Search This Blog

Friday, June 1, 2018

Robert H. Goddard

From Wikipedia, the free encyclopedia
 
Robert H. Goddard
Dr. Robert H. Goddard - GPN-2002-000131.jpg
Robert Hutchings Goddard (1882–1945)
Usherer of the Space Age[1]
Born Robert Hutchings Goddard
October 5, 1882
Worcester, Massachusetts, U.S.
Died August 10, 1945 (aged 62)
Baltimore, Maryland, U.S.
Cause of death Throat cancer
Nationality American
Education Worcester Polytechnic Institute
Clark University
Occupation Professor, aerospace engineering, physicist, inventor
Known for First liquid-fueled rocket
Spouse(s) Esther Christine Kisk (m. 1924–1945) (1901–1982)
Parent(s) Fannie Louise Hoyt
Nahum Danford Goddard
Awards Congressional Gold Medal (1959)
Langley Gold Medal (1960)
Daniel Guggenheim Medal (1964)

Robert Hutchings Goddard (October 5, 1882 – August 10, 1945) was an American engineer, professor, physicist, and inventor who is credited with creating and building the world's first liquid-fueled rocket.[2] Goddard successfully launched his model on March 16, 1926, ushering in an era of space flight and innovation. He and his team launched 34 rockets[3] between 1926 and 1941, achieving altitudes as high as 2.6 km (1.6 mi) and speeds as fast as 885 km/h (550 mph).[3]

Goddard's work as both theorist and engineer anticipated many of the developments that were to make spaceflight possible.[4] He has been called the man who ushered in the Space Age.[5]:xiii Two of Goddard's 214 patented inventions—a multi-stage rocket (1914), and a liquid-fuel rocket (1914)—were important milestones toward spaceflight.[6] His 1919 monograph A Method of Reaching Extreme Altitudes is considered one of the classic texts of 20th-century rocket science.[7][8] Goddard successfully applied three-axis control, gyroscopes and steerable thrust to rockets to effectively control their flight.

Although his work in the field was revolutionary, Goddard received very little public support for his research and development work. The press sometimes ridiculed his theories of spaceflight. As a result, he became protective of his privacy and his work. Years after his death, at the dawn of the Space Age, he came to be recognized as one of the founding fathers of modern rocketry, along with Robert Esnault-Pelterie, Konstantin Tsiolkovsky, and Hermann Oberth.[9][10][11][12][13] He not only recognized the potential of rockets for atmospheric research, ballistic missiles and space travel but was the first to scientifically study, design and construct the rockets needed to implement those ideas.[14] NASA's Goddard Space Flight Center was named in Goddard's honor in 1959.

Early life and inspiration

Goddard was born in Worcester, Massachusetts, to Nahum Danford Goddard (1859–1928), a farmer, and Fannie Louise Hoyt (1864–1920). Robert was their only child to survive; a younger son, Richard Henry, was born with a spinal deformity and died before his first birthday.[15]:16 Goddard's family had roots in New England dating to the late 1600s. Shortly after his birth the family moved to Boston. With a curiosity about nature, he studied the heavens using a telescope from his father and observed the birds flying. Essentially a country boy, he loved the outdoors and hiking with his father on trips to Worcester and became an excellent marksman with a rifle.[16]:63,64 In 1898 his mother contracted tuberculosis and they moved back to Worcester for the clear air. On Sundays the family attended the Episcopal church, and Robert sang in the choir.[15]:16

Childhood experiment

With the electrification of American cities in the 1880s, the young Goddard became interested in science—specifically, engineering and technology. When his father showed him how to generate static electricity on the family's carpet, the five-year-old's imagination was sparked. Robert experimented, believing he could jump higher if the zinc from a battery could be charged by scuffing his feet on the gravel walk. But, holding the zinc, he could jump no higher than usual.[15]:15[17] Goddard halted the experiments after a warning from his mother that if he succeeded, he could "go sailing away and might not be able to come back."[18]:9 He experimented with chemicals and created a cloud of smoke and an explosion in the house.[16]:64 Goddard's father further encouraged Robert's scientific interest by providing him with a telescope, a microscope, and a subscription to Scientific American.[18]:10 Robert developed a fascination with flight, first with kites and then with balloons. He became a thorough diarist and documenter of his work—a skill that would greatly benefit his later career. These interests merged at age 16, when Goddard attempted to construct a balloon out of aluminum, shaping the raw metal in his home workshop, and filling it with hydrogen. After nearly five weeks of methodical, documented efforts, he finally abandoned the project, remarking, "... balloon will not go up.... Aluminum is too heavy. Failior [sic] crowns enterprise." However, the lesson of this failure did not restrain Goddard's growing determination and confidence in his work.[15]:21

Cherry tree dream

He became interested in space when he read H. G. Wells' science fiction classic The War of the Worlds when he was 16 years old.[19] His dedication to pursuing space flight became fixed on October 19, 1899. The 17-year-old Goddard climbed a cherry tree to cut off dead limbs. He was transfixed by the sky, and his imagination grew. He later wrote:
On this day I climbed a tall cherry tree at the back of the barn … and as I looked toward the fields at the east, I imagined how wonderful it would be to make some device which had even the possibility of ascending to Mars, and how it would look on a small scale, if sent up from the meadow at my feet. I have several photographs of the tree, taken since, with the little ladder I made to climb it, leaning against it.

It seemed to me then that a weight whirling around a horizontal shaft, moving more rapidly above than below, could furnish lift by virtue of the greater centrifugal force at the top of the path.

I was a different boy when I descended the tree from when I ascended. Existence at last seemed very purposive.[15]:26[20]
For the rest of his life he observed October 19 as "Anniversary Day", a private commemoration of the day of his greatest inspiration.

Education and early studies

It has often proved true that the dream of yesterday is the hope of today and the reality of tomorrow.
— Robert Goddard, On Taking Things for Granted, 1904.
The young Goddard was a thin and frail boy, almost always in fragile health. He suffered from stomach problems, pleurisy, colds and bronchitis, and fell two years behind his classmates. He became a voracious reader, regularly visiting the local public library to borrow books on the physical sciences.[15]:16,19

Aerodynamics and motion

Goddard's interest in aerodynamics led him to study some of Samuel Langley's scientific papers in the periodical Smithsonian. In these papers, Langley wrote that birds flap their wings with different force on each side to turn in the air. Inspired by these articles, the teenage Goddard watched swallows and chimney swifts from the porch of his home, noting how subtly the birds moved their wings to control their flight. He noted how remarkably the birds controlled their flight with their tail feathers, which he called the birds' equivalent of ailerons. He took exception to some of Langley's conclusions and in 1901 wrote a letter to St. Nicholas magazine[18]:5 with his own ideas. The editor of St. Nicholas declined to publish Goddard's letter, remarking that birds fly with a certain amount of intelligence and that "machines will not act with such intelligence."[15]:31 Goddard disagreed, believing that a man could control a flying machine with his own intelligence.

Around this time, Goddard read Newton's Principia Mathematica, and found that Newton's Third Law of Motion applied to motion in space. He wrote later about his own tests of the Law:
I began to realize that there might be something after all to Newton's Laws. The Third Law was accordingly tested, both with devices suspended by rubber bands and by devices on floats, in the little brook back of the barn, and the said law was verified conclusively. It made me realize that if a way to navigate space were to be discovered, or invented, it would be the result of a knowledge of physics and mathematics.[15]:32

Academics

As his health improved, Goddard continued his formal schooling as a 19-year-old sophomore at South High Community School[21] in Worcester in 1901. He excelled in his coursework, and his peers twice elected him class president. Making up for lost time, he studied books on mathematics, astronomy, mechanics and composition from the school library.[15]:32 At his graduation ceremony in 1904, he gave his class oration as valedictorian. In his speech, entitled "On Taking Things for Granted", Goddard included a section that would become emblematic of his life:
[J]ust as in the sciences we have learned that we are too ignorant to safely pronounce anything impossible, so for the individual, since we cannot know just what are his limitations, we can hardly say with certainty that anything is necessarily within or beyond his grasp. Each must remember that no one can predict to what heights of wealth, fame, or usefulness he may rise until he has honestly endeavored, and he should derive courage from the fact that all sciences have been, at some time, in the same condition as he, and that it has often proved true that the dream of yesterday is the hope of today and the reality of tomorrow.[18]:19
Goddard enrolled at Worcester Polytechnic Institute in 1904.[15]:41 He quickly impressed the head of the physics department, A. Wilmer Duff, with his thirst for knowledge, and Duff took him on as a laboratory assistant and tutor.[15]:42 At WPI, Goddard joined the Sigma Alpha Epsilon fraternity, and began a long courtship with high school classmate Miriam Olmstead, an honor student who had graduated with him as salutatorian. Eventually, she and Goddard were engaged, but they drifted apart and ended the engagement around 1909.[15]:51

Goddard received his B.S. degree in physics from Worcester Polytechnic in 1908,[15]:50 and after serving there for a year as an instructor in physics, he began his graduate studies at Clark University in Worcester in the fall of 1909.[22] Goddard received his M.A. degree in physics from Clark University in 1910, and then stayed at Clark to complete his Ph.D. in physics in 1911. He spent another year at Clark as an honorary fellow in physics, and in 1912 he accepted a research fellowship at Princeton University's Palmer Physical Laboratory.[15]:56–58

First scientific writings

The high school student summed up his ideas on space travel in a proposed article, "The Navigation of Space," which he submitted to the Popular Science News. The journal's editor returned it, saying that they could not use it "in the near future."[15]:34

While still an undergraduate, Goddard wrote a paper proposing a method for balancing aeroplanes using gyro-stabilization. He submitted the idea to Scientific American, which published the paper in 1907. Goddard later wrote in his diaries that he believed his paper was the first proposal of a way to automatically stabilize aircraft in flight.[15]:50 His proposal came around the same time as other scientists were making breakthroughs in developing functional gyroscopes.

