Search This Blog

Tuesday, March 17, 2015

Engineering


From Wikipedia, the free encyclopedia


The steam engine, a major driver in the Industrial Revolution, underscores the importance of engineering in modern history. This beam engine is on display in the Technical University of Madrid.

Engineering (from Latin ingenium, meaning "cleverness" and ingeniare, meaning "to contrive, devise") is the application of scientific, economic, social, and practical knowledge in order to invent, design, build, maintain, research, and improve structures, machines, devices, systems, materials and processes.

The discipline of engineering is extremely broad, and encompasses a range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied science, technology and types of application.

Definition

The American Engineers' Council for Professional Development (ECPD, the predecessor of ABET)[1] has defined "engineering" as:
The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate the same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation or safety to life and property.[2][3]
One who practices engineering is called an engineer, and those licensed to do so may have more formal designations such as Professional Engineer, Designated Engineering Representative, Chartered Engineer, Incorporated Engineer, Ingenieur or European Engineer.

History

Relief map of the Citadel of Lille, designed in 1668 by Vauban, the foremost military engineer of his age.

Engineering has existed since ancient times as humans devised fundamental inventions such as the wedge, lever, wheel, and pulley. Each of these inventions is consistent with the modern definition of engineering, exploiting basic mechanical principles to develop useful tools and objects.

The term engineering itself has a much more recent etymology, deriving from the word engineer, which itself dates back to 1300, when an engine'er (literally, one who operates an engine) originally referred to "a constructor of military engines."[4] In this context, now obsolete, an "engine" referred to a military machine, i.e., a mechanical contraption used in war (for example, a catapult). Notable examples of the obsolete usage which have survived to the present day are military engineering corps, e.g., the U.S. Army Corps of Engineers.

The word "engine" itself is of even older origin, ultimately deriving from the Latin ingenium (c. 1250), meaning "innate quality, especially mental power, hence a clever invention."[5]

Later, as the design of civilian structures such as bridges and buildings matured as a technical discipline, the term civil engineering[3] entered the lexicon as a way to distinguish between those specializing in the construction of such non-military projects and those involved in the older discipline of military engineering.

Ancient era


The Ancient Romans built aqueducts to bring a steady supply of clean fresh water to cities and towns in the empire.

The Pharos of Alexandria, the pyramids in Egypt, the Hanging Gardens of Babylon, the Acropolis and the Parthenon in Greece, the Roman aqueducts, Via Appia and the Colosseum, Teotihuacán and the cities and pyramids of the Mayan, Inca and Aztec Empires, the Great Wall of China, the Brihadeeswarar Temple of Thanjavur and tombs of India, among many others, stand as a testament to the ingenuity and skill of the ancient civil and military engineers.

The earliest civil engineer known by name is Imhotep.[3] As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid) at Saqqara in Egypt around 2630-2611 BC.[6]

Ancient Greece developed machines in both civilian and military domains. The Antikythera mechanism, the first known mechanical computer,[7][8] and the mechanical inventions of Archimedes are examples of early mechanical engineering. Some of Archimedes' inventions as well as the Antikythera mechanism required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the Industrial Revolution, and are still widely used today in diverse fields such as robotics and automotive engineering.[9]

Chinese, Greek and Roman armies employed complex military machines and inventions such as artillery which was developed by the Greeks around the 4th century B.C.,[10] the trireme, the ballista and the catapult. In the Middle Ages, the trebuchet was developed.

Renaissance era

William Gilbert is considered to be the first electrical engineer with his 1600 publication of De Magnete. He coined the term "electricity".[11]

The first steam engine was built in 1698 by Thomas Savery.[12] The development of this device gave rise to the Industrial Revolution in the coming decades, allowing for the beginnings of mass production.

With the rise of engineering as a profession in the 18th century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering the fields then known as the mechanic arts became incorporated into engineering.

Modern era


The International Space Station represents a modern engineering challenge from many disciplines.

Boeing 747-8 wing-fuselage sections during final assembly

The early stages of electrical engineering included the experiments of Alessandro Volta in the 1800s, the experiments of Michael Faraday, Georg Ohm and others and the invention of the electric motor in 1872. The work of James Maxwell and Heinrich Hertz in the late 19th century gave rise to the field of electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other engineering specialty.[3]

The inventions of Thomas Savery and the Scottish engineer James Watt gave rise to modern mechanical engineering. The development of specialized machines and their maintenance tools during the industrial revolution led to the rapid growth of mechanical engineering both in its birthplace Britain and abroad.[3]

Structural engineers investigating NASA's Mars-bound spacecraft, the Phoenix Mars Lander

John Smeaton was the first self-proclaimed civil engineer, and is often regarded as the "father" of civil engineering. He was an English civil engineer responsible for the design of bridges, canals, harbours and lighthouses. He was also a capable mechanical engineer and an eminent physicist. Smeaton designed the third Eddystone Lighthouse (1755–59) where he pioneered the use of 'hydraulic lime' (a form of mortar which will set under water) and developed a technique involving dovetailed blocks of granite in the building of the lighthouse. His lighthouse remained in use until 1877 and was dismantled and partially rebuilt at Plymouth Hoe where it is known as Smeaton's Tower. He is important in the history, rediscovery of, and development of modern cement, because he identified the compositional requirements needed to obtain "hydraulicity" in lime; work which led ultimately to the invention of Portland cement.

