Search This Blog

Thursday, September 27, 2018

Introduced species

From Wikipedia, the free encyclopedia
 
Cattle Bos primigenius taurus introduced worldwide
 
Sweet clover (Melilotus sp.), introduced and naturalized to the Americas from Europe as a forage and cover crop.

An introduced species (alien species, exotic species, non-indigenous species, or non-native species) is a species living outside its native distributional range, but which has arrived there by human activity, either deliberate or accidental. Non-native species can have various effects on the local ecosystem. Introduced species that become established and spread beyond the place of introduction are called invasive species. The impact of introduced species is highly variable. Some have a negative effect on a local ecosystem, while other introduced species may have no negative effect or only minor impact. Some species have been introduced intentionally to combat pests. They are called biocontrols and may be regarded as beneficial as an alternative to pesticides in agriculture for example. In some instances the potential for being beneficial or detrimental in the long run remains unknown.

The effects of introduced species on natural environments have gained much scrutiny from scientists, governments, farmers and others.

Terminology: introduced species and subsets





































The formal definition of an introduced species, from the United States Environmental Protection Agency, is A species that has been intentionally or inadvertently brought into a region or area. Also called an exotic or non-native species.

There are many terms associated with introduced species that represent subsets of introduced species, and the terminology associated with introduced species is now in flux for various reasons. Examples of these terms are acclimatized, adventive, naturalized, and immigrant species but those terms refer to a subset of introduced species. The term "invasive" is used to describe introduced species when the introduced species causes substantial damage to the area in which it was introduced.

Subset descriptions:
Acclimatized species: Introduced species that have changed physically and/or behaviorally in order to adjust to their new environment. Acclimatized species are not necessarily optimally adjusted to their new environment and may just be physically/behaviorally sufficient for the new environment.
Adventive species
Naturalized species (plants): A naturalized plant species refers to a non-native plant that does not need human help to reproduce and maintain its population in an area that it is not native to.
General description of introduced species:
In the broadest and most widely used sense, an introduced species is synonymous with non-native and therefore applies as well to most garden and farm organisms; these adequately fit the basic definition given above. However, some sources add to that basic definition "and are now reproducing in the wild",[3] which removes from consideration as introduced species that were raised or grown in gardens or farms that do not survive without tending by people. With respect to plants, these latter are in this case defined as either ornamental or cultivated plants.

Invasive species

Introduction of a species outside its native range is all that is required to be qualified as an "introduced species" such that one can distinguish between introduced species that may not occur except in cultivation, under domestication or captivity whereas others become established outside their native range and reproduce without human assistance. Such species might be termed "naturalized", "established", "wild non-native species". If they further spread beyond the place of introduction and cause damage to nearby species, they are called "invasive". The transition from introduction, to establishment and to invasion has been described in the context of plants. Introduced species are essentially "non-native" species. Invasive species are those introduced species that spreadwidely or quickly and cause harm, be that to the environment, human health, other valued resources or the economy. There have been calls from scientists to consider a species "invasive" only in terms of their spread and reproduction rather than the harm they may cause.

According to a practical definition, an invasive species is one that has been introduced and become a pest in its new location, spreading (invading) by natural means. The term is used to imply both a sense of urgency and actual or potential harm. For example, U.S. Executive Order 13112 (1999) defines "invasive species" as "an alien species whose introduction does or is likely to cause economic or environmental harm or harm to human health". The biological definition of invasive species, on the other hand, makes no reference to the harm they may cause, only to the fact that they spread beyond the area of original introduction.

Although some argue that "invasive" is a loaded word and harm is difficult to define, the fact of the matter is that organisms have and continue to be introduced to areas in which they are not native, sometimes with but usually without much regard to the harm that could result.

From a regulatory perspective, it is neither desirable nor practical to list as undesirable or outright ban all non-native species (although the State of Hawaii has adopted an approach that comes close to this). Regulations require a definitional distinction between non-natives that are deemed especially onerous and all others. Introduced pest species that are officially listed as invasive, best fit the definition of an invasive species. Early detection and rapid response is the most effective strategy for regulating a pest species and reducing economic and environmental impacts of an introduction.
 