His first writing on the possibility of a liquid-fueled rocket came on February 2, 1909. Goddard had begun to study ways of increasing a rocket's efficiency using methods differing from conventional solid-fuel rockets. He wrote in his journal about using liquid hydrogen as a fuel with liquid oxygen as the oxidizer. He believed that 50 percent efficiency could be achieved with these liquid propellants (i.e., half of the heat energy of combustion converted to kinetic energy of the exhaust gases).[15]:55

First patents

In the decades around 1910, radio was a new technology, fertile for innovation. In 1912, while working at Princeton University, Goddard investigated the effects of radio waves on insulators.[23] In order to generate radio-frequency power, he invented a vacuum tube that operated like a cathode-ray oscillator tube. U.S. Patent 1,159,209 was issued on November 2, 1915. This was the first use of a vacuum tube to amplify a signal, preceding even Lee de Forest's claim.[15]:55[24][25]

By 1912 he had in his spare time, using calculus, developed the mathematics which allowed him to calculate the position and velocity of a rocket in vertical flight, given the weight of the rocket and weight of the propellant and the velocity (with respect to the rocket frame) of the exhaust gases. His first goal was to build a sounding rocket with which to study the atmosphere. Not only would such investigation aid meteorology, but it was necessary to determine temperature, density and wind speed in order to design efficient space launch vehicles. He was very reluctant to admit that his ultimate goal was in fact to develop a vehicle for flights into space, since most scientists, especially in the United States, did not consider such a goal to be a realistic or practical scientific pursuit, nor was the public yet ready to seriously consider such ideas. Later, in 1933, Goddard said that "[I]n no case must we allow ourselves to be deterred from the achievement of space travel, test by test and step by step, until one day we succeed, cost what it may."[16]:65,67,74,101

Unfortunately, in early 1913, Goddard became seriously ill with tuberculosis and had to leave his position at Princeton. He then returned to Worcester, where he began a prolonged process of recovery. His doctors did not expect him to live. He decided he should spend time outside in the fresh air and walk for exercise, and he gradually improved.[15]:61–64 When his nurse discovered some of his notes in his bed, he kept them, arguing,"I have to live to do this work."[16]:66

It was during this period of recuperation, however, that Goddard began to produce some of his most important work. As his symptoms subsided, he allowed himself to work an hour per day with his notes made at Princeton. In the technological and manufacturing atmosphere of Worcester, patents were considered essential, not only to protect original work, but as documentation of first discovery. He began to see the importance of his ideas as intellectual property, and thus began to secure those ideas before someone else did—and he would have to pay to use them. In May 1913, he wrote concerning his first rocket patent applications. His father brought them to a patent lawyer in a firm in Worcester, who helped him to refine his ideas for consideration. Goddard's first patent application was submitted in October 1913.[15]:63–70

In 1914, his first two landmark patents were accepted and registered. The first, U.S. Patent 1,102,653, described a multi-stage rocket fueled with a solid "explosive material." The second, U.S. Patent 1,103,503, described a rocket fueled with a solid fuel (explosive material) or with liquid propellants (gasoline and liquid nitrous oxide). The two patents would eventually become important milestones in the history of rocketry.[26][27] Overall, he published 214 patents, some posthumously by his wife.

Early rocketry research

Video clips of Goddard's launches and other events in his life

In the fall of 1914, Goddard's health had improved, and he accepted a part-time position as an instructor and research fellow at Clark University.[15]:73 His position at Clark allowed him to further his rocketry research. He ordered numerous supplies that could be used to build rocket prototypes for launch and spent much of 1915 in preparation for his first tests. Goddard's first test launch of a powder rocket came on an early evening in 1915 following his daytime classes at Clark.[15]:74 The launch was loud and bright enough to arouse the alarm of the campus janitor, and Goddard had to reassure him that his experiments, while being serious study, were also quite harmless. After this incident, Goddard took his experiments inside the physics lab, in order to limit any disturbance.

At the Clark physics lab, Goddard conducted static tests of powder rockets to measure their thrust and efficiency. He found his earlier estimates to be verified; powder rockets were converting only about 2 percent of their fuel into thrust. At this point he applied de Laval nozzles, which were generally used with steam turbine engines, and these greatly improved efficiency. (Of the several definitions of rocket efficiency, Goddard measured in his laboratory what is today called the internal efficiency of the engine: the ratio of the kinetic energy of the exhaust gases to the available thermal energy of combustion, expressed as a percentage.)[28]:130 By mid-summer of 1915, Goddard had obtained an average efficiency of 40 percent with a nozzle exit velocity of 6728 feet (2051 meters) per second.[15]:75 Connecting a combustion chamber full of gunpowder to various converging-diverging expansion nozzles, Goddard was able in static tests to achieve engine efficiencies of more than 63% and exhaust velocities of over 7000 feet (2134 meters) per second.[15]:78 Few would recognize it at the time, but this little engine was a major breakthrough. These experiments suggested that rockets could be made powerful enough to escape Earth and travel into space. This engine, and subsequent experiments sponsored by the Smithsonian Institution, were the beginning of modern rocketry and, ultimately, space exploration.[29] Goddard realized, however, that it would take the more efficient liquid propellants to reach space.[30]

Later that year, Goddard designed an elaborate experiment at the Clark physics lab and proved that a rocket would perform in a vacuum such as that in space. He believed it would, but many other scientists were not yet convinced.[31] His experiment demonstrated that a rocket's performance actually decreases under atmospheric pressure.

From 1916 to 1917, Goddard built and tested experimental ion thrusters, which he thought might be used for propulsion in the near-vacuum conditions of outer space. The small glass engines he built were tested at atmospheric pressure, where they generated a stream of ionized air.[32]

Smithsonian Institution sponsorship

By 1916, the cost of Goddard's rocket research had become too great for his modest teaching salary to bear.[15]:76 He began to solicit potential sponsors for financial assistance, beginning with the Smithsonian Institution, the National Geographic Society, and the Aero Club of America.

In his letter to the Smithsonian in September 1916, Goddard claimed he had achieved a 63% efficiency and a nozzle velocity of almost 2438 meters per second. With these performance levels, he believed a rocket could vertically lift a weight of 1 lb (0.45 kg) to a height of 232 miles (373 km) with an initial launch weight of only 89.6 lbs (40.64 kg).[33] (Earth's atmosphere at 80 to 100 miles (130 to 160 km) altitude begins to have a significant drag effect on orbiting satellites and can be considered to end about that area.)

The Smithsonian was interested and asked Goddard to elaborate upon his initial inquiry. Goddard responded with a detailed manuscript he had already prepared, entitled A Method of Reaching Extreme Altitudes.[15]:79

In January 1917, the Smithsonian agreed to provide Goddard with a five-year grant totaling US$5000.[15]:84 Afterward, Clark was able to contribute US$3500 and the use of their physics lab to the project. Worcester Polytechnic Institute also allowed him to use its abandoned Magnetics Laboratory on the edge of campus during this time, as a safe place for testing.[15]:85

It wasn't until two years later, at the insistence of Dr. Arthur G. Webster, the world-renowned head of Clark's physics department, that Goddard arranged for the Smithsonian to publish his work.[15]:102

While at Clark University, Goddard did research into solar power using a parabolic dish to concentrate the sun's rays on a machined piece of quartz, that was sprayed with mercury, which then heated water and drove an electric generator. Goddard believed his invention had overcome all the obstacles that had previously defeated other scientists and inventors, and he had his findings published in the November 1929 issue of Popular Science.[34]

Goddard's military rocket

Not all of Goddard's early work was geared towards space travel. As the United States entered World War I in 1917, the country's universities began to lend their services to the war effort. Goddard believed his rocket research could be applied to many different military applications, including mobile artillery, field weapons and naval torpedoes. He made proposals to the Navy and Army. No record exists in his papers of any interest by the Navy to Goddard's inquiry. However, Army Ordnance was quite interested, and Goddard met several times with Army personnel.[15]:89

During this time, Goddard was also contacted by a civilian industrialist in Worcester about the possibility of manufacturing rockets for the military. However, as the businessman's enthusiasm grew, so did Goddard's suspicion. Talks eventually broke down as Goddard began to fear his work might be appropriated by the business. However, an Army Signal Corps officer tried to make Goddard cooperate, but he was called off by General George Squier of the Signal Corps who had been contacted by Secretary of the Smithsonian Institution, Charles Walcott.[15]:89–91 Goddard became leery of working with corporations and was careful to secure patents to "protect his ideas."[15]:152 These events led to the Signal Corps sponsoring Goddard's work during World War I.[15]:91

Goddard proposed to the Army an idea for a tube-based rocket launcher as a light infantry weapon. The launcher concept became the precursor to the bazooka.[15]:92 The rocket-powered, recoil-free weapon was the brainchild of Goddard as a side project (under Army contract) of his work on rocket propulsion. Goddard, during his tenure at Clark University, and working at Mount Wilson Observatory for security reasons, designed the tube-fired rocket for military use during World War I. He and his co-worker, Dr. Clarence N. Hickman successfully demonstrated his rocket to the U.S. Army Signal Corps at Aberdeen Proving Ground, Maryland, on November 6, 1918, using two music stands for a launch platform. The Army was impressed, but the CompiĆØgne Armistice was signed only five days later, and further development was discontinued as World War I ended.[35]

The delay in the development of the bazooka and other weapons was a result of Goddard's serious bout with tuberculosis—the long recovery required. Goddard continued to be a part-time consultant to the U.S. Government at Indian Head, Maryland,[15]:121 until 1923, but his focus had turned to other research involving rocket propulsion, including work with liquid fuels and liquid oxygen.

Later, the former Clark University researcher Dr. Clarence N. Hickman, and Army officers Col. Leslie Skinner and Lt. Edward Uhl continued Goddard's work on the bazooka. A shaped-charge warhead was attached to the rocket, leading to the tank-killing weapon used in World War II and to many other powerful rocket weapons.[15]:305

A Method of Reaching Extreme Altitudes

In 1919 Goddard thought that it would be premature to disclose the results of his experiments because his engine was not sufficiently developed. Dr. Webster realized that Goddard had accomplished a good deal of fine work and insisted that Goddard publish his progress so far or he would take care of it himself, so Goddard asked the Smithsonian Institution if it would publish the report he had submitted in late 1916.[15]:102

In late 1919, the Smithsonian published Goddard's groundbreaking work, A Method of Reaching Extreme Altitudes. The report describes Goddard's mathematical theories of rocket flight, his experiments with solid-fuel rockets, and the possibilities he saw of exploring Earth's atmosphere and beyond. Along with Konstantin Tsiolkovsky's earlier work, The Exploration of Cosmic Space by Means of Reaction Devices,[36] which was not widely disseminated outside Russia, [37] Goddard's book is regarded as one of the pioneering works of the science of rocketry, and 1750 copies were distributed worldwide.[38]

Goddard described extensive experiments with solid-fuel rocket engines burning high grade nitrocellulose smokeless powder. A critical breakthrough was the use of the steam turbine nozzle invented by the Swedish inventor Gustaf de Laval. The de Laval nozzle allows the most efficient (isentropic) conversion of the energy of hot gases into forward motion.[39] By means of this nozzle, Goddard increased the efficiency of his rocket engines from two percent to 64 percent and obtained supersonic exhaust velocities of over Mach 7.[18]:44[40]