Chemical engineering, like its counterpart mechanical engineering, developed in the nineteenth century during the Industrial Revolution.[3] Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to the development and large scale manufacturing of chemicals in new industrial plants.[3] The role of the chemical engineer was the design of these chemical plants and processes.[3]

The Falkirk Wheel in Scotland

Aeronautical engineering deals with aircraft design process design while aerospace engineering is a more modern term that expands the reach of the discipline by including spacecraft design. Its origins can be traced back to the aviation pioneers around the start of the 20th century although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering.[13]

The first PhD in engineering (technically, applied science and engineering) awarded in the United States went to Josiah Willard Gibbs at Yale University in 1863; it was also the second PhD awarded in science in the U.S.[14]

Only a decade after the successful flights by the Wright brothers, there was extensive development of aeronautical engineering through development of military aircraft that were used in World War I . Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments.

In 1990, with the rise of computer technology, the first search engine was built by computer engineer Alan Emtage.

Main branches of engineering


The design of a modern auditorium involves many branches of engineering, including acoustics, architecture and civil engineering.

Engineering is a broad discipline which is often broken down into several sub-disciplines. These disciplines concern themselves with differing areas of engineering work. Although initially an engineer will usually be trained in a specific discipline, throughout an engineer's career the engineer may become multi-disciplined, having worked in several of the outlined areas. Engineering is often characterized as having four main branches:[15][16][17]
Beyond these four, sources vary on other main branches. Historically, naval engineering and mining engineering were major branches. Modern fields sometimes included as major branches[citation needed] include manufacturing engineering, acoustical engineering, corrosion engineering, Instrumentation and control, aerospace, automotive, computer, electronic, petroleum, systems, audio, software, architectural, agricultural, biosystems, biomedical,[18] geological, textile, industrial, materials,[19] and nuclear[20] engineering. These and other branches of engineering are represented in the 36 institutions forming the membership of the UK Engineering Council.

New specialties sometimes combine with the traditional fields and form new branches - for example Earth Systems Engineering and Management involves a wide range of subject areas including anthropology, engineering studies, environmental science, ethics and philosophy. A new or emerging area of application will commonly be defined temporarily as a permutation or subset of existing disciplines; there is often gray area as to when a given sub-field warrants classification as a new "branch." One key indicator of such emergence is when major universities start establishing departments and programs in the new field.

For each of these fields there exists considerable overlap, especially in the areas of the application of sciences to their disciplines such as physics, chemistry and mathematics.

Methodology


Design of a turbine requires collaboration of engineers from many fields, as the system involves mechanical, electro-magnetic and chemical processes. The blades, rotor and stator as well as the steam cycle all need to be carefully designed and optimized.

Engineers apply mathematics and sciences such as physics to find suitable solutions to problems or to make improvements to the status quo. More than ever, engineers are now required to have knowledge of relevant sciences for their design projects. As a result, they may keep on learning new material throughout their career.

If multiple options exist, engineers weigh different design choices on their merits and choose the solution that best matches the requirements. The crucial and unique task of the engineer is to identify, understand, and interpret the constraints on a design in order to produce a successful result. It is usually not enough to build a technically successful product; it must also meet further requirements.

Constraints may include available resources, physical, imaginative or technical limitations, flexibility for future modifications and additions, and other factors, such as requirements for cost, safety, marketability, productibility, and serviceability. By understanding the constraints, engineers derive specifications for the limits within which a viable object or system may be produced and operated.

Problem solving


A drawing for a booster engine for steam locomotives. Engineering is applied to design, with emphasis on function and the utilization of mathematics and science.

Engineers use their knowledge of science, mathematics, logic, economics, and appropriate experience or tacit knowledge to find suitable solutions to a problem. Creating an appropriate mathematical model of a problem allows them to analyze it (sometimes definitively), and to test potential solutions.

Usually multiple reasonable solutions exist, so engineers must evaluate the different design choices on their merits and choose the solution that best meets their requirements. Genrich Altshuller, after gathering statistics on a large number of patents, suggested that compromises are at the heart of "low-level" engineering designs, while at a higher level the best design is one which eliminates the core contradiction causing the problem.

Engineers typically attempt to predict how well their designs will perform to their specifications prior to full-scale production. They use, among other things: prototypes, scale models, simulations, destructive tests, nondestructive tests, and stress tests. Testing ensures that products will perform as expected.

Engineers take on the responsibility of producing designs that will perform as well as expected and will not cause unintended harm to the public at large. Engineers typically include a factor of safety in their designs to reduce the risk of unexpected failure. However, the greater the safety factor, the less efficient the design may be.

The study of failed products is known as forensic engineering, and can help the product designer in evaluating his or her design in the light of real conditions. The discipline is of greatest value after disasters, such as bridge collapses, when careful analysis is needed to establish the cause or causes of the failure.

Computer use


A computer simulation of high velocity air flow around a Space Shuttle during re-entry. Solutions to the flow require modelling of the combined effects of fluid flow and the heat equations.

