulas, including Swiss Diamond International which uses a diamond-reinforced PTFE formula ,[9] Scanpan which uses a titanium-reinforced PTFE formula,[10] Cuisinart's Chef's Classic and Advantage nonstick collections[11] and All-Clad[12] and Newell Rubbermaid's Calphalon which use a non-reinforced PTFE-based nonstick.[13] Other cookware companies, such as Meyer Corporation's Anolon, use Teflon[14] nonstick coatings purchased from DuPont.

In the 1990s, it was found that PTFE could be radiation cross-linked above its melting point in an oxygen-free environment.[15] Electron beam processing is one example of radiation processing. Cross-linked PTFE has improved high-temperature mechanical properties and radiation stability. This was significant because, for many years, irradiation at ambient conditions had been used to break down PTFE for recycling.[16] The radiation-induced chain scissioning allows it to be more easily reground and reused.

Production

PTFE is produced by free-radical polymerization of tetrafluoroethylene. The net equation is:
n F2C=CF2 → 1/n —{ F2C—CF2}n
Because tetrafluoroethylene can explosively decompose to tetrafluoromethane and carbon, special apparatus is required for the polymerization to prevent hot spots that might initiate this dangerous side reaction. The process is typically initiated with persulfate, which homolyzes to generate sulfate radicals:
[O3SO-OSO3]2− 2 SO4
The resulting polymer is terminated with sulfate ester groups, which can be hydrolyzed to give OH-end-groups.[17]

Because PTFE is poorly soluble in almost all solvents, the polymerization is conducted as an emulsion in water. This process gives a suspension of polymer particles. Alternatively, the polymerization is conducted using a surfactant such as PFOS.

Properties

PTFE is often used to coat non-stick pans as it is hydrophobic and possesses fairly high heat resistance.

PTFE is a thermoplastic polymer, which is a white solid at room temperature, with a density of about 2200 kg/m3. According to DuPont, its melting point is 600 K (327 °C; 620 °F).[18] It maintains high strength, toughness and self-lubrication at low temperatures down to 5 K (−268.15 °C; −450.67 °F), and good flexibility at temperatures above 194 K (−79 °C; −110 °F).[19] PTFE gains its properties from the aggregate effect of carbon-fluorine bonds, as do all fluorocarbons. The only chemicals known to affect these carbon-fluorine bonds are certain alkali metals and fluorinating agents such as xenon difluoride and cobalt(III) fluoride.[20]
PropertyValue
Density2200 kg/m3
Melting point600 K
Thermal expansion135 · 10−6 K−1 [21]
Thermal diffusivity0.124 mm²/s [22]
Young's modulus0.5 GPa
Yield strength23 MPa
Bulk resistivity1016 Ω·m [23]
Coefficient of friction0.05–0.10
Dielectric constantε=2.1,tan(δ)<5 td="">
Dielectric constant (60 Hz)ε=2.1,tan(δ)<2 td="">
Dielectric strength (1 MHz)60 MV/m

The coefficient of friction of plastics is usually measured against polished steel.[24] PTFE's coefficient of friction is 0.05 to 0.10,[18] which is the third-lowest of any known solid material (BAM being the first, with a coefficient of friction of 0.02; diamond-like carbon being second-lowest at 0.05). PTFE's resistance to van der Waals forces means that it is the only known surface to which a gecko cannot stick.[25] In fact, PTFE can be used to prevent insects climbing up surfaces painted with the material. PTFE is so slippery that insects cannot get a grip and tend to fall off. For example, PTFE is used to prevent ants climbing out of formicaria.

Because of its chemical inertness, PTFE cannot be cross-linked like an elastomer. Therefore, it has no "memory" and is subject to creep. Because of its superior chemical and thermal properties, PTFE is often used as a gasket material. However, because of the propensity to creep, the long-term performance of such seals is worse than for elastomers which exhibit zero, or near-zero, levels of creep. In critical applications, Belleville washers are often used to apply continuous force to PTFE gaskets, ensuring a minimal loss of performance over the lifetime of the gasket.[26]

Applications and uses

The major application of PTFE, consuming about 50% of production, is for wiring in aerospace and computer applications (e.g. hookup wire, coaxial cables). This application exploits the fact that PTFE has excellent dielectric properties. This is especially true at high radio frequencies, making it suitable for use as an insulator in cables and connector assemblies and as a material for printed circuit boards used at microwave frequencies. Combined with its high melting temperature, this makes it the material of choice as a high-performance substitute for the weaker and lower-melting-point polyethylene commonly used in low-cost applications.

Another major application is in fuel and hydraulic lines, due to PTFE's low resistance against flowing liquids. Colder temperatures at high altitudes cause these fluids to flow more slowly. Coating the lines's interior surfaces with low-resistance PTFE helps to compensate by allowing the liquids to move more easily.[17]

In industrial applications, owing to its low friction, PTFE is used for applications where sliding action of parts is needed: plain bearings, gears, slide plates, etc. In these applications, it performs significantly better than nylon and acetal; it is comparable to ultra-high-molecular-weight polyethylene (UHMWPE). Although UHMWPE is more resistant to wear than PTFE, for these applications, versions of PTFE with mineral oil or molybdenum disulfide embedded as additional lubricants in its matrix are being manufactured. Its extremely high bulk resistivity makes it an ideal material for fabricating long-life electrets, useful devices that are the electrostatic analogues of magnets.