Though most of this work dealt with the theoretical and experimental relations between propellant, rocket mass, thrust, and velocity, a final section, entitled "Calculation of minimum mass required to raise one pound to an 'infinite' altitude," discussed the possible uses of rockets, not only to reach the upper atmosphere but to escape from Earth's gravitation altogether.[41] He determined that a rocket with an effective exhaust velocity (see specific impulse) of 7000 feet per second and an initial weight of 602 pounds would be able to send a one-pound payload to an infinite height. Included as a thought experiment was the idea of launching a rocket to the moon and igniting a mass of flash powder on its surface, so as to be visible through a telescope. He discussed the matter seriously, down to an estimate of the amount of powder required. Goddard's conclusion was that a rocket with starting mass of 3.21 tons could produce a flash "just visible" from Earth, assuming a final payload weight of 10.7 pounds.[28]

Goddard eschewed publicity, because he did not have time to reply to criticism of his work, and his imaginative ideas about space travel were shared only with private groups he trusted. He did, though, publish and talk about the rocket principle and sounding rockets, since these subjects were not too "far out." In a letter to the Smithsonian, dated March 1920, he discussed: photographing the Moon and planets from rocket-powered fly-by probes, sending messages to distant civilizations on inscribed metal plates, the use of solar energy in space, and the idea of high-velocity ion propulsion. In that same letter, Goddard clearly describes the concept of the ablative heat shield, suggesting the landing apparatus be covered with "layers of a very infusible hard substance with layers of a poor heat conductor between" designed to erode in the same way as the surface of a meteor.[42]

Publicity and criticism

The publication of Goddard's document gained him national attention from U.S. newspapers, most of it negative. Although Goddard's discussion of targeting the moon was only a small part of the work as a whole (eight lines on the next to last page of 69 pages), and was intended as an illustration of the possibilities rather than a declaration of intent, the papers sensationalized his ideas to the point of misrepresentation and ridicule. Even the Smithsonian had to abstain from publicity because of the amount of ridiculous correspondence received from the general public.[18]:113 David Lasser, who co-founded the American Rocket Society, wrote in 1931 that Goddard was subjected in the press to the "most violent attacks."[45]

On January 12, 1920, a front-page story in The New York Times, "Believes Rocket Can Reach Moon", reported a Smithsonian press release about a "multiple-charge, high-efficiency rocket." The chief application envisaged was "the possibility of sending recording apparatus to moderate and extreme altitudes within the Earth's atmosphere", the advantage over balloon-carried instruments being ease of recovery, since "the new rocket apparatus would go straight up and come straight down." But it also mentioned a proposal "to [send] to the dark part of the new moon a sufficiently large amount of the most brilliant flash powder which, in being ignited on impact, would be plainly visible in a powerful telescope. This would be the only way of proving that the rocket had really left the attraction of the earth, as the apparatus would never come back, once it had escaped that attraction."[46]

New York Times editorial

On January 13, 1920, the day after its front-page story about Goddard's rocket, an unsigned New York Times editorial, in a section entitled "Topics of the Times", scoffed at the proposal. The article, which bore the title "A Severe Strain on Credulity",[47] began with apparent approval, but soon went on to cast serious doubt:
As a method of sending a missile to the higher, and even highest, part of the earth's atmospheric envelope, Professor Goddard's multiple-charge rocket is a practicable, and therefore promising device. Such a rocket, too, might carry self-recording instruments, to be released at the limit of its flight, and conceivable parachutes would bring them safely to the ground. It is not obvious, however, that the instruments would return to the point of departure; indeed, it is obvious that they would not, for parachutes drift exactly as balloons do. And the rocket, or what was left of it after the last explosion, would need to be aimed with amazing skill, and in a dead calm, to fall on the spot whence it started. [New paragraph.] But that is a slight inconvenience, at least from the scientific standpoint, though it might be serious enough from that of the always innocent bystander a few hundred or thousand yards from the firing line.[48]
The article pressed further on Goddard's proposal to launch rockets beyond the atmosphere:
[A]fter the rocket quits our air and really starts on its longer journey, its flight would be neither accelerated nor maintained by the explosion of the charges it then might have left. To claim that it would be is to deny a fundamental law of dynamics, and only Dr. Einstein and his chosen dozen, so few and fit, are licensed to do that.
The basis of that criticism was the then-common belief that thrust was produced by the rocket exhaust pushing against the atmosphere; Goddard realized that Newton's third law (reaction) was the actual principle.

Finally, in the follow-on section, "His plan is not original", the writer assumed, wrongly, that Goddard's understanding of Newton's laws was flawed:
That Professor Goddard, with his "chair" in Clark College and the countenancing of the Smithsonian Institution, does not know the relation of action and reaction, and of the need to have something better than a vacuum against which to react—to say that would be absurd. Of course he only seems to lack the knowledge ladled out daily in high schools.[48]
Unbeknownst to the Times, thrust is possible in a vacuum, as the writer would have discovered had he read Goddard's paper.[49]

Aftermath

A week after the New York Times editorial, Goddard released a signed statement to the Associated Press, attempting to restore reason to what had become a sensational story:
Too much attention has been concentrated on the proposed flash pow[d]er experiment, and too little on the exploration of the atmosphere. . . . Whatever interesting possibilities there may be of the method that has been proposed, other than the purpose for which it was intended, no one of them could be undertaken without first exploring the atmosphere.[50]
In 1924, Goddard published an article, "How my speed rocket can propel itself in vacuum", in Popular Science, in which he explained the physics and gave details of the vacuum experiments he had performed to prove the theory.[51] But, no matter how he tried to explain his results, he was not understood. After one of Goddard's experiments in 1929, a local Worcester newspaper carried the mocking headline "Moon rocket misses target by 238,799​12 miles."[52]

Goddard worked alone with just his team of mechanics and machinists for many years. This was a result of the harsh criticism from the media and other scientists, and his understanding of the military applications which foreign powers might use. Goddard became increasingly suspicious of others and often worked alone, except during the two World Wars, which limited the impact of much of his work. Another limiting factor was the lack of support from the American government, military and academia, all failing to understand the value of the rocket to study the atmosphere and near space, and for military applications. As Germany became ever more war-like, he refused to communicate with German rocket experimenters, though he received more and more of their correspondence.[15]:131–3,166

'A Correction'

Forty-nine years after its editorial mocking Goddard, on July 17, 1969—the day after the launch of Apollo 11The New York Times published a short item under the headline "A Correction." The three-paragraph statement summarized its 1920 editorial, and concluded:
Further investigation and experimentation have confirmed the findings of Isaac Newton in the 17th Century and it is now definitely established that a rocket can function in a vacuum as well as in an atmosphere. The Times regrets the error.[53]

First liquid-fueled flight

First static tests

Robert Goddard, bundled against the cold weather of March 16, 1926, holds the launching frame of his most notable invention — the first liquid-fueled rocket.

Goddard began experimenting with liquid oxidizer, liquid fuel rockets in September 1921, and successfully tested the first liquid propellant engine in November 1923.[28]:520 It had a cylindrical combustion chamber, using impinging jets to mix and atomize liquid oxygen and gasoline.[28]:499–500

In 1924–25, Goddard had problems developing a high-pressure piston pump to send fuel to the combustion chamber. He wanted to scale up the experiments, but his funding would not allow such growth. He decided to forego the pumps and use a pressurized fuel feed system applying pressure to the fuel tank from a tank of inert gas, a technique used today. The liquid oxygen, some of which evaporated, provided its own pressure.

On December 6, 1925, he tested the simpler pressure feed system. He conducted a static test on the firing stand at the Clark University physics laboratory. The engine successfully lifted its own weight in a 27-second test in the static rack. It was a major success for Goddard, proving that a liquid fuel rocket was possible.[15]:140 The test moved Goddard an important step closer to launching a rocket with liquid fuel.

Goddard conducted an additional test in December, and two more in January 1926. After that, he began preparing for a possible launch of the rocket system.

First flight

Goddard launched the first liquid-fueled (gasoline and liquid oxygen) rocket on March 16, 1926, in Auburn, Massachusetts. Present at the launch were his crew chief, Henry Sachs, Esther Goddard, and Percy Roope, who was Clark's assistant professor in the physics department. Goddard's diary entry of the event was notable for its understatement:
March 16. Went to Auburn with S[achs] in am. E[sther] and Mr. Roope came out at 1 p.m. Tried rocket at 2.30. It rose 41 feet & went 184 feet, in 2.5 secs., after the lower half of the nozzle burned off. Brought materials to lab....[15]:143
His diary entry the next day elaborated:
March 17, 1926. The first flight with a rocket using liquid propellants was made yesterday at Aunt Effie's farm in Auburn.... Even though the release was pulled, the rocket did not rise at first, but the flame came out, and there was a steady roar. After a number of seconds it rose, slowly until it cleared the frame, and then at express train speed, curving over to the left, and striking the ice and snow, still going at a rapid rate.[15]:143
The rocket, which was later dubbed "Nell", rose just 41 feet during a 2.5-second flight that ended 184 feet away in a cabbage field,[54] but it was an important demonstration that liquid fuels and oxidizers were possible propellants for larger rockets. The launch site is now a National Historic Landmark, the Goddard Rocket Launching Site.

Viewers familiar with more modern rocket designs may find it difficult to distinguish the rocket from its launching apparatus in the well-known picture of "Nell". The complete rocket is significantly taller than Goddard, but does not include the pyramidal support structure which he is grasping. The rocket's combustion chamber is the small cylinder at the top; the nozzle is visible beneath it. The fuel tank, which is also part of the rocket, is the larger cylinder opposite Goddard's torso. The fuel tank is directly beneath the nozzle, and is protected from the motor's exhaust by an asbestos cone. Asbestos-wrapped aluminum tubes connect the motor to the tanks, providing both support and fuel transport. This layout is no longer used, since the experiment showed that this was no more stable than placing the combustion chamber and nozzle at the base. By May, after a series of modifications to simplify the plumbing, the combustion chamber and nozzle were placed in the now classic position, at the lower end of the rocket.[56]:259

Goddard determined early that fins alone were not sufficient to stabilize the rocket in flight and keep it on the desired trajectory in the face of winds aloft and other disturbing forces. He added movable vanes in the exhaust, controlled by a gyroscope, to control and steer his rocket. (The Germans used this technique in their V-2.) He also introduced the more efficient swiveling engine in several rockets, basically the method used to steer large liquid-propellant missiles and launchers today.[56]:263–6