As with all modern scientific and technological endeavors, computers and software play an increasingly important role. As well as the typical business application software there are a number of computer aided applications (computer-aided technologies) specifically for engineering. Computers can be used to generate models of fundamental physical processes, which can be solved using numerical methods.

One of the most widely used design tools in the profession is computer-aided design (CAD) software like CATIA, Autodesk Inventor, DSS SolidWorks or Pro Engineer which enables engineers to create 3D models, 2D drawings, and schematics of their designs. CAD together with digital mockup (DMU) and CAE software such as finite element method analysis or analytic element method allows engineers to create models of designs that can be analyzed without having to make expensive and time-consuming physical prototypes.

These allow products and components to be checked for flaws; assess fit and assembly; study ergonomics; and to analyze static and dynamic characteristics of systems such as stresses, temperatures, electromagnetic emissions, electrical currents and voltages, digital logic levels, fluid flows, and kinematics. Access and distribution of all this information is generally organized with the use of product data management software.[21]

There are also many tools to support specific engineering tasks such as computer-aided manufacturing (CAM) software to generate CNC machining instructions; manufacturing process management software for production engineering; EDA for printed circuit board (PCB) and circuit schematics for electronic engineers; MRO applications for maintenance management; and AEC software for civil engineering.

In recent years the use of computer software to aid the development of goods has collectively come to be known as product lifecycle management (PLM).[22]

Social context


Robotic Kismet can produce a range of facial expressions.

Engineering as a subject ranges from large collaborations to small individual projects. Almost all engineering projects are beholden to some sort of financing agency: a company, a set of investors, or a government. The few types of engineering that are minimally constrained by such issues are pro bono engineering and open-design engineering.

By its very nature engineering has interconnections with society and human behavior. Every product or construction used by modern society will have been influenced by engineering. Engineering is a very powerful tool to make changes to environment, society and economies, and its application brings with it a great responsibility. Many engineering societies have established codes of practice and codes of ethics to guide members and inform the public at large.

Engineering projects can be subject to controversy. Examples from different engineering disciplines include the development of nuclear weapons, the Three Gorges Dam, the design and use of sport utility vehicles and the extraction of oil. In response, some western engineering companies have enacted serious corporate and social responsibility policies.

Engineering is a key driver of human development.[23] Sub-Saharan Africa in particular has a very small engineering capacity which results in many African nations being unable to develop crucial infrastructure without outside aid.[citation needed] The attainment of many of the Millennium Development Goals requires the achievement of sufficient engineering capacity to develop infrastructure and sustainable technological development.[24]

Radar, GPS, lidar, ... are all combined to provide proper navigation and obstacle avoidance (vehicle developed for 2007 DARPA Urban Challenge)

All overseas development and relief NGOs make considerable use of engineers to apply solutions in disaster and development scenarios. A number of charitable organizations aim to use engineering directly for the good of mankind:
Engineering companies in many established economies are facing significant challenges ahead with regard to the number of skilled engineers being trained, compared with the number retiring. This problem is very prominent in the UK.[26] There are many economic and political issues that this can cause, as well as ethical issues[27] It is widely agreed that engineering faces an "image crisis",[28] rather than it being fundamentally an unattractive career. Much work is needed to avoid huge problems in the UK and well as the USA and other western economies.

Relationships with other disciplines

Science

Scientists study the world as it is; engineers create the world that has never been.

Engineers, Scientist and Technician works on target positioner inside National Ignition Facility (NIF) target chamber.

There exists an overlap between the sciences and engineering practice; in engineering, one applies science. Both areas of endeavor rely on accurate observation of materials and phenomena. Both use mathematics and classification criteria to analyze and communicate observations.[citation needed]

Scientists may also have to complete engineering tasks, such as designing experimental apparatus or building prototypes. Conversely, in the process of developing technology engineers sometimes find themselves exploring new phenomena, thus becoming, for the moment, scientists.[citation needed]

In the book What Engineers Know and How They Know It,[32] Walter Vincenti asserts that engineering research has a character different from that of scientific research. First, it often deals with areas in which the basic physics or chemistry are well understood, but the problems themselves are too complex to solve in an exact manner.

Christopher Cassidy of NASA works on the Capillary Flow Experiment aboard the International Space Station.

Examples are the use of numerical approximations to the Navier–Stokes equations to describe aerodynamic flow over an aircraft, or the use of Miner's rule to calculate fatigue damage. Second, engineering research employs many semi-empirical methods that are foreign to pure scientific research, one example being the method of parameter variation.[citation needed]

As stated by Fung et al. in the revision to the classic engineering text Foundations of Solid Mechanics:
Engineering is quite different from science. Scientists try to understand nature. Engineers try to make things that do not exist in nature. Engineers stress invention. To embody an invention the engineer must put his idea in concrete terms, and design something that people can use. That something can be a device, a gadget, a material, a method, a computing program, an innovative experiment, a new solution to a problem, or an improvement on what is existing. Since a design has to be concrete, it must have its geometry, dimensions, and characteristic numbers. Almost all engineers working on new designs find that they do not have all the needed information. Most often, they are limited by insufficient scientific knowledge. Thus they study mathematics, physics, chemistry, biology and mechanics. Often they have to add to the sciences relevant to their profession. Thus engineering sciences are born.[33]
Although engineering solutions make use of scientific principles, engineers must also take into account safety, efficiency, economy, reliability and constructability or ease of fabrication, as well as legal considerations such as patent infringement or liability in the case of failure of the solution.[citation needed]

Medicine and biology


Leonardo da Vinci, seen here in a self-portrait, has been described as the epitome of the artist/engineer.[34] He is also known for his studies on human anatomy and physiology.