In Great Britain, the Wildlife and Countryside Act 1981 prevents the introduction of any animal not naturally occurring in the wild or any of a list of both animals or plants introduced previously and proved to be invasive.

Nature of introductions

By definition, a species is considered "introduced" when its transport into an area outside of its native range is human mediated. Introductions by humans can be described as either intentional or accidental. Intentional introductions have been motivated by individuals or groups who either (1) believe that the newly introduced species will be in some way beneficial to humans in its new location or, (2) species are introduced intentionally but with no regard to the potential impact. Unintentional or accidental introductions are most often a byproduct of human movements, and are thus unbound to human motivations. Subsequent range expansion of introduced species may or may not involve human activity.

Wheat Triticum introduced worldwide from its place of origin Mesopotamia.

Intentional introductions

Species that humans intentionally transport to new regions can subsequently become successfully established in two ways. In the first case, organisms are purposely released for establishment in the wild. It is sometimes difficult to predict whether a species will become established upon release, and if not initially successful, humans have made repeated introductions to improve the probability that the species will survive and eventually reproduce in the wild. In these cases it is clear that the introduction is directly facilitated by human desires.

Male Lophura nycthemera (silver pheasant), a native of East Asia that has been introduced into parts of Europe for ornamental reasons.

In the second case, species intentionally transported into a new region may escape from captive or cultivated populations and subsequently establish independent breeding populations. Escaped organisms are included in this category because their initial transport to a new region is human motivated.

Motivations for intentional introductions

Economic: Perhaps the most common motivation for introducing a species into a new place is that of economic gain. Non-native species can become such a common part of an environment, culture, and even diet that little thought is given to their geographic origin. For example, soybeans, kiwi fruit, wheat, honey bees, and all livestock except the American bison and the turkey are non-native species to North America. Collectively, non-native crops and livestock comprise 98% of US food. These and other benefits from non-natives are so vast that, according to the Congressional Research Service, they probably exceed the costs.

Other examples of species introduced for the purposes of benefiting agriculture, aquaculture or other economic activities are widespread. Eurasian carp was first introduced to the United States as a potential food source. The apple snail was released in Southeast Asia with the intent that it be used as a protein source, and subsequently to places like Hawaii to establish a food industry. In Alaska, foxes were introduced to many islands to create new populations for the fur trade. About twenty species of African and European dung beetles have established themselves in Australia after deliberate introduction by the Australian Dung Beetle Project in an effort to reduce the impact of livestock manure. The timber industry promoted the introduction of Monterey pine (Pinus radiata) from California to Australia and New Zealand as a commercial timber crop. These examples represent only a small subsample of species that have been moved by humans for economic interests.

The rise in the use of genetically modified organisms has added another potential economic advantage to introducing new/modified species into different environments. Companies such as Monsanto that earn much of their profit through the selling of genetically modified seeds has added to the controversy surrounding introduced species. The effect of genetically modified organisms varies from organism to organism and is still being researched today, however the rise of genetically modified organisms has added complexity to the conversations surrounding introduced species.

Human enjoyment

Introductions have also been important in supporting recreation activities or otherwise increasing human enjoyment. Numerous fish and game animals have been introduced for the purposes of sport fishing and hunting (earthworms as invasive species). The introduced amphibian (Ambystoma tigrinum) that threatens the endemic California salamander (Ambystoma californiense) was introduced to California as a source of bait for fishermen. Pet animals have also been frequently transported into new areas by humans, and their escapes have resulted in several successful introductions, such as those of feral cats and parrots.

Many plants have been introduced with the intent of aesthetically improving public recreation areas or private properties. The introduced Norway maple for example occupies a prominent status in many of Canada's parks. The transport of ornamental plants for landscaping use has and continues to be a source of many introductions. Some of these species have escaped horticultural control and become invasive. Notable examples include water hyacinth, salt cedar, and purple loosestrife.
 