Lindbergh and Goddard

After a launch of one of Goddard's rockets in July 1929 again gained the attention of the newspapers,[57] Charles Lindbergh learned of his work in a New York Times article. At the time, Lindbergh had begun to wonder what would become of aviation (even space flight) in the distant future and had settled on jet propulsion and rocket flight as a probable next step. After checking with the Massachusetts Institute of Technology (MIT) and being assured that Goddard was a bona fide physicist and not a crackpot, he phoned Goddard in November 1929.[18]:141 Professor Goddard met the aviator soon after, in his office at Clark University.[58] Upon meeting Goddard, Lindbergh was immediately impressed by his research, and Goddard was similarly impressed by the flier's interest. He discussed his work openly with Lindbergh, forming an alliance that would last for the rest of his life. While having long since become reticent to share his ideas, Goddard showed complete openness with those few who shared his dream, and whom he felt he could trust.[58]

By late 1929, Goddard had been attracting additional notoriety with each rocket launch. He was finding it increasingly difficult to conduct his research without unwanted distractions. Lindbergh discussed finding additional financing for Goddard's work, and lent his famous name to Goddard's work. In 1930 Lindbergh made several proposals to industry and private investors for funding, which proved all but impossible to find following the recent U.S. stock market crash in October 1929.[58]

Guggenheim sponsorship

In the spring of 1930, Lindbergh finally found an ally in the Guggenheim family. Financier Daniel Guggenheim agreed to fund Goddard's research over the next four years for a total of $100,000 (~$1.8 million today). The Guggenheim family, especially Harry Guggenheim, would continue to support Goddard's work in the years to come. The Goddards soon moved to Roswell, New Mexico [58]

Because of the military potential of the rocket, Goddard, Lindbergh, Harry Guggenheim, the Smithsonian Institution and others tried in 1940, before the U.S. entered World War II, to convince the Army and Navy of its value. Goddard's services were offered, but there was no interest, initially. Two young, imaginative officers eventually got the services to attempt to contract with Goddard just prior to the war. The Navy beat the Army to the punch and secured his services to build liquid-fueled rockets for jet-assisted take-off (JATO) of aircraft.[15]:293–297 These rockets were the precursors to some of the large rocket engines that launched the space age.[59]

Lack of vision in the United States

Before World War II there was a lack of vision and serious interest in the United States concerning the potential of rocketry, especially in Washington. Although the Weather Bureau was interested beginning in 1929 in Goddard's rocket for atmospheric research, the Bureau could not secure governmental funding.[28]:719,746 Between the World Wars, the Guggenheim Foundation was the main source of funding for Goddard's research.[60]:46,59,60 Goddard's liquid-fueled rocket was neglected by his country, according to aerospace historian Eugene Emme, but was noticed and advanced by other nations, especially the Germans.[38]:63 Interestingly, Goddard showed remarkable prescience in 1923 in a letter to the Smithsonian. He knew that the Germans were very interested in rocketry and said he "would not be surprised if the research would become something in the nature of a race" and he wondered how soon the European "theorists" would begin to build rockets.[15]:136 In 1936, the U.S. military attachƩ in Berlin asked Charles Lindbergh to visit Germany and learn what he could of their progress in aviation. Although the Luftwaffe showed him their factories and were open concerning their growing airpower, they were silent on the subject of rocketry. When Lindbergh told Goddard of this behavior, Goddard said, "Yes, they must have plans for the rocket. When will our own people in Washington listen to reason?"[15]:272

Most of the U.S.'s largest universities were also slow to realize rocketry's potential. Just before World War II, the head of the aeronautics department at MIT, at a meeting held by the Army Air Corps to discuss project funding, said that the California Institute of Technology (Caltech) "can take the Buck Rogers Job [rocket research]."[61] In 1941, Goddard tried to recruit an engineer for his team from MIT but couldn't find one who was interested.[15]:326 There were some exceptions: MIT was at least teaching basic rocketry,[15]:264 and Caltech had courses in rocketry and aerodynamics. After the war, Dr. Jerome Hunsaker of MIT, having studied Goddard's patents, stated that "Every liquid-fuel rocket that flies is a Goddard rocket."[15]:363

While away in Roswell, Goddard was still head of the physics department at Clark University, and Clark deserves credit for allowing him to devote most of his time to rocket research. Likewise the University of California, Los Angeles (UCLA) permitted astronomer Samuel Herrick to pursue research in space vehicle guidance and control, and shortly after the war to teach courses in spacecraft guidance and orbit determination. Herrick began corresponding with Goddard in 1931 and asked if he should work in this new field, which he named astrodynamics. Herrick said that Goddard had the vision to advise and encourage him in his use of celestial mechanics "to anticipate the basic problem of space navigation."[62]

Roswell, New Mexico

Charles Lindbergh took this picture of Robert H. Goddard's rocket, when he peered down the launching tower on September 23, 1935, in Roswell, New Mexico.
 
Goddard towing a rocket in Roswell

With new financial backing, Goddard eventually relocated to Roswell, New Mexico, in summer of 1930,[63]:46 where he worked with his team of technicians in near-isolation and relative secrecy for years. He had consulted a meteorologist as to the best area to do his work, and Roswell seemed ideal. Here they would not endanger anyone, would not be bothered by the curious, and would experience a more moderate climate (which was also better for Goddard's health).[15]:177 The locals valued personal privacy, knew Goddard desired his, and when travelers asked where Goddard's facilities were located, they would likely be misdirected.[15]:261

By September 1931, his rockets had the now familiar appearance of a smooth casing with tail-fins. He began experimenting with gyroscopic guidance, and made a flight test of such a system in April 1932. A gyroscope mounted on gimbals electrically controlled steering vanes in the exhaust, similar to the system used by the German V-2 over 10 years later. Though the rocket crashed after a short ascent, the guidance system had worked, and Goddard considered the test a success.[15]:193–5

A temporary loss of funding from the Guggenheims, as a result of the depression, forced Goddard in spring of 1932 to return to Clark University until the autumn of 1934, when funding resumed. Upon his return to Roswell, he began work on his A series of rockets, 4 to 4.5 meters long, and powered by gasoline and liquid oxygen pressurized with nitrogen. The gyroscopic control system was housed in the middle of the rocket, between the propellant tanks.[5]:xv,15–46

The A-4 used a simpler pendulum system for guidance, as the gyroscopic system was being repaired. On March 8, 1935 it flew up to 1,000 feet, then turned into the wind and, Goddard reported, "roared in a powerful descent across the prairie, at close to, or at, the speed of sound." On March 28, 1935, the A-5 successfully flew vertically to an altitude of (0.91 mi; 4,800 ft) using his gyroscopic guidance system. It then turned to a nearly horizontal path, flew 13,000 feet and achieved a maximum speed of 550 miles per hour. Goddard was elated because the guidance system kept the rocket on a vertical path so well.[15]:208[28]:978–9

In 1936–1939, Goddard began work on the K and L series rockets, which were much more massive and designed to reach very high altitude. The K series consisted of static bench tests of a more powerful engine, achieving a thrust of 624 lbs.in February 1936.[60] This work was plagued by trouble with chamber burn-through. In 1923, Goddard had built a regeneratively cooled engine, which circulated liquid oxygen around the outside of the combustion chamber, but he deemed the idea too complicated. He then used a curtain cooling method that involved spraying excess gasoline, which evaporated around the inside wall of the combustion chamber, but this scheme did not work well, and the larger rockets failed. Returning to a smaller design, the L-13 reached an altitude of 2.7 kilometers (1.7 mi; 8,900 ft), the highest of any of Goddard's rockets. Weight was reduced by using thin-walled fuel tanks wound with high-tensile-strength wire.[5]:71–148

Goddard experimented with many of the features of today's large rockets, such as multiple combustion chambers and nozzles. In November, 1936, he flew the world's first rocket (L-7) with multiple chambers, hoping to increase thrust without increasing the size of a single chamber. It had four combustion chambers, reached a height of 200 feet, and corrected its vertical path using blast vanes until one chamber burned through. This flight demonstrated that a rocket with multiple combustion chambers could fly stably and be easily guided.[5]:96

From 1940 to 1941, work was done on the P series of rockets, which used propellant turbopumps (also powered by gasoline and liquid oxygen). The lightweight pumps produced higher propellant pressures, permitting a more powerful engine (greater thrust) and a lighter structure (lighter tanks and no pressurization tank), but two launches both ended in crashes after reaching an altitude of only a few hundred feet. The turbopumps worked well, however, and Goddard was pleased.[5]:187–215

When Goddard mentioned the need for turbopumps, Harry Guggenheim suggested that he contact pump manufacturers to aid him. None were interested, as the development cost of these miniature pumps was prohibitive. Goddard's team was therefore left on its own and from September 1938 to June 1940 designed and tested the small turbopumps and gas generators to operate the turbines. Esther later said that the pump tests were "the most trying and disheartening phase of the research."[15]:274–5

Goddard was able to flight-test many of his rockets, but many resulted in what the uninitiated would call failures, usually resulting from engine malfunction or loss of control. Goddard did not consider them failures, however, because he felt that he always learned something from a test.[63]:45 Most of his work involved static tests, which are a standard procedure today, before a flight test.

General Jimmy Doolittle

Jimmy Doolittle was introduced to the field of space science at an early point in its history. He recalls in his autobiography, "I became interested in rocket development in the 1930s when I met Robert H. Goddard, who laid the foundation.... While with Shell Oil I worked with him on the development of a type of fuel...."[64] Harry Guggenheim and Charles Lindbergh arranged for (then Major) Doolittle to discuss with Goddard a special blend of gasoline. Doolittle flew himself to Roswell in October 1938 and was given a tour of Goddard's shop and a "short course" in rocketry. He then wrote a memo, including a rather detailed description of Goddard's rocket. In closing he said, "interplanetary transportation is probably a dream of the very distant future, but with the moon only a quarter of a million miles away—who knows!" In July 1941 he wrote Goddard that he was still interested in his rocket propulsion research. The Army was interested only in JATO at this point. However, Doolittle and Lindbergh were concerned about the state of rocketry in the US, and Doolittle remained in touch with Goddard.[28]:1208–16,1334,1443

Shortly after World War II Doolittle spoke to an American Rocket Society conference at which a large number interested in rocketry attended. His talk concerned Dr. Robert Goddard. He later stated that at that time "we [in the aeronautics field] had not given much credence to the tremendous potential of rocketry."[65] In 1956 he was appointed chairman of the National Adviser Committee for Aeronautics (NACA) because the previous chairman, Jerome C. Hunsaker, thought Doolittle to be more sympathetic than other scientists and engineers to the rocket, which was increasing in importance as a scientific tool as well as a weapon.[64]:516 Doolittle was instrumental in the successful transition of the NACA to the National Aeronautics and Space Administration (NASA) in 1958.[66] He was offered the position as first administrator of NASA, but he turned it down.[65]