The study of the human body, albeit from different directions and for different purposes, is an important common link between medicine and some engineering disciplines. Medicine aims to sustain, repair, enhance and even replace functions of the human body, if necessary, through the use of technology.

Genetically engineered mice expressing green fluorescent protein, which glows green under blue light. The central mouse is wild-type.

Modern medicine can replace several of the body's functions through the use of artificial organs and can significantly alter the function of the human body through artificial devices such as, for example, brain implants and pacemakers.[35][36] The fields of bionics and medical bionics are dedicated to the study of synthetic implants pertaining to natural systems.

Conversely, some engineering disciplines view the human body as a biological machine worth studying, and are dedicated to emulating many of its functions by replacing biology with technology. This has led to fields such as artificial intelligence, neural networks, fuzzy logic, and robotics. There are also substantial interdisciplinary interactions between engineering and medicine.[37][38]

Both fields provide solutions to real world problems. This often requires moving forward before phenomena are completely understood in a more rigorous scientific sense and therefore experimentation and empirical knowledge is an integral part of both.

Medicine, in part, studies the function of the human body. The human body, as a biological machine, has many functions that can be modeled using engineering methods.[39]

The heart for example functions much like a pump,[40] the skeleton is like a linked structure with levers,[41] the brain produces electrical signals etc.[42] These similarities as well as the increasing importance and application of engineering principles in medicine, led to the development of the field of biomedical engineering that uses concepts developed in both disciplines.

Newly emerging branches of science, such as systems biology, are adapting analytical tools traditionally used for engineering, such as systems modeling and computational analysis, to the description of biological systems.[39]

Art


Apple's "1984" television ad, set in a dystopian future modeled after the George Orwell novel Nineteen Eighty-Four, set the tone for the introduction of the Macintosh.

There are connections between engineering and art;[43] they are direct in some fields, for example, architecture, landscape architecture and industrial design (even to the extent that these disciplines may sometimes be included in a university's Faculty of Engineering); and indirect in others.[43][44][45][46]

The Art Institute of Chicago, for instance, held an exhibition about the art of NASA's aerospace design.[47] Robert Maillart's bridge design is perceived by some to have been deliberately artistic.[48] At the University of South Florida, an engineering professor, through a grant with the National Science Foundation, has developed a course that connects art and engineering.[44][49]

Among famous historical figures Leonardo da Vinci is a well-known Renaissance artist and engineer, and a prime example of the nexus between art and engineering.[34][50]

Other fields

In political science the term engineering has been borrowed for the study of the subjects of social engineering and political engineering, which deal with forming political and social structures using engineering methodology coupled with political science principles. Financial engineering has similarly borrowed the term.

Researchers pattern magnetic graphene


    Posted: Mar 17, 2015
    Original link:  http://www.nanowerk.com/nanotechnology-news/newsid=39442.php
Magnetic force microscopy image of a section of a large array of ferromagnetic, hydrogenated graphene lattice
(Nanowerk News) Graphene, an atomically thin sheet of carbon, has been intensively studied for the last decade to reveal exceptional mechanical, electrical, and optical properties. Recently, researchers have started to explore an even more surprising property—magnetism. Theories and experiments have suggested that either defects in graphene or chemical groups bound to graphene can cause it to exhibit magnetism; however, to date there was no way to create large-area magnetic graphene which could be easily patterned.
Now, scientists from the U.S. Naval Research Laboratory (NRL) have found a simple and robust means to magnetize graphene using hydrogen. This research has been published in Advanced Materials ("Patterning Magnetic Regions in Hydrogenated Graphene Via E-Beam Irradiation").
Magnetic force microscopy image of a section of a large array that Naval Research Laboratory scientists generated by electron-beam lithography. This map of the magnetic strength shows the ferromagnetic, hydrogenated graphene lattice and the 500 nm wide, nonmagnetic, graphene squares. (Image: U.S. Naval Research Laboratory)
The NRL scientists placed the graphene on a silicon wafer and then dipped it for about a minute into cryogenic ammonia with a bit of lithium. The group had recently shown that this is a quick and gentle method to add hydrogen atoms. They now see that the added hydrogen make the surface ferromagnetic. Because this method is so effective at adding hydrogen, one has to be careful about the length of exposure. Dr. Keith Whitener, NRL's Chemistry Division, explained: "This method of hydrogenation gives us access to a much wider range of hydrogen coverage than previous methods allowed, and too much hydrogen actually destroys the magnetism." However, once made, the magnetic graphene was of exceptional quality. Dr. Paul Sheehan, NRL's Chemistry Division, noted that "I was surprised that the partially hydrogenated graphene prepared by our method was so uniform in its magnetism and apparently didn't have any magnetic grain boundaries."
Interestingly, the NRL group showed that the magnetic strength could be tuned by removing hydrogen atoms with an electron beam. The impact of the electrons can break the chemical bond between the graphene and the hydrogen, removing the hydrogen from the surface. Without the hydrogen, the graphene is no longer magnetic. As a result, by carefully controlling the path of the electron beam one can write magnetic patterns into the graphene (Figure). "Since massive patterning with commercial electron beam lithography system is possible, we believe that our technique can be readily applicable for current microelectronics fabrication," says Dr. Woo-Kyung Lee, materials research scientist in the Chemistry Division at NRL and project lead. Large arrays of magnetic features were quickly made, which would be particularly useful in applications from information technology to spintronics.
The questions now facing the researchers are how fine the patterning of hydrogen can be and for how long the ferromagnetism can be stable. If those questions are answered, this technique could lead to a storage medium with a single hydrogenated-carbon pair storing a single magnetic bit of data, a roughly greater than million-fold improvement over current hard drives.
Source: U.S. Naval Research Laboratory