In other cases, species have been translocated for reasons of "cultural nostalgia," which refers to instances in which humans who have migrated to new regions have intentionally brought with them familiar organisms. Famous examples include the introduction of starlings to North America by Englishman Eugene Schieffelin, a lover of the works of Shakespeare and the chairman of the American Acclimatization Society, who, it is rumoured, wanted to introduce all of the birds mentioned in Shakespeare's plays into the United States. He deliberately released eighty starlings into Central Park in New York City in 1890, and another forty in 1891.

Yet another prominent example of an introduced species that became invasive is the European rabbit in Australia. Thomas Austin, a British landowner had rabbits released on his estate in Victoria because he missed hunting them. A more recent example is the introduction of the common wall lizard to North America by a Cincinnati boy, George Rau, around 1950 after a family vacation to Italy.

Addressing environmental problems

Intentional introductions have also been undertaken with the aim of ameliorating environmental problems. A number of fast spreading plants such as kudzu have been introduced as a means of erosion control. Other species have been introduced as biological control agents to control invasive species and involves the purposeful introduction of a natural enemy of the target species with the intention of reducing its numbers or controlling its spread.

A special case of introduction is the reintroduction of a species that has become locally endangered or extinct, done in the interests of conservation. Examples of successful reintroductions include wolves to Yellowstone National Park in the U.S., and the red kite to parts of England and Scotland. Introductions or translocations of species have also been proposed in the interest of genetic conservation, which advocates the introduction of new individuals into genetically depauperate populations of endangered or threatened species.

The above examples highlight the intent of humans to introduce species as a means of incurring some benefit. While these benefits have in some cases been realized, introductions have also resulted in unforeseen costs, particularly when introduced species take on characteristics of invasive species.

Unintentional introductions

Unintentional introductions occur when species are transported by human vectors. Increasing rates of human travel are providing accelerating opportunities for species to be accidentally transported into areas in which they are not considered native. For example, three species of rat (the black, Norway and Polynesian) have spread to most of the world as hitchhikers on ships, and arachnids such as scorpions and exotic spiders are sometimes transported to areas far beyond their native range by riding in shipments of tropical fruit. There are also numerous examples of marine organisms being transported in ballast water, one being the zebra mussel. Over 200 species have been introduced to the San Francisco Bay in this manner making it the most heavily invaded estuary in the world. There is also the accidental release of the Africanized honey bees (AHB), known colloquially as "killer bees" or Africanized bee to Brazil in 1957 and the Asian carps to the United States. The insect commonly known as the brown marmorated stink bug (Halyomorpha halys) was introduced accidentally in Pennsylvania. Another form of unintentional introductions is when an intentionally introduced plant carries a parasite or herbivore with it. Some become invasive, for example the oleander aphid, accidentally introduced with the ornamental plant, oleander.

Most accidentally or intentionally introduced species do not become invasive as the ones mentioned above. For instance Some 179 coccinellid species have been introduced to the U.S. and Canada; about 27 of these non-native species have become established, and only a handful can be considered invasive, including the intentionally introduced Harmonia axyridis, multicolored Asian lady beetle. However the small percentage of introduced species that become invasive can produce profound ecological changes. In North America Harmonia axyridis has become the most abundant lady beetle and probably accounts for more observations than all the native lady beetles put together.

Introduced plants

A horse chestnut tree, Aesculus hippocastanum. Native to Greece, it has been introduced across most of Europe and parts of North America as an ornamental plant. The horse chestnut tree is an example of a non-invasive introduced species, as while it is foreign it has naturalised and integrated into the ecosystems it was introduced to without apparent negative effects on native species there

Many non-native plants have been introduced into new territories, initially as either ornamental plants or for erosion control, stock feed, or forestry. Whether an exotic will become an invasive species is seldom understood in the beginning, and many non-native ornamentals languish in the trade for years before suddenly naturalizing and becoming invasive.

Peaches, for example, originated in China, and have been carried to much of the populated world. Tomatoes are native to the Andes. Squash (pumpkins), maize (corn), and tobacco are native to the Americas, but were introduced to the Old World. Many introduced species require continued human intervention to survive in the new environment. Others may become feral, but do not seriously compete with natives, but simply increase the biodiversity of the area.

Dandelions are also introduced species to North America.