Some of the parts of Goddard's rockets

Analysis of results

As an instrument for reaching extreme altitudes, Goddard's rockets were not very successful; they did not achieve an altitude greater than 2.7 km in 1937, while a balloon sonde had already reached 35 km in 1921.[28]:456 By contrast, German rocket scientists had achieved an altitude of 2.4 km with the A-2 rocket in 1934,[30]:138 8 km by 1939 with the A-5,[67]:39 and 196 km in 1942 with the A-4 (V-2) launched vertically, reaching the outer limits of the atmosphere and into space.[68]:221

Goddard's pace was slower than the Germans' because he did not have the resources they did. Simply reaching high altitudes was not his primary goal; he was trying, with a methodical approach, to perfect his liquid fuel engine and subsystems such as guidance and control so that his rocket could eventually achieve high altitudes without tumbling in the rare atmosphere, providing a stable vehicle for the experiments it would eventually carry. He had built the necessary turbopumps and was on the verge of building larger, more reliable rockets to reach extreme altitudes when World War II intervened and changed the path of American history. He hoped to return to his experiments in Roswell after the war.[15]:206,230,330–1

Although Goddard had brought his work in rocketry to the attention of the United States Army, between World Wars, he was rebuffed, since the Army largely failed to grasp the military application of large rockets and said there was no money for new experimental weapons.[15]:297 German military intelligence, by contrast, had paid attention to Goddard's work. The Goddards noticed that some mail had been opened, and some mailed reports had gone missing. An accredited military attachĆ© to the US, Friedrich von Boetticher, sent a four-page report to the Abwehr in 1936, and the spy Gustav Guellich sent a mixture of facts and made-up information, claiming to have visited Roswell and witnessed a launch. The Abwehr was very interested and responded with more questions about Goddard's work.[69]:77[18]:227–8 Guellich's reports did include information about fuel mixtures and the important concept of fuel-curtain cooling,[70]:39–41 but thereafter the Germans received very little information about Goddard.

The Soviet Union had a spy in the U.S. Navy Bureau of Aeronautics. In 1935, she gave them a report Goddard had written for the Navy in 1933. It contained results of tests and flights and suggestions for military uses of his rockets. The Soviets considered this to be very valuable information. It provided few design details, but gave them the direction and knowledge about Goddard's progress.[71]:386–7

Annapolis, Maryland

Navy Lieutenant Charles F. Fischer, who had visited Goddard in Roswell earlier and gained his confidence, believed Goddard was doing valuable work and was able to convince the Bureau of Aeronautics in September 1941 that Goddard could build the JATO unit the Navy desired. While still in Roswell, and before the Navy contract took effect, Goddard began in September to apply his technology to build a variable-thrust engine to be attached to a PBY seaplane. By May 1942 he had a unit that could meet the Navy's requirements and be able to launch a heavily loaded aircraft from a short runway. In February he received part of a PBY with bullet holes apparently acquired in the Pearl Harbor attack. Goddard wrote to Guggenheim that "I can think of nothing that would give me greater satisfaction than to have it contribute to the inevitable retaliation."[15]:322,328–9,331,335,337

In April Fischer notified Goddard that the Navy wanted to do all its rocket work at the Engineering Experiment Station at Annapolis. Esther, worried that a move to the climate of Maryland would cause Robert's health to deteriorate faster, objected. But the patriotic Goddard replied, "Esther, don't you know there's a war on?" Fischer also questioned the move, as Goddard could work just as well in Roswell. Goddard simply answered, "I was wondering when you would ask me." Fischer had wanted to offer him something bigger—a long range missile—but JATO was all he could manage, hoping for a greater project later.[15]:338,9 It was a case of a square peg in a round hole, according to a disappointed Goddard.[18]:209

Goddard and his team had already been in Annapolis a month and had tested his constant-thrust JATO engine when he received a Navy telegram, forwarded from Roswell, ordering him to Annapolis. Lt. Fischer asked for a crash effort. By August his engine was producing 800 lbs of thrust for 20 seconds, and Fischer was anxious to try it on a PBY. On the sixth test run, with all bugs worked out, the PBY, piloted by Fischer, was pushed into the air from the Severn River. Fischer landed and prepared to launch again. Goddard had wanted to check the unit, but radio contact with the PBY had been lost. On the seventh try the engine caught fire. The plane was 150 feet up when flight was aborted. Because Goddard had installed a safety feature at the last minute there was no explosion and no lives were lost. The problem's cause was traced to hasty installation and rough handling. Cheaper, safer solid fuel JATO engines were eventually selected by the armed forces. An engineer later said, "Putting [Goddard's] rocket on a seaplane was like hitching an eagle to a plow."[15]:344–50

Despite Goddard's efforts to convince the Navy that liquid-fueled rockets had greater potential, he said that the Navy had no interest in long-range missiles.[28]:1554 However, the Navy asked him to perfect the throttleable JATO engine. Goddard made improvements to the engine, and in November it was demonstrated to the Navy and some officials from Washington. Fischer invited the spectators to operate the controls; the engine blasted out over the Severn at full throttle with no hesitation, idled, and roared again at various thrust levels. The test was perfect, exceeding the Navy's requirements. The unit was able to be stopped and restarted, and it produced a medium thrust of 600 pounds for 15 seconds and a full thrust of 1,000 pounds for over 15 seconds. A Navy Commander commented that "It was like being Thor, playing with thunderbolts." Goddard had produced the essential propulsion control system of the rocket plane. The Goddards celebrated by attending the Army-Navy football game and attending the Fischers' cocktail party.[28]:350–1 This engine was the basis of the Curtiss-Wright XLR25-CW-1 two-chamber, 15,000-pound thrust engine that powered the Bell X-2 research rocket plane. After World War II Goddard's team and some patents went to Curtiss-Wright Corporation. "Although his death in August 1945 prevented him from participating in the actual development of this engine, it was a direct descendent of his design."[28]:1606 In September 1956 the X-2 was the first plane to reach 126,000 feet altitude and in its last flight exceeded Mach 3 (3.2) before losing control and crashing. The X-2 program advanced technology in areas such as steel alloys and aerodynamics at high Mach numbers.[72]

V-2

In the spring of 1945, Goddard saw a captured German V-2 ballistic missile, in the naval laboratory in Annapolis, Maryland, where he had been working under contract. The unlaunched rocket had been captured by the US Army from the Mittelwerk factory in the Harz mountains, and samples began to be shipped by Special Mission V-2 on 22 May 1945.[67]

After a thorough inspection, Goddard was convinced that the Germans had "stolen" his work. Though the design details were not exactly the same, the basic design of the V-2 was similar to one of Goddard's rockets. The V-2, however, was technically far more advanced than the most successful of the rockets designed and tested by Goddard. The PeenemĆ¼nde rocket group led by Wernher von Braun may have benefited from the pre-1939 contacts to a limited extent,[15]:387–8 but had also started from the work of their own space pioneer, Hermann Oberth; they also had the benefit of intensive state funding, large-scale production facilities (using slave labor), and repeated flight-testing that allowed them to refine their designs. Oberth was a theorist and had never built a rocket or a working engine.

Nevertheless, in 1963, von Braun, reflecting on the history of rocketry, said of Goddard: "His rockets ... may have been rather crude by present-day standards, but they blazed the trail and incorporated many features used in our most modern rockets and space vehicles".[74] He once recalled that "Goddard's experiments in liquid fuel saved us years of work, and enabled us to perfect the V-2 years before it would have been possible."[75] After World War II von Braun reviewed Goddard's patents and believed they contained enough technical information to build a large missile.[76]

Three features developed by Goddard appeared in the V-2: (1) turbopumps were used to inject fuel into the combustion chamber; (2) gyroscopically controlled vanes in the nozzle stabilized the rocket until external vanes in the air could do so; and (3) excess alcohol was fed in around the combustion chamber walls, so that a blanket of evaporating gas protected the engine walls from the combustion heat. [77]

The Germans had been watching Goddard's progress before the war and became convinced that large, liquid fuel rockets were feasible. General Walter Dornberger, head of the V-2 project, used the idea that they were in a race with the U.S. and that Goddard had "disappeared" (to work with the Navy) to persuade Hitler to raise the priority of the V-2. It was a strategic mistake, however, to expend an estimated one-half billion war-era-dollars (not counting slave labor) for a terror weapon that did not create the fear desired and lacked the accuracy to be very effective against military targets. Resources could have been better used on existing, or new more effective, weapons.[68]

Goddard's secrecy

Goddard avoided sharing details of his work with other scientists, and preferred to work alone with his technicians. Frank Malina, who was then studying rocketry at the California Institute of Technology, visited Goddard in August 1936. Goddard hesitated to discuss any of his research, other than that which had already been published in Liquid-Propellant Rocket Development. Theodore von KƔrmƔn, Malina's mentor at the time, was unhappy with Goddard's attitude and later wrote, "Naturally we at Caltech wanted as much information as we could get from Goddard for our mutual benefit. But Goddard believed in secrecy.... The trouble with secrecy is that one can easily go in the wrong direction and never know it." [78]:90 However, at an earlier point von KƔrmƔn said that Malina was "highly enthusiastic" after his visit and that Caltech made changes to their liquid-propellant rocket, based on Goddard's work and patents. Malina remembered his visit as friendly and that he saw all but a few components in Goddard's shop.[18]:178

Goddard's concerns about secrecy led to criticism for failure to cooperate with other scientists and engineers. His approach at that time was that independent development of his ideas without interference would bring quicker results even though he received less technical support. George Sutton, who became a rocket scientist working with von Braun's team in the late 1940s, said that he and his fellow workers had not heard of Goddard or his contributions, and that they would have saved time if they had known the details of his work. Sutton admits that it may have been their fault for not looking for Goddard's patents and depending on the German team for knowledge and guidance; he wrote that information about the patents was not well distributed in the U.S. at that early period, though Germany and the Soviet Union had copies of some of them. (The Patent Office did not release rocket patents during World War II.)[56] Interestingly, however, the Aerojet Engineering Corporation, an offshoot of the Guggenheim Aeronautical Laboratory at Caltech (GALCIT), filed two patent applications in Sep 1943 referencing Goddard's U.S. Patent 1,102,653 for the multistage rocket.

By 1939, von KƔrmƔn's GALCIT had received Army Air Corps funding to develop rockets to assist in aircraft take-off. Goddard learned of this in 1940, and openly expressed his displeasure at not being considered.[78] Malina could not understand why the Army did not arrange for an exchange of information between Goddard and Caltech, since both were under government contract at the same time. Goddard did not think he could be of that much help to Caltech because they were designing rockets with solid fuel, while he was using liquid fuels.