Can carbon nanotubes help to avert our water crisis?




Posted: Mar 17, 2015
 
Original link:  http://www.nanowerk.com/nanotechnology-news/newsid=39440.php
(Nanowerk News) Carbon nanotube (CNT) membranes have a bright future in addressing the world's growing need to purify water from the sea, researchers say in a study published in the journal Desalination ("Carbon nanotube membranes for water purification: A bright future in water desalination").
"Currently, about 400 million people are using desalinated water and it has been projected that by 2025, 14 percent of the global population will be forced to use sea water," said Md. Eaqub Ali, from the University of Malaya's Nanotechnology and Catalysis Research Center in Kuala Lumpur, Malaysia. He says engineered CNT membranes have the potential to tackle the current and future challenges in water purification.
For efforts to review the state of carbon nanotube membrane technology and push the field forward, Ali and his colleagues have been selected for an Elsevier Atlas award.
Desalination plants already provide much of the water used by people in many parts of the world, especially in Israel, Saudi Arabia, and Australia. Climate change is only increasing the demand for desalinated water as greater evaporation and rising seas further limit freshwater supplies for a growing world population. But current methods to desalinate water come at a very high cost in terms of energy, which means more greenhouse gases and more global warming.
Existing desalination plants rely on reverse osmosis, vacuum distillation, or a combination of the two. But those methods are energy intensive and costly.
Carbon nanotubes are tiny hexagonal tubes, made by rolling sheets of graphene, said Rasel Das, first author of the paper. They require little energy and can be designed to specifically reject or remove not only salt, but also common pollutants.
"The hollow pores of the CNTs are extremely, extremely tiny," Ali said. "However, because of their amazing chemical and physical properties, they allow frictionless passes of water through the pores, but reject most salts, ions, and pollutants, giving us purified water, probably in its best form."
That frictionless property is also what gives CNTs the potential to purify water with so little energy. And carbon nanotube membranes come with other perks, Das added, including self-cleaning properties.
"What makes CNTs special is that they have cytotoxic properties," he said. That means that the membranes naturally kill microbes that might otherwise foul up their surfaces. As a result, carbon nanotube membranes have the potential to last longer and may be reusable.
There are hurdles yet to overcome, co-author of the paper Sharifah Bee Abd Hamid said. CNT membranes are now costly to produce, especially for large-scale uses. Research is also needed to produce the membranes with pores of a more uniform distribution and size.
"Most progress in desalination research is focused on demonstrating [the capability of CNT membranes] at a small scale," she said.
For larger scale operations, work is needed to produce CNT membranes on thin films or fiber cloth composites. Getting the membranes ready for use will require effort on material design, operational requirements, and more.
If someday, these membranes can be put to use in water-filtering pitchers or bottles, "to directly treat salty water at point of use," Hamid says, "it is a dream come true for many."
The Editor-in-Chief of Desalination, Nidal Hilal, said about the research, "The available supplies of water are decreasing due to increased population growth, low precipitation, competing demands from industry and more stringent health based regulations for agricultural and urban development. We have to seek alternative sources of water such as seawater, storm water, wastewater, and industrial wastewater. Membrane filtration is considered among the most promising and widely used processes for water treatment and desalination...Carbon nanotubes (CNT) have shown great potential in water, wastewater treatment and desalination as they have many attractive key physicochemical properties with the ability to be functionalized to enhance their affinity and selectivity."

Read more: Can carbon nanotubes help to avert our water crisis?

RNA


From Wikipedia, the free encyclopedia


A hairpin loop from a pre-mRNA. Highlighted are the nucleobases (green) and the ribose-phosphate backbone (blue). Note that this is a single strand of RNA that folds back upon itself.

Ribonucleic acid (RNA) is a polymeric molecule. It is implicated in various biological roles in coding, decoding, regulation, and expression of genes. DNA and RNA are nucleic acids, and, along with proteins and carbohydrates, constitute the three major macromolecules essential for all known forms of life. Like DNA, RNA is assembled as a chain of nucleotides, but unlike DNA it is more often found in nature as a single-strand folded unto itself, rather than a paired double-strand. Cellular organisms use messenger RNA (mRNA) to convey genetic information (using the letters G, A, U, and C to denote the nitrogenous bases guanine, adenine, uracil and cytosine) that directs synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.