A very troublesome marine species in southern Europe is the seaweed Caulerpa taxifolia. Caulerpa was first observed in the Mediterranean Sea in 1984, off the coast of Monaco. By 1997, it had covered some 50 km². It has a strong potential to overgrow natural biotopes, and represents a major risk for sublittoral ecosystems. The origin of the alga in the Mediterranean was thought to be either as a migration through the Suez Canal from the Red Sea, or as an accidental introduction from an aquarium. Another troublesome plant species is the terrestrial plant Phyla canescens, which was intentionally introduced into many countries in North America, Europe, and Africa as an ornamental plant. This species has become invasive in Australia, where it threatens native rare plants and causes erosion and soil slumping around river banks. It has also become invasive in France where it has been listed as an invasive plant species of concern in the Mediterranean region, where it can form monocultures that threaten critical conservation habitats.

Japanese knotweed grows profusely in many nations. Human beings introduced it into many places in the 19th century. It is a source of resveratrol, a dietary supplement.

Chickens Gallus gallus domesticus, from Asia, introduced in the rest of the world

Introduced animals

Bear in mind that most introduced species do not become invasive. Examples of introduced animals that have become invasive include the gypsy moth in eastern North America, the zebra mussel and alewife in the Great Lakes, the Canada goose and gray squirrel in Europe, the muskrat in Europe and Asia, the cane toad and red fox in Australia, nutria in North America, Eurasia, and Africa, and the common brushtail possum in New Zealand. In Taiwan, the success of introduced bird species was related to their native range size and body size; larger species with larger native range sizes were found to have larger introduced range sizes.

One notoriously devastating introduced species is the Small Indian Mongoose (Herpestes Javanicus Auropunctatus). Originating in a region encompassing Iran and India, it was introduced to the West Indies and Hawaii in the late 1800s for pest control. Since it has thrived on prey unequipped to deal with its speed, nearly leading to the local extinction of a variety of species.

Most commonly introduced species

Some species, such as the brown rat, house sparrow, ring-necked pheasant and European starling, have been introduced very widely. In addition there are some agricultural and pet species that frequently become feral; these include rabbits, dogs, ducks, goats, fish, pigs and cats.

Genetics

When a new species is introduced, the species could potentially breed with members of native species, producing hybrids. The effect of the creating of hybrids can range from having little effect, a negative effect, to having devastating effects on native species. Potential negative effects include hybrids that are less fit for their environment resulting in a population decrease. This was seen in the Atlantic Salmon population when high levels of escape from Atlantic Salmon farms into the wild populations resulted in hybrids that had reduced survival. Potential positive effects include adding to the genetic diversity of the population which can increase the adaptation ability of the population and increase the number of healthy individuals within a population. This was seen in the introduction of guppies in Trinidad to encourage population growth and introduce new alleles into the population. The results of this introduction included increased levels of heterozygosity and a larger population size.

On a planetary body

It has been hypothesized that invasive species of microbial life could contaminate a planetary body after the former is introduced by a space probe or spacecraft, either deliberately or unintentionally.

Keystone species

From Wikipedia, the free encyclopedia
 
The jaguar, a keystone, flagship, and umbrella species, and an apex predator

A keystone species is a species that has a disproportionately large effect on its environment relative to its abundance. Such species are described as playing a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. A keystone species is a plant or animal that plays a unique and crucial role in the way an ecosystem functions. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf, are also apex predators.

The role that a keystone species plays in its ecosystem is analogous to the role of a keystone in an arch. While the keystone is under the least pressure of any of the stones in an arch, the arch still collapses without it. Similarly, an ecosystem may experience a dramatic shift if a keystone species is removed, even though that species was a small part of the ecosystem by measures of biomass or productivity. It became a popular concept in conservation biology, alongside flagship and umbrella species. Although the concept is valued as a descriptor for particularly strong inter-species interactions, and it has allowed easier communication between ecologists and conservation policy-makers, it has been criticized for oversimplifying complex ecological systems.