Goddard was concerned with avoiding the public criticism and ridicule he had faced in the 1920s, which he believed had harmed his professional reputation. He also lacked interest in discussions with people who had less understanding of rocketry than he did,[15]:171 feeling that his time was extremely constrained.[15]:23 Goddard's health was frequently poor, as a result of his earlier bout of tuberculosis, and he was uncertain about how long he had to live. He felt, therefore, that he hadn't the time to spare arguing with other scientists and the press about his new field of research, or helping all the amateur rocketeers who wrote to him.[15]:61,71,110–11,114–15 In 1932 Goddard wrote to H. G. Wells:
How many more years I shall be able to work on the problem, I do not know; I hope, as long as I live. There can be no thought of finishing, for "aiming at the stars", both literally and figuratively, is a problem to occupy generations, so that no matter how much progress one makes, there is always the thrill of just beginning.[16]
Goddard spoke to professional groups, published articles and papers and patented his ideas; but while he discussed basic principles, he was unwilling to reveal the details of his designs until he had flown rockets to high altitudes and thus proven his theory.[15]:115 He tended to avoid any mention of space flight, and spoke only of high-altitude research, since he believed that other scientists regarded the subject as unscientific.[15]:116

However, Goddard's tendency to secrecy was not absolute, nor was he totally uncooperative. In 1945 GALCIT was building the WAC Corporal for the Army but was having trouble with the rocket's engine performance. Frank Malina went to Annapolis and consulted with Goddard and they arrived at a solution to the liquid propellant problem, which resulted in the successful launch of the high-altitude research rocket.[79]

During the First and Second World Wars, Goddard offered his services, patents and technology to the military, and made some significant contributions. Just before the Second World War several young Army officers, and some higher-ranking ones, believed Goddard's research was important but were unable to generate funds for his work.[59]

Toward the end of his life, Goddard, realizing he was no longer going to be able to make significant progress alone in his field, joined the American Rocket Society and became a director. He made plans to work in the budding US aerospace industry (with Curtiss-Wright), taking most of his team with him.[15]:382,385

Personal life

On June 21, 1924, Goddard married Esther Christine Kisk (March 31, 1901 – June 4, 1982),[80] a secretary in Clark University's President's office, whom he had met in 1919. She became enthusiastic about rocketry and photographed some of his work as well as aided him in his experiments and paperwork, including accounting. They enjoyed going to the movies in Roswell and participated in community organizations such as the Rotary and the Woman's Club. He painted the New Mexican scenery, sometimes with artist Peter Hurd, and played the piano. She played bridge, while he read. Esther said Robert participated in the community, and readily accepted invitations to speak to church and service groups. The couple did not have children. After his death, she sorted out Goddard's papers, and secured 131 additional patents on his work.[81]

Concerning Goddard's religious views, he was raised as an Episcopalian, though he was not outwardly religious.[82] The Goddards were associated with the Episcopal church in Roswell, and he attended occasionally. He once spoke to a young people's group on the relationship of science and religion.[15]:224

Goddard's serious bout with tuberculosis weakened his lungs, affecting his ability to work, and was one reason he liked to work alone, in order to avoid argument, and confrontation with others and use his time fruitfully. He labored with the prospect of a shorter than average life span. After arriving in Roswell, Goddard applied for life insurance, but when the company doctor examined him he said that Goddard belonged in a bed in Switzerland (where he could get the best care).[15]:183 Goddard's health began to deteriorate further after moving to the humid climate of Maryland to work for the Navy. He was diagnosed with throat cancer in 1945. He continued to work, able to speak only in a whisper, until surgery was required, and he died in August of that year in Baltimore, Maryland.[15]:377,395[83] He was buried in Hope Cemetery in his home town of Worcester, Massachusetts.[84]

Legacy

Influence

.
Robert Goddard honored on a U.S. airmail stamp 
.
Bronze plaque in Auburn, Massachusetts marking the town in which Dr. Robert Goddard launched the first liquid-fueled rocket on March 16, 1926. 
.
Insignia of the 50th Anniversary of the Goddard Space Flight Center, a NASA facility in Maryland 

Patents of interest

Goddard received 214 patents for his work, of which 131 were awarded after his death.[85] Among the most influential patents were:
  • Patent 2,395,113 – "method for feeding combustion liquids to rocket apparatus" – R. H. Goddard's first patent[85]
  • Patent 2,397,657 – "control mechanism for a rocket apparatus" with "an outside starting device" – R. H. Goddard's second patent[85]
  • Patent 2,397,659 – "control mechanism for a rocket apparatus" with "self-starting devices for intermittent operation and seals for fuel pumps" – R. H. Goddard's third patent[85]
  • U.S. Patent 1,102,653Rocket apparatus – R. H. Goddard
  • U.S. Patent 1,103,503Rocket apparatus – R. H. Goddard
  • A U.S. Patent 2,511,979 ARocket tube transportation system – E. C. Goddard
The Guggenheim Foundation and Goddard's estate filed suit in 1951 against the U.S. government for prior infringement of Goddard's first three patents.[85] In 1960, the parties settled the suit, and the U.S. armed forces and NASA paid out an award of $1 million: half of the award settlement went to his wife, Esther. At that time, it was the largest government settlement ever paid in a patent case.[85][15]:404 The settlement amount exceeded the total amount of all the funding that Goddard received for his work, throughout his entire career.

Other firsts

  • First American to explore mathematically the practicality of using rocket propulsion to reach high altitudes and to traject to the moon (1912)[90]
  • First to receive a U.S. patent on the idea of a multistage rocket (1914)[90]
  • First to prove, by actual static test, that rocket propulsion operates in a vacuum, that it needs no air to push against (1915–1916)[90]
  • First to develop suitable lightweight pumps for liquid-fuel rockets (1923)[90]
  • First to develop and successfully fly a liquid-fuel rocket (March 16, 1926)[90]
  • First to launch a scientific payload (a barometer, a thermometer, and a camera) in a rocket flight (1929)[90]
  • First to use vanes in the rocket engine exhaust for guidance (1932)[90]
  • First to develop gyroscopic control apparatus for guiding rocket flight (1932)[90]
  • First to fire a liquid-fuel rocket faster than the speed of sound (1935)[90]
  • First to launch and successfully guide a rocket with an engine pivoted by moving the tail section (as if on gimbals) controlled by a gyro mechanism (1937)[90]

Quotations

  • "It is difficult to say what is impossible, for the dream of yesterday is the hope of today and the reality of tomorrow." (From his high school graduation oration, "On Taking Things for Granted", June 1904)
  • "On the afternoon of October 19, 1899, I climbed a tall cherry tree and, armed with a saw which I still have, and a hatchet, started to trim the dead limbs from the cherry tree. It was one of the quiet, colorful afternoons of sheer beauty which we have in October in New England, and as I looked towards the fields at the east, I imagined how wonderful it would be to make some device which had even the possibility of ascending to Mars. I was a different boy when I descended the tree from when I ascended for existence at last seemed very purposive." (Written later, in an autobiographical sketch)
  • "Every vision is a joke until the first man accomplishes it; once realized, it becomes commonplace."[43][44] (His response to a reporter's question following criticism in The New York Times, 1920)
  • "It is not a simple matter to differentiate unsuccessful from successful experiments. . . .[Most] work that is finally successful is the result of a series of unsuccessful tests in which difficulties are gradually eliminated."[15]:274 (Written to a correspondent, early 1940s)

Timeline

Nicolas LĆ©onard Sadi Carnot

From Wikipedia, the free encyclopedia
Sadi Carnot
Sadi Carnot.jpeg
Nicolas LĆ©onard Sadi Carnot in 1813 at age of 17 in the traditional uniform of a student of the Ɖcole Polytechnique
Born 1 June 1796
Palais du Petit-Luxembourg, Paris, France
Died 24 August 1832 (age 36)
Paris, France
Nationality France
Alma mater Ɖcole Polytechnique
Ɖcole Royale du GĆ©nie
University of Paris
CollĆØge de France
Known for Carnot cycle
Carnot efficiency
Carnot theorem
Carnot heat engine
Scientific career
Fields Physicist, engineer
Institutions French Army
Academic advisors SimƩon Denis Poisson
AndrĆ©-Marie AmpĆØre
FranƧois Arago
Influenced Ɖmile Clapeyron
Rudolf Clausius
Lord Kelvin
Notes
He was the brother of Hippolyte Carnot, his father was the mathematician Lazare Carnot, and his nephews were Marie FranƧois Sadi Carnot and Marie Adolphe Carnot.

Happy birthday, Monsieur Carnot.

Nicolas LĆ©onard Sadi Carnot (French: [kaŹno]; 1 June 1796 – 24 August 1832) was a French military engineer and physicist, often described as the "father of thermodynamics". Like Copernicus, he published only one book, the Reflections on the Motive Power of Fire (Paris, 1824), in which he expressed, at the age of 27 years, the first successful theory of the maximum efficiency of heat engines. In this work he laid the foundations of an entirely new discipline, thermodynamics. Carnot's work attracted little attention during his lifetime, but it was later used by Rudolf Clausius and Lord Kelvin to formalize the second law of thermodynamics and define the concept of entropy.

Life

Nicolas LƩonard Sadi Carnot was born in Paris into a family that was distinguished in both science and politics. He was the first son of Lazare Carnot, an eminent mathematician, military engineer and leader of the French Revolutionary Army. Lazare chose his son's third given name (by which he would always be known) after the Persian poet Sadi of Shiraz. Sadi was the elder brother of statesman Hippolyte Carnot and the uncle of Marie FranƧois Sadi Carnot, who would serve as President of France from 1887 to 1894.

At the age of 16, Sadi Carnot became a cadet in the Ɖcole Polytechnique in Paris, where his classmates included Michel Chasles and Gaspard-Gustave Coriolis. The Ɖcole Polytechnique was intended to train engineers for military service, but its professors included such eminent scientists as AndrĆ©-Marie AmpĆØre, FranƧois Arago, Joseph Louis Gay-Lussac, Louis Jacques ThĆ©nard and SimĆ©on Denis Poisson, and the school had become renowned for its mathematical instruction. After graduating in 1814, Sadi became an officer in the French army's corps of engineers. His father Lazare had served as Napoleon's minister of the interior during the "Hundred Days", and after Napoleon's final defeat in 1815 Lazare was forced into exile. Sadi's position in the army, under the restored Bourbon monarchy of Louis XVIII, became increasingly difficult.[1]

Sadi Carnot was posted to different locations, he inspected fortifications, tracked plans and wrote many reports. It appears his recommendations were ignored and his career was stagnating.[2] On 15 September 1818 he took a six-month leave to prepare for the entrance examination of Royal Corps of Staff and School of Application for the Service of the General Staff.[1]

In 1819, Sadi transferred to the newly formed General Staff, in Paris. He remained on call for military duty, but from then on he dedicated most of his attention to private intellectual pursuits and received only two-thirds pay. Carnot befriended the scientist Nicolas ClƩment and attended lectures on physics and chemistry. He became interested in understanding the limitation to improving the performance of steam engines, which led him to the investigations that became his Reflections on the Motive Power of Fire, published in 1824.