Gore-Tex is a material incorporating a fluoropolymer membrane with micropores. The roof of the Hubert H. Humphrey Metrodome in Minneapolis, USA, is one of the largest applications of PTFE coatings. 20 acres (81,000 m2) of the material was used in the creation of the white double-layered PTFE-coated fiberglass dome.

Other

PTFE (Teflon) is best known for its use in coating non-stick frying pans and other cookware, as it is hydrophobic and possesses fairly high heat resistance.
PTFE tapes with pressure-sensitive adhesive backing

Niche

PTFE is a versatile material that is found in many niche applications:
  • It is used as a film interface patch for sports and medical applications, featuring a pressure-sensitive adhesive backing, which is installed in strategic high friction areas of footwear, insoles, ankle-foot orthosis, and other medical devices to prevent and relieve friction-induced blisters, calluses and foot ulceration.
  • Powdered PTFE is used in pyrotechnic compositions as an oxidizer with powdered metals such as aluminium and magnesium. Upon ignition, these mixtures form carbonaceous soot and the corresponding metal fluoride, and release large amounts of heat. They are used in infrared decoy flares and as igniters for solid-fuel rocket propellants.[27]
  • In optical radiometry, sheets of PTFE are used as measuring heads in spectroradiometers and broadband radiometers (e.g., illuminance meters and UV radiometers) due to PTFE's capability to diffuse a transmitting light nearly perfectly. Moreover, optical properties of PTFE stay constant over a wide range of wavelengths, from UV down to near infrared. In this region, the relation of its regular transmittance to diffuse transmittance is negligibly small, so light transmitted through a diffuser (PTFE sheet) radiates like Lambert's cosine law. Thus PTFE enables cosinusoidal angular response for a detector measuring the power of optical radiation at a surface, e.g. in solar irradiance measurements.
  • Certain types of hardened, armor-piercing bullets are coated with PTFE to reduce wear on firearms's rifling that harder projectiles would cause. PTFE itself does not give a projectile an armor-piercing property.[28]
  • Its high corrosion resistance makes PTFE useful in laboratory environments, where it is used for lining containers, as a coating for magnetic stirrers, and as tubing for highly corrosive chemicals such as hydrofluoric acid, which will dissolve glass containers. It is used in containers for storing fluoroantimonic acid, a superacid.[citation needed]
  • PTFE tubes are used in gas-gas heat exchangers in gas cleaning of waste incinerators. Unit power capacity is typically several megawatts.
  • PTFE is also widely used as a thread seal tape in plumbing applications, largely replacing paste thread dope.
  • PTFE membrane filters are among the most efficient industrial air filters. PTFE-coated filters are often used in dust collection systems to collect particulate matter from air streams in applications involving high temperatures and high particulate loads such as coal-fired power plants, cement production and steel foundries.
  • PTFE grafts can be used to bypass stenotic arteries in peripheral vascular disease if a suitable autologous vein graft is not available.

Safety

The pyrolysis of PTFE is detectable at 200 °C (392 °F), and it evolves several fluorocarbon gases and a sublimate. An animal study conducted in 1955 concluded that it is unlikely that these products would be generated in amounts significant to health at temperatures below 250 °C (482 °F).[29] More recently, however, a study documented birds having been killed by these decomposition products at 202 °C (396 °F), with unconfirmed reports of bird deaths as a result of non-stick cookware heated to as little as 163 °C (325 °F).[30]

While PTFE is stable and nontoxic at lower temperatures, it begins to deteriorate after the temperature of cookware reaches about 260 °C (500 °F), and decomposes above 350 °C (662 °F).[citation needed] These degradation by-products can be lethal to birds, and can cause flu-like symptoms in humans.[citation needed] In May, 2003, the environmental research and advocacy organization Environmental Working Group filed a 14-page brief with the U.S. Consumer Product Safety Commission petitioning for a rule requiring that cookware and heated appliances bearing non-stick coatings carry a label warning of hazards to people and to birds.

Meat is usually fried between 204 and 232 °C (399 and 450 °F), and most oils start to smoke before a temperature of 260 °C (500 °F) is reached, but there are at least two cooking oils (refined safflower oil and avocado oil) that have a higher smoke point than 260 °C (500 °F). Empty cookware can also exceed this temperature when heated.

PFOA

Perfluorooctanoic acid (PFOA, or C8) is used as a surfactant in the emulsion polymerization of PTFE. Overall, PTFE cookware is considered an insignificant exposure pathway to PFOA.[31][32]

Similar polymers

Teflon is also used as the trade name for a polymer with similar properties, perfluoroalkoxy polymer resin (PFA).

The Teflon trade name is also used for other polymers with similar compositions:
These retain the useful PTFE properties of low friction and nonreactivity, but are more easily formable. For example, FEP is softer than PTFE and melts at 533 K (260 °C; 500 °F); it is also highly transparent and resistant to sunlight.[33]

Entropy (statistical thermodynamics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Entropy_(statistical_thermody...