History

Ochre seastars (Pisaster ochraceus), a keystone predator
California mussels (Mytilus californianus), the seastar's prey










The concept of the keystone species was introduced in 1969 by the zoologist Robert T. Paine. Paine developed the concept to explain his observations and experiments on the relationships between marine invertebrates of the intertidal zone (between the high and low tide lines), including starfish and mussels. He removed the starfish from an area, and documented the effects on the ecosystem. In his 1966 paper, Food Web Complexity and Species Diversity, Paine had described such a system in Makah Bay in Washington. In his 1969 paper, Paine proposed the keystone species concept, using Pisaster ochraceus, a species of starfish, and Mytilus californianus, a species of mussel, as a primary example. The concept became popular in conservation, and was deployed in a range of contexts and mobilized to engender support for conservation, especially where human activities had damaged ecosystems, such as by removing keystone predators.

Definitions

A keystone species was defined by Paine as a species that has a disproportionately large effect on its environment relative to its abundance. It has been defined operationally by R. D. Davic in 2003 as "a strongly interacting species whose top-down effect on species diversity and competition is large relative to its biomass dominance within a functional group."

A classic keystone species is a predator that prevents a particular herbivorous species from eliminating dominant plant species. If prey numbers are low, keystone predators can be even less abundant and still be effective. Yet without the predators, the herbivorous prey would explode in numbers, wipe out the dominant plants, and dramatically alter the character of the ecosystem. The exact scenario changes in each example, but the central idea remains that through a chain of interactions, a non-abundant species has an outsized impact on ecosystem functions. For example, the herbivorous weevil Euhrychiopsis lecontei is thought to have keystone effects on aquatic plant diversity by foraging on nuisance Eurasian watermilfoil in North American waters. Similarly, the wasp species Agelaia vicina has been labeled a keystone species for its unparalleled nest size, colony size, and high rate of brood production. The diversity of its prey and the quantity necessary to sustain its high rate of growth have a direct impact on other species around it.

The keystone concept is defined by its ecological effects, and these in turn make it important for conservation. In this it overlaps with several other species conservation concepts such as flagship species, indicator species, and umbrella species. For example, the jaguar is a charismatic big cat which meets all of these definitions:
The jaguar is an umbrella species, flagship species, and wilderness quality indicator. It promotes the goals of carnivore recovery, protecting and restoring connectivity through Madrean woodland and riparian areas, and protecting and restoring riparian areas. ... A reserve system that protects jaguars is an umbrella for many other species. ... the jaguar [is] a keystone in subtropical and tropical America ...
— David Maehr et al, 2001

Predators

Sea otters and kelp forests

Sea urchins like this purple sea urchin can damage kelp forests by chewing through kelp holdfasts
The sea otter is an important predator of sea urchins, making it a keystone species for the kelp forests.











Sea otters protect kelp forests from damage by sea urchins. When the sea otters of the North American west coast were hunted commercially for their fur, their numbers fell to such low levels – fewer than 1000 in the north Pacific ocean – that they were unable to control the sea urchin population. The urchins in turn grazed the holdfasts of kelp so heavily that the kelp forests largely disappeared, along with all the species that depended on them. Reintroducing the sea otters has enabled the kelp ecosystem to be restored. For example, in Southeast Alaska some 400 sea otters were released, and they have bred to form a population approaching 25,000.

The wolf, Yellowstone's apex predator

Riparian willow recovery at Blacktail Creek,
Yellowstone National Park, after reintroduction of wolves

Keystone predators may increase the biodiversity of communities by preventing a single species from becoming dominant. They can have a profound influence on the balance of organisms in a particular ecosystem. Introduction or removal of this predator, or changes in its population density, can have drastic cascading effects on the equilibrium of many other populations in the ecosystem. For example, grazers of a grassland may prevent a single dominant species from taking over.

The elimination of the gray wolf from Yellowstone National Park had profound impacts on the trophic pyramid. Without predation, herbivores began to over-graze many woody browse species, affecting the area's plant populations. In addition, wolves often kept animals from grazing in riparian areas, which protected beavers from having their food sources encroached upon. The removal of wolves had a direct effect on beaver populations, as their habitat became territory for grazing. Increased browsing on willows and conifers along Blacktail Creek due to a lack of predation caused channel incision because the beavers helped slow the water down, allowing soil to stay in place. Furthermore, predation keeps hydrological features such as creeks and streams in normal working order. When wolves were reintroduced, the beaver population and the whole riparian ecosystem recovered dramatically within a few years.