Carnot retired from the army in 1828, without a pension. He was interned in a private asylum in 1832 as suffering from "mania" and "general delirum", and he died of cholera shortly thereafter, aged 36, at the hospital in Ivry-sur-Seine.[3]

Reflections on the Motive Power of Fire

Background

When Carnot began working on his book, steam engines had achieved widely recognized economic and industrial importance, but there had been no real scientific study of them. Newcomen had invented the first piston-operated steam engine over a century before, in 1712; some 50 years after that, James Watt made his celebrated improvements, which were responsible for greatly increasing the efficiency and practicality of steam engines. Compound engines (engines with more than one stage of expansion) had already been invented, and there was even a crude form of internal-combustion engine, with which Carnot was familiar and which he described in some detail in his book. Although there existed some intuitive understanding of the workings of engines, scientific theory for their operation was almost nonexistent. In 1824 the principle of conservation of energy was still poorly developed and controversial, and an exact formulation of the first law of thermodynamics was still more than a decade away; the mechanical equivalence of heat would not be formulated for another two decades. The prevalent theory of heat was the caloric theory, which regarded heat as a sort of weightless and invisible fluid that flowed when out of equilibrium.

Engineers in Carnot's time had tried, by means such as highly pressurized steam and the use of fluids, to improve the efficiency of engines. In these early stages of engine development, the efficiency of a typical engine — the useful work it was able to do when a given quantity of fuel was burned — was only 3%.

Carnot cycle

Carnot wanted to answer two questions about the operation of heat engines: "Is the work available from a heat source potentially unbounded?" and "Can heat engines in principle be improved by replacing the steam with some other working fluid or gas?" He attempted to answer these in a memoir, published as a popular work in 1824 when he was only 28 years old. It was entitled RĆ©flexions sur la Puissance Motrice du Feu ("Reflections on the Motive Power of Fire"). The book was plainly intended to cover a rather wide range of topics about heat engines in a rather popular fashion; equations were kept to a minimum and called for little more than simple algebra and arithmetic, except occasionally in the footnotes, where he indulged in a few arguments involving some calculus. He discussed the relative merits of air and steam as working fluids, the merits of various aspects of steam engine design, and even included some ideas of his own regarding possible improvements of the practical nature. The most important part of the book was devoted to an abstract presentation of an idealized engine that could be used to understand and clarify the fundamental principles that are generally applied to all heat engines, independent of their design.

Perhaps the most important contribution Carnot made to thermodynamics was his abstraction of the essential features of the steam engine, as they were known in his day, into a more general and idealized heat engine. This resulted in a model thermodynamic system upon which exact calculations could be made, and avoided the complications introduced by many of the crude features of the contemporary steam engine. By idealizing the engine, he could arrive at clear and indisputable answers to his original two questions.

He showed that the efficiency of this idealized engine is a function only of the two temperatures of the reservoirs between which it operates. He did not, however, give the exact form of the function, which was later shown to be (T1T2)/T1, where T1 is the absolute temperature of the hotter reservoir. (Note: This equation probably came from Kelvin.) No thermal engine operating any other cycle can be more efficient, given the same operating temperatures.

The Carnot cycle is the most efficient possible engine, not only because of the (trivial) absence of friction and other incidental wasteful processes; the main reason is that it assumes no conduction of heat between parts of the engine at different temperatures. Carnot knew that the conduction of heat between bodies at different temperatures is a wasteful and irreversible process, which must be eliminated if the heat engine is to achieve maximum efficiency.

Regarding the second point, he also was quite certain that the maximum efficiency attainable did not depend upon the exact nature of the working fluid. He stated this for emphasis as a general proposition:
The motive power of heat is independent of the agents employed to realize it; its quantity is fixed solely by the temperatures of the bodies between which is effected, finally, the transfer of caloric.
— Carnot 1890, p. 68
For his "motive power of heat", we would today say "the efficiency of a reversible heat engine", and rather than "transfer of caloric" we would say "the reversible transfer of entropy ∆S" or "the reversible transfer of heat at a given temperature Q/T". He knew intuitively that his engine would have the maximum efficiency, but was unable to state what that efficiency would be.

He concluded:
The production of motive power is therefore due in steam engines not to actual consumption of caloric but to its transportation from a warm body to a cold body.[4]
— Carnot 1960, p. 7
and
In the fall of caloric, motive power evidently increases with the difference of temperature between the warm and cold bodies, but we do not know whether it is proportional to this difference.[5]
— Carnot 1960, p. 15
In an idealized model, the caloric transported from a hot to a cold body by a frictionless heat engine that lacks of conductive heat flow, driven by a difference of temperature, yielding work, could also be used to transport the caloric back to the hot body by reversing the motion of the engine consuming the same amount of work, a concept subsequently known as thermodynamic reversibility. Carnot further postulated that no caloric is lost during the operation of his idealized engine. The process being completely reversible, executed by this kind of heat engine is the most efficient possible process. The assumption that heat conduction driven by a temperature difference cannot exist, so that no caloric is lost by the engine, guided him to design the Carnot-cycle to be operated by his idealized engine. The cycle is consequently composed of adiabatic processes where no heat/caloric ∆S = 0 flows and isothermal processes where heat is transferred ∆S > 0 but no temperature difference ∆T = 0 exist. The proof of the existence of a maximum efficiency for heat engines is as follows:

As the cycle named after him doesn't waste caloric, the reversible engine has to use this cycle. Imagine now two large bodies, a hot and a cold one. He postulates now the existence of a heat machine with a greater efficiency. We couple now two idealized machine but of different efficiencies and connect them to the same hot and the same cold body. The first and less efficient one lets a constant amount of entropy ∆S = Q/T flow from hot to cold during each cycle, yielding an amount of work denoted W. If we use now this work to power the other more efficient machine, it would, using the amount of work W gained during each cycle by the first machine, make an amount of entropy ∆S' > ∆S flow from the cold to the hot body. The net effect is a flow of ∆S' − ∆S ≠ 0 of entropy from the cold to the hot body, while no net work is done. Consequently, the cold body is cooled down and the hot body rises in temperature. As the difference of temperature rises now the yielding of work by the first is greater in the successive cycles and due to the second engine difference in temperature of the two bodies stretches by each cycle even more. In the end this set of machines would be a perpetuum mobile that cannot exist. This proves that the assumption of the existence of a more efficient engine was wrong so that an heat engine that operates the Carnot cycle must be the most efficient one. This means that a frictionless heat engine that lacks of conductive heat flow driven by a difference of temperature shows maximum possible efficiency.

He concludes further that the choice of the working fluid, its density or the volume occupied by it cannot change this maximum efficiency. Using the equivalence of any working gas used in heat engines he deduced that the difference in the specific heat of a gas measured at constant pressure and at constant volume must be constant for all gases. By comparing the operation of his hypothetical heat engines for two different volumes occupied by the same amount of working gas he correctly deduces the relation between entropy and volume for an isothermal process:

\Delta S \propto \ln \frac{V}{V_0}.

Reception and later life

Carnot's book received very little attention from his contemporaries. The only reference to it within a few years after its publication was in a review in the periodical Revue EncyclopĆ©dique, which was a journal that covered a wide range of topics in literature. The impact of the work had only become apparent once it was modernized by Ɖmile Clapeyron in 1834 and then further elaborated upon by Clausius and Kelvin, who together derived from it the concept of entropy and the second law of thermodynamics.

On Carnot's religious views, he was a Philosophical theist.[6] As a deist, he believed in divine causality, stating that "what to an ignorant man is chance, cannot be chance to one better instructed," but he did not believe in divine punishment. He criticized established religion, though at the same time spoke in favor of "the belief in an all-powerful Being, who loves us and watches over us."[7]

He was a reader of Blaise Pascal, MoliĆØre and Jean de La Fontaine.[8]

Death

Carnot died during a cholera epidemic in 1832, at the age of 36. (Asimov 1982, p. 332) Because of the contagious nature of cholera, many of Carnot's belongings and writings were buried together with him after his death. As a consequence, only a handful of his scientific writings survived.

After the publication of Reflections on the Motive Power of Fire, the book quickly went out of print and for some time was very difficult to obtain. Kelvin, for one, had a difficult time getting a copy of Carnot's book. In 1890 an English translation of the book was published by R. H. Thurston;[9] this version has been reprinted in recent decades by Dover and by Peter Smith, most recently by Dover in 2005. Some of Carnot's posthumous manuscripts have also been translated into English.

Carnot published his book in the heyday of steam engines. His theory explained why steam engines using superheated steam were better because of the higher temperature of the consequent hot reservoir. Carnot's theories and efforts did not immediately help improve the efficiency of steam engines; his theories only helped to explain why one existing practice was superior to others. It was only towards the end of the nineteenth century that Carnot's ideas, namely that a heat engine can be made more efficient if the temperature of its hot reservoir is increased, were put into practice. Carnot's book did, however, eventually have a real impact on the design of practical engines. Rudolf Diesel, for example, used Carnot's theories[10] to design the diesel engine, in which the temperature of the hot reservoir is much higher than that of a steam engine, resulting in an engine which is more efficient.

Kip Thorne

From Wikipedia, the free encyclopedia
Kip S. Thorne during Nobel Prize press conference in Stockholm, December 2017

Happy birthday, Professor Thorne.

Kip Stephen Thorne (born June 1, 1940) is an American theoretical physicist and Nobel laureate, known for his contributions in gravitational physics and astrophysics. A longtime friend and colleague of Stephen Hawking and Carl Sagan, he was the Feynman Professor of Theoretical Physics at the California Institute of Technology (Caltech) until 2009[3] and is one of the world's leading experts on the astrophysical implications of Einstein's general theory of relativity. He continues to do scientific research and scientific consulting, most notably for the Christopher Nolan film Interstellar.[4][5]

In 2017, Thorne was awarded the Nobel Prize in Physics along with Rainer Weiss and Barry C. Barish "for decisive contributions to the LIGO detector and the observation of gravitational waves".[6][7][8][9]

Life and career

Discussion in the main lecture hall at the Ɖcole de Physique des Houches (Les Houches Physics School), 1972. From left, Yuval Ne'eman, Bryce DeWitt, Thorne, Demetrios Christodoulou.