Some RNA molecules play an active role within cells by catalyzing biological reactions, controlling gene expression, or sensing and communicating responses to cellular signals. One of these active processes is protein synthesis, a universal function whereby mRNA molecules direct the assembly of proteins on ribosomes. This process uses transfer RNA (tRNA) molecules to deliver amino acids to the ribosome, where ribosomal RNA (rRNA) links amino acids together to form proteins.

Comparison with DNA


Bases in an RNA molecule.

Three-dimensional representation of the 50S ribosomal subunit. RNA is in ochre, protein in blue. The active site is in the middle (red).

The chemical structure of RNA is very similar to that of DNA, but differs in three main ways:
  • Unlike double-stranded DNA, RNA is a single-stranded molecule in many of its biological roles and has a much shorter chain of nucleotides. However, RNA can, by complementary base pairing, form intrastrand double helixes, as in tRNA.
  • While DNA contains deoxyribose, RNA contains ribose (in deoxyribose there is no hydroxyl group attached to the pentose ring in the 2' position). These hydroxyl groups make RNA less stable than DNA because it is more prone to hydrolysis.
  • The complementary base to adenine is not thymine, as it is in DNA, but rather uracil, which is an unmethylated form of thymine.[1]
Like DNA, most biologically active RNAs, including mRNA, tRNA, rRNA, snRNAs, and other non-coding RNAs, contain self-complementary sequences that allow parts of the RNA to fold[2] and pair with itself to form double helices. Analysis of these RNAs has revealed that they are highly structured. Unlike DNA, their structures do not consist of long double helices, but rather collections of short helices packed together into structures akin to proteins. In this fashion, RNAs can achieve chemical catalysis, like enzymes.[3] For instance, determination of the structure of the ribosome—an enzyme that catalyzes peptide bond formation—revealed that its active site is composed entirely of RNA.[4]

Structure


Watson-Crick base pairs in a siRNA (hydrogen atoms are not shown)

Each nucleotide in RNA contains a ribose sugar, with carbons numbered 1' through 5'. A base is attached to the 1' position, in general, adenine (A), cytosine (C), guanine (G), or uracil (U). Adenine and guanine are purines, cytosine and uracil are pyrimidines. A phosphate group is attached to the 3' position of one ribose and the 5' position of the next. The phosphate groups have a negative charge each at physiological pH, making RNA a charged molecule (polyanion). The bases form hydrogen bonds between cytosine and guanine, between adenine and uracil and between guanine and uracil.[5] However, other interactions are possible, such as a group of adenine bases binding to each other in a bulge,[6] or the GNRA tetraloop that has a guanine–adenine base-pair.[5]

Chemical structure of RNA

An important structural feature of RNA that distinguishes it from DNA is the presence of a hydroxyl group at the 2' position of the ribose sugar. The presence of this functional group causes the helix to adopt the A-form geometry rather than the B-form most commonly observed in DNA.[7] This results in a very deep and narrow major groove and a shallow and wide minor groove.[8] A second consequence of the presence of the 2'-hydroxyl group is that in conformationally flexible regions of an RNA molecule (that is, not involved in formation of a double helix), it can chemically attack the adjacent phosphodiester bond to cleave the backbone.[9]

RNA is transcribed with only four bases (adenine, cytosine, guanine and uracil),[10] but these bases and attached sugars can be modified in numerous ways as the RNAs mature. Pseudouridine (Ψ), in which the linkage between uracil and ribose is changed from a C–N bond to a C–C bond, and ribothymidine (T) are found in various places (the most notable ones being in the TΨC loop of tRNA).[11] Another notable modified base is hypoxanthine, a deaminated adenine base whose nucleoside is called inosine (I). Inosine plays a key role in the wobble hypothesis of the genetic code.[12]

There are more than 100 other naturally occurring modified nucleosides,[13] The greatest structural diversity of modifications can be found in tRNA,[14] while pseudouridine and nucleosides with 2'-O-methylribose often present in rRNA are the most common.[15] The specific roles of many of these modifications in RNA are not fully understood. However, it is notable that, in ribosomal RNA, many of the post-transcriptional modifications occur in highly functional regions, such as the peptidyl transferase center and the subunit interface, implying that they are important for normal function.[16]

The functional form of single-stranded RNA molecules, just like proteins, frequently requires a specific tertiary structure. The scaffold for this structure is provided by secondary structural elements that are hydrogen bonds within the molecule. This leads to several recognizable "domains" of secondary structure like hairpin loops, bulges, and internal loops.[17] Since RNA is charged, metal ions such as Mg2+ are needed to stabilise many secondary and tertiary structures.[18]

The naturally occurring enantiomer of RNA is D-RNA composed of D-ribonucleotides. All chirality centers are located in the D-ribose. By the use of L-ribose or rather L-ribonucleotides, L-RNA can be synthesized. L-RNA is much more stable against degradation by RNase.[19]

Synthesis

Synthesis of RNA is usually catalyzed by an enzyme—RNA polymerase—using DNA as a template, a process known as transcription. Initiation of transcription begins with the binding of the enzyme to a promoter sequence in the DNA (usually found "upstream" of a gene). The DNA double helix is unwound by the helicase activity of the enzyme. The enzyme then progresses along the template strand in the 3’ to 5’ direction, synthesizing a complementary RNA molecule with elongation occurring in the 5’ to 3’ direction. The DNA sequence also dictates where termination of RNA synthesis will occur.[20]

Primary transcript RNAs are often modified by enzymes after transcription. For example, a poly(A) tail and a 5' cap are added to eukaryotic pre-mRNA and introns are removed by the spliceosome.