Sea stars and other non-apex predators

As described by Paine in 1966, some sea stars (e.g., Pisaster ochraceus) may prey on sea urchins, mussels, and other shellfish that have no other natural predators. If the sea star is removed from the ecosystem, the mussel population explodes uncontrollably, driving out most other species.

These creatures need not be apex predators. Sea stars are prey for sharks, rays, and sea anemones. Sea otters are prey for orca.

The jaguar, whose numbers in Central and South America have been classified as near threatened, acts as a keystone predator by its widely varied diet, helping to balance the mammalian jungle ecosystem with its consumption of 87 different species of prey. The lion is another keystone species.

Acorn banksia, Banksia prionotes, is the sole source of nectar for important pollinators, honeyeaters.

Mutualists

Keystone mutualists are organisms that participate in mutually beneficial interactions, the loss of which would have a profound impact upon the ecosystem as a whole. For example, in the Avon Wheatbelt region of Western Australia, there is a period of each year when Banksia prionotes (acorn banksia) is the sole source of nectar for honeyeaters, which play an important role in pollination of numerous plant species. Therefore, the loss of this one species of tree would probably cause the honeyeater population to collapse, with profound implications for the entire ecosystem. Another example is frugivores such as the cassowary, which spreads the seeds of many different trees, and some will not grow unless they have been through a cassowary.

Engineers

Prairie dog town. Drawing by Josiah Gregg, 1844

A term used alongside keystone is ecosystem engineer. In North America, the prairie dog is an ecosystem engineer. Prairie dog burrows provide the nesting areas for mountain plovers and burrowing owls. Prairie dog tunnel systems also help channel rainwater into the water table to prevent runoff and erosion, and can also serve to change the composition of the soil in a region by increasing aeration and reversing soil compaction that can be a result of cattle grazing. Prairie dogs also trim the vegetation around their colonies, perhaps to remove any cover for predators. Grazing species such as plains bison, pronghorn, and mule deer have shown a proclivity for grazing on the same land used by prairie dogs.

Beaver dam, an animal construction which has a transformative effect on the environment

The beaver is a well known ecosystem engineer and keystone species. It transforms its territory from a stream to a pond or swamp. Beavers affect the environment first altering the edges of riparian areas by cutting down older trees to use for their dams. This allows younger trees to take their place. Beaver dams alter the riparian area they are established in. Depending on topography, soils, and many factors, these dams change the riparian edges of streams and rivers into wetlands, meadows, or riverine forests. These dams have been shown to be beneficial to a myriad of species including amphibians, salmon, and song birds.

In the African savanna, the larger herbivores, especially the elephants, shape their environment. The elephants destroy trees, making room for the grass species. Without these animals, much of the savanna would turn into woodland.

Australian studies have found that parrotfish on the Great Barrier Reef are the only reef fish that consistently scrape and clean the coral on the reef. Without these animals, the Great Barrier Reef would be under severe strain.

Limitations

Although the concept of the keystone species has a value in describing particularly strong inter-species interactions, and for allowing easier communication between ecologists and conservation policy-makers, it has been criticized by L. S. Mills and colleagues for oversimplifying complex ecological systems. The term has been applied widely in different ecosystems and to predators, prey, and plants (primary producers), inevitably with differing ecological meanings. For instance, removing a predator may allow other animals to increase to the point where they wipe out other species; removing a prey species may cause predator populations to crash, or may allow predators to drive other prey species to extinction; and removing a plant species may result in the loss of animals that depend on it, like pollinators and seed dispersers. Beavers too have been called keystone, not for eating other species but for modifying the environment in ways that affected other species. The term has thus been given quite different meanings in different cases. In Mills's view, Paine's work showed that a few species could sometimes have extremely strong interactions within a particular ecosystem, but that does not automatically imply that other ecosystems have a similar structure.

Entropy (information theory)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Entropy_(information_theory) In info...