Thorne was born in Logan, Utah on June 1, 1940. His father was a chemist, his mother Alison (nƩe Comish) Thorne, was an economist and the first woman to receive a Ph.D. in the discipline from Iowa State College.[10] Raised in an academic environment, two of his four siblings also became professors.[11][12] Thorne's parents were members of The Church of Jesus Christ of Latter-day Saints (Mormons) and raised Thorne in the LDS faith, though he now describes himself as atheist. Regarding his views on science and religion, Thorne has stated: "There are large numbers of my finest colleagues who are quite devout and believe in God [...] There is no fundamental incompatibility between science and religion. I happen to not believe in God."[13]

Thorne rapidly excelled at academics early in life, winning recognition in the Westinghouse Science Talent Search as a senior at Logan High School and becoming one of the youngest full professors in the history of the California Institute of Technology at age 30.[14] He received his B.S. degree from Caltech in 1962, and Ph.D. degree from Princeton University in 1965.[15] He wrote his doctoral thesis, Geometrodynamics of Cylindrical Systems, under the supervision of relativist John Wheeler. Thorne returned to Caltech as an associate professor in 1967 and became a professor of theoretical physics in 1970, the William R. Kenan, Jr. Professor in 1981, and the Feynman Professor of Theoretical Physics in 1991. He was an adjunct professor at the University of Utah from 1971 to 1998 and Andrew D. White Professor at Large at Cornell University from 1986 to 1992.[16] In June 2009 he resigned his Feynman Professorship (he is now the Feynman Professor of Theoretical Physics, Emeritus) to pursue a career of writing and movie making.[citation needed] His first film project was Interstellar, on which he worked with Christopher Nolan and Jonathan Nolan.[3]

Throughout the years, Thorne has served as a mentor and thesis advisor for many leading theorists who now work on observational, experimental, or astrophysical aspects of general relativity. Approximately 50 physicists have received Ph.D.s at Caltech under Thorne's personal mentorship.[3]

Thorne is known for his ability to convey the excitement and significance of discoveries in gravitation and astrophysics to both professional and lay audiences. In 1999, Thorne made some speculations on what the 21st century will find as the answers to the following questions:[17][18]
  • Is there a "dark side of the universe" populated by objects such as black holes?
  • Can we observe the birth of the universe and its dark side using radiation made from space-time warpage, or so-called "gravitational waves"?
  • Will 21st century technology reveal quantum behavior in the realm of human-size objects?
His presentations on subjects such as black holes, gravitational radiation, relativity, time travel, and wormholes have been included in PBS shows in the U.S. and in the United Kingdom on the BBC.

Thorne and Linda Jean Peterson married in 1960. Their children are Kares Anne and Bret Carter, an architect. Thorne and Peterson divorced in 1977. Thorne and his second wife, Carolee Joyce Winstein, a professor of biokinesiology and physical therapy at USC, married in 1984.[19]

Research

Thorne in 1972

Thorne's research has principally focused on relativistic astrophysics and gravitation physics, with emphasis on relativistic stars, black holes and especially gravitational waves.[3] He is perhaps best known to the public for his controversial theory that wormholes can conceivably be used for time travel.[20] However, Thorne's scientific contributions, which center on the general nature of space, time, and gravity, span the full range of topics in general relativity.

Gravitational waves and LIGO

Thorne's work has dealt with the prediction of gravitational wave strengths and their temporal signatures as observed on Earth. These "signatures" are of great relevance to LIGO (Laser Interferometer Gravitational Wave Observatory), a multi-institution gravitational wave experiment for which Thorne has been a leading proponent – in 1984, he cofounded the LIGO Project (the largest project ever funded by the NSF[21]) to discern and measure any fluctuations between two or more 'static' points; such fluctuations would be evidence of gravitational waves, as calculations describe. A significant aspect of his research is developing the mathematics necessary to analyze these objects.[22] Thorne also carries out engineering design analyses for features of the LIGO that cannot be developed on the basis of experiment and he gives advice on data analysis algorithms by which the waves will be sought. He has provided theoretical support for LIGO, including identifying gravitational wave sources that LIGO should target, designing the baffles to control scattered light in the LIGO beam tubes, and – in collaboration with Vladimir Braginsky's (Moscow, Russia) research group – inventing quantum nondemolition designs for advanced gravity-wave detectors and ways to reduce the most serious kind of noise in advanced detectors: thermoelastic noise. With Carlton M. Caves, Thorne invented the back-action-evasion approach to quantum nondemolition measurements of the harmonic oscillators – a technique applicable both in gravitational wave detection and quantum optics.[3]

On February 11, 2016, a team of four physicists[a] representing the LIGO Scientific Collaboration, announced that in September 2015, LIGO recorded the signature of two black holes colliding 1.3 billion light-years away. This recorded detection was the first direct observation of the fleeting chirp of a gravitational wave and confirmed an important prediction of Einstein’s general theory of relativity.[23][24][25][26][27]

Black hole cosmology

A cylindrical bundle of magnetic field lines

While he was studying for Ph.D. in Princeton University, his mentor John Wheeler gave him an assignment problem for him to think over: find out whether or not a cylindrical bundle of repulsive magnetic field lines will implode under its own attractive gravitational force. After several months wrestling with the problem, he proved that it was impossible for cylindrical magnetic field lines to implode.[28]:262–265

Why is it that a cylindrical bundle of magnetic field lines will not implode, while spherical stars will implode under their own gravitational force? Thorne tried to explore the theoretical ridge between the two phenomena. He found out eventually that the gravitational force can overcome all interior pressure only when an object has been compressed in all directions. To express this realization, Thorne proposed his hoop conjecture, which describes an imploding star turning into a black hole when the critical circumference of the designed hoop can be placed around it and set into rotation. That is, any object of mass M around which a hoop of circumference \begin{matrix} \frac{4 \pi GM}{c^2} \end{matrix} can be spun must be a black hole.[28]:266–267[29]:189–190

As a tool to be used in both enterprises, astrophysics and theoretical physics, Thorne and his students have developed an unusual approach, called the "membrane paradigm", to the theory of black holes and used it to clarify the "Blandford-Znajek" mechanism by which black holes may power some quasars and active galactic nuclei.[28]:405–411

Thorne has investigated the quantum statistical mechanical origin of the entropy of a black hole. With his postdoc Wojciech Zurek, he showed that the entropy of a black hole is the logarithm of the number of ways that the hole could have been made.[28]:445–446

With Igor Novikov and Don Page he developed the general relativistic theory of thin accretion disks around black holes, and using this theory he deduced that with a doubling of its mass by such accretion a black hole will be spun up to 0.998 of the maximum spin allowed by general relativity, but not any farther. This is probably the maximum black-hole spin allowed in nature.[3]

Wormholes and time travel

A wormhole is a short cut connecting two separate regions in space. In the figure the green line shows the short way through wormhole, and the red line shows the long way through normal space.

Thorne and his co-workers at Caltech conducted scientific research on whether the laws of physics permit space and time to be multiply connected (can there exist classical, traversable wormholes and "time machines"?).[30] With Sung-Won Kim, Thorne identified a universal physical mechanism (the explosive growth of vacuum polarization of quantum fields), that may always prevent spacetime from developing closed timelike curves (i.e., prevent backward time travel).[31]

With Mike Morris and Ulvi Yurtsever he showed that traversable Lorentzian wormholes can exist in the structure of spacetime only if they are threaded by quantum fields in quantum states that violate the averaged null energy condition (i.e. have negative renormalized energy spread over a sufficiently large region).[32] This has triggered research to explore the ability of quantum fields to possess such extended negative energy. Recent calculations by Thorne indicate that simple masses passing through traversable wormholes could never engender paradoxes – there are no initial conditions that lead to paradox once time travel is introduced. If his results can be generalized, they would suggest that none of the supposed paradoxes formulated in time travel stories can actually be formulated at a precise physical level: that is, that any situation in a time travel story turns out to permit many consistent solutions.[citation needed]

Relativistic stars, multipole moments and other endeavors

With Anna Å»ytkow, Thorne predicted the existence of red supergiant stars with neutron-star cores (Thorne–Å»ytkow objects).[33] He laid the foundations for the theory of pulsations of relativistic stars and the gravitational radiation they emit. With James Hartle, Thorne derived from general relativity the laws of motion and precession of black holes and other relativistic bodies, including the influence of the coupling of their multipole moments to the spacetime curvature of nearby objects.[34] Thorne has also theoretically predicted the existence of universally antigravitating "exotic matter" – the element needed to accelerate the expansion rate of the universe, keep traversable wormhole "Star Gates" open and keep timelike geodesic free float "warp drives" working. With Clifford Will[35] and others of his students, he laid the foundations for the theoretical interpretation of experimental tests of relativistic theories of gravity – foundations on which Will and others then built. As of 2005, Thorne was interested in the origin of classical space and time from the quantum foam of quantum gravity theory.[citation needed]

Publications

Thorne has written and edited books on topics in gravitational theory and high-energy astrophysics. In 1973, he co-authored the textbook Gravitation with Charles Misner and John Wheeler;[36] that according to John C. Baez and Chris Hillman, is one of the great scientific books of all time and has inspired two generations of students.[37] In 1994, he published Black Holes and Time Warps: Einstein's Outrageous Legacy, a book for non-scientists for which he received numerous awards. This book has been published in six languages, and editions in Chinese, Italian, Czech, and Polish are in press.[when?] In 2014, Thorne published The Science of Interstellar in which he explains the science behind Christopher Nolan's film Interstellar; Nolan wrote the foreword to the book. In September, 2017, Thorne and Roger D. Blandford published Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics, a graduate-level textbook covering the six major areas of physics listed in the title.[38]

Thorne's articles has appeared in publications such as:
Thorne has published more than 150 articles in scholarly journals.[citation needed]

Honors and awards

Thorne has been elected to:[42]
He has been recognized by numerous awards including:
He has been a Woodrow Wilson Fellow, Danforth Fellow, Guggenheim Fellow, and Fulbright Fellow. He has also received the honorary degree of doctor of humane letters from Claremont Graduate University.

He was elected to hold the Lorentz chair for the year 2009 Leiden University, the Netherlands.
Thorne has served on:
Kip Thorne was selected by Time magazine in an annual list of the 100 most influential people in the American world in 2016.[50]

Adaptation in media

Partial bibliography

  • Thorne, K. S., in 300 Years of Gravitation, (Eds.) S. W. Hawking and W. Israel, 1987, (Chicago: Univ. of Chicago Press), Gravitational Radiation.
  • Thorne, K. S., Price, R. H. and Macdonald, D. M., Black Holes, The Membrane Paradigm, 1986, (New Haven: Yale Univ. Press).
  • Friedman, J., Morris, M. S., Novikov, I. D., Echeverria, F., Klinkhammer, G., Thorne, K. S. and Yurtsever, U., Physical Review D., 1990, (in press), Cauchy Problem in Spacetimes with Closed Timelike Curves.

Equality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Equality_...