There are also a number of RNA-dependent RNA polymerases that use RNA as their template for synthesis of a new strand of RNA. For instance, a number of RNA viruses (such as poliovirus) use this type of enzyme to replicate their genetic material.[21] Also, RNA-dependent RNA polymerase is part of the RNA interference pathway in many organisms.[22]

Types of RNA

Overview


Structure of a hammerhead ribozyme, a ribozyme that cuts RNA

Messenger RNA (mRNA) is the RNA that carries information from DNA to the ribosome, the sites of protein synthesis (translation) in the cell. The coding sequence of the mRNA determines the amino acid sequence in the protein that is produced.[23] However, many RNAs do not code for protein (about 97% of the transcriptional output is non-protein-coding in eukaryotes[24][25][26][27]).

These so-called non-coding RNAs ("ncRNA") can be encoded by their own genes (RNA genes), but can also derive from mRNA introns.[28] The most prominent examples of non-coding RNAs are transfer RNA (tRNA) and ribosomal RNA (rRNA), both of which are involved in the process of translation.[1] There are also non-coding RNAs involved in gene regulation, RNA processing and other roles. Certain RNAs are able to catalyse chemical reactions such as cutting and ligating other RNA molecules,[29] and the catalysis of peptide bond formation in the ribosome;[4] these are known as ribozymes.

In translation

Messenger RNA (mRNA) carries information about a protein sequence to the ribosomes, the protein synthesis factories in the cell. It is coded so that every three nucleotides (a codon) correspond to one amino acid. In eukaryotic cells, once precursor mRNA (pre-mRNA) has been transcribed from DNA, it is processed to mature mRNA. This removes its introns—non-coding sections of the pre-mRNA. The mRNA is then exported from the nucleus to the cytoplasm, where it is bound to ribosomes and translated into its corresponding protein form with the help of tRNA. In prokaryotic cells, which do not have nucleus and cytoplasm compartments, mRNA can bind to ribosomes while it is being transcribed from DNA. After a certain amount of time the message degrades into its component nucleotides with the assistance of ribonucleases.[23]

Transfer RNA (tRNA) is a small RNA chain of about 80 nucleotides that transfers a specific amino acid to a growing polypeptide chain at the ribosomal site of protein synthesis during translation. It has sites for amino acid attachment and an anticodon region for codon recognition that binds to a specific sequence on the messenger RNA chain through hydrogen bonding.[28]

Ribosomal RNA (rRNA) is the catalytic component of the ribosomes. Eukaryotic ribosomes contain four different rRNA molecules: 18S, 5.8S, 28S and 5S rRNA. Three of the rRNA molecules are synthesized in the nucleolus, and one is synthesized elsewhere. In the cytoplasm, ribosomal RNA and protein combine to form a nucleoprotein called a ribosome. The ribosome binds mRNA and carries out protein synthesis. Several ribosomes may be attached to a single mRNA at any time.[23] Nearly all the RNA found in a typical eukaryotic cell is rRNA.

Transfer-messenger RNA (tmRNA) is found in many bacteria and plastids. It tags proteins encoded by mRNAs that lack stop codons for degradation and prevents the ribosome from stalling.[30]

Regulatory RNAs

Several types of RNA can downregulate gene expression by being complementary to a part of an mRNA or a gene's DNA. MicroRNAs (miRNA; 21-22 nt) are found in eukaryotes and act through RNA interference (RNAi), where an effector complex of miRNA and enzymes can cleave complementary mRNA, block the mRNA from being translated, or accelerate its degradation.[31][32]

While small interfering RNAs (siRNA; 20-25 nt) are often produced by breakdown of viral RNA, there are also endogenous sources of siRNAs.[33][34] siRNAs act through RNA interference in a fashion similar to miRNAs. Some miRNAs and siRNAs can cause genes they target to be methylated, thereby decreasing or increasing transcription of those genes.[35][36][37] Animals have Piwi-interacting RNAs (piRNA; 29-30 nt) that are active in germline cells and are thought to be a defense against transposons and play a role in gametogenesis.[38][39]

Many prokaryotes have CRISPR RNAs, a regulatory system similar to RNA interference.[40] Antisense RNAs are widespread; most downregulate a gene, but a few are activators of transcription.[41] One way antisense RNA can act is by binding to an mRNA, forming double-stranded RNA that is enzymatically degraded.[42] There are many long noncoding RNAs that regulate genes in eukaryotes,[43] one such RNA is Xist, which coats one X chromosome in female mammals and inactivates it.[44]

An mRNA may contain regulatory elements itself, such as riboswitches, in the 5' untranslated region or 3' untranslated region; these cis-regulatory elements regulate the activity of that mRNA.[45] The untranslated regions can also contain elements that regulate other genes.[46]

In RNA processing


Uridine to pseudouridine is a common RNA modification.

Many RNAs are involved in modifying other RNAs. Introns are spliced out of pre-mRNA by spliceosomes, which contain several small nuclear RNAs (snRNA),[1] or the introns can be ribozymes that are spliced by themselves.[47] RNA can also be altered by having its nucleotides modified to other nucleotides than A, C, G and U. In eukaryotes, modifications of RNA nucleotides are in general directed by small nucleolar RNAs (snoRNA; 60-300 nt),[28] found in the nucleolus and cajal bodies. snoRNAs associate with enzymes and guide them to a spot on an RNA by basepairing to that RNA. These enzymes then perform the nucleotide modification. rRNAs and tRNAs are extensively modified, but snRNAs and mRNAs can also be the target of base modification.[48][49] RNA can also be methylated.[50][51]

RNA genomes

Like DNA, RNA can carry genetic information. RNA viruses have genomes composed of RNA that encodes a number of proteins. The viral genome is replicated by some of those proteins, while other proteins protect the genome as the virus particle moves to a new host cell. Viroids are another group of pathogens, but they consist only of RNA, do not encode any protein and are replicated by a host plant cell's polymerase.[52]

In reverse transcription

Reverse transcribing viruses replicate their genomes by reverse transcribing DNA copies from their RNA; these DNA copies are then transcribed to new RNA. Retrotransposons also spread by copying DNA and RNA from one another,[53] and telomerase contains an RNA that is used as template for building the ends of eukaryotic chromosomes.[54]

Double-stranded RNA

Double-stranded RNA (dsRNA) is RNA with two complementary strands, similar to the DNA found in all cells. dsRNA forms the genetic material of some viruses (double-stranded RNA viruses). Double-stranded RNA such as viral RNA or siRNA can trigger RNA interference in eukaryotes, as well as interferon response in vertebrates.[55][56][57][58]

Key discoveries in RNA biology

Robert W. Holley, left, poses with his research team.

Research on RNA has led to many important biological discoveries and numerous Nobel Prizes. Nucleic acids were discovered in 1868 by Friedrich Miescher, who called the material 'nuclein' since it was found in the nucleus.[59] It was later discovered that prokaryotic cells, which do not have a nucleus, also contain nucleic acids. The role of RNA in protein synthesis was suspected already in 1939.[60] Severo Ochoa won the 1959 Nobel Prize in Medicine (shared with Arthur Kornberg) after he discovered an enzyme that can synthesize RNA in the laboratory.[61] However, the enzyme discovered by Ochoa (polynucleotide phosphorylase) was later shown to be responsible for RNA degradation, not RNA synthesis. In 1956 Alex Rich and David Davies hybridized two separate strands of RNA to form the first crystal of RNA whose structure could be determined by X-ray crystallography.[62]

The sequence of the 77 nucleotides of a yeast tRNA was found by Robert W. Holley in 1965,[63] winning Holley the 1968 Nobel Prize in Medicine (shared with Har Gobind Khorana and Marshall Nirenberg). In 1967, Carl Woese hypothesized that RNA might be catalytic and suggested that the earliest forms of life (self-replicating molecules) could have relied on RNA both to carry genetic information and to catalyze biochemical reactions—an RNA world.[64][65]

During the early 1970s, retroviruses and reverse transcriptase were discovered, showing for the first time that enzymes could copy RNA into DNA (the opposite of the usual route for transmission of genetic information). For this work, David Baltimore, Renato Dulbecco and Howard Temin were awarded a Nobel Prize in 1975. In 1976, Walter Fiers and his team determined the first complete nucleotide sequence of an RNA virus genome, that of bacteriophage MS2.[66]

In 1977, introns and RNA splicing were discovered in both mammalian viruses and in cellular genes, resulting in a 1993 Nobel to Philip Sharp and Richard Roberts. Catalytic RNA molecules (ribozymes) were discovered in the early 1980s, leading to a 1989 Nobel award to Thomas Cech and Sidney Altman. In 1990, it was found in Petunia that introduced genes can silence similar genes of the plant's own, now known to be a result of RNA interference.[67][68]

At about the same time, 22 nt long RNAs, now called microRNAs, were found to have a role in the development of C. elegans.[69] Studies on RNA interference gleaned a Nobel Prize for Andrew Fire and Craig Mello in 2006, and another Nobel was awarded for studies on the transcription of RNA to Roger Kornberg in the same year. The discovery of gene regulatory RNAs has led to attempts to develop drugs made of RNA, such as siRNA, to silence genes.[70]

Evolution

In March 2015, complex DNA and RNA organic compounds of life, including uracil, cytosine and thymine, were reported formed in the laboratory under outer space conditions, using starting chemicals, such as pyrimidine, found in meteorites. Pyrimidine, like polycyclic aromatic hydrocarbons (PAHs), the most carbon-rich chemical found in the Universe, may have been formed in red giants or in interstellar dust and gas clouds, according to the scientists.[71]

Relationship between science and religion

From Wikipedia, the free encyclopedia "Science and Religion" redirects here. For the 1991 book by John Hedley Brooke, see  Science...