Search This Blog

Thursday, September 27, 2018

Directed panspermia

From Wikipedia, the free encyclopedia
 
Directed panspermia is the deliberate transport of microorganisms in space to be used as introduced species on lifeless but habitable astronomical objects.
 
Historically, Shklovskii and Sagan (1966) and Crick and Orgel (1973) hypothesized that life on the Earth may have been seeded deliberately by other civilizations. Conversely, Mautner and Matloff (1979) and Mautner (1995, 1997) proposed that humanity should seed other planetary systems, protoplanetary discs or star-forming clouds with microorganisms, to secure and expand our organic gene/protein lifeform. To avoid interference with local life, the targets may be young planetary systems where local life is unlikely. Directed panspermia can be motivated by biotic ethics that value the basic patterns of organic gene/protein life with its unique complexity and unity, and its drive for self-propagation.

Directed panspermia is becoming possible due to developments in solar sails, precise astrometry, the discovery of extrasolar planets, extremophiles and microbial genetic engineering. Cosmological projections suggest that life in space can then have a future.

History and motivation

An early example of the idea of directed panspermia dates to the early science fiction work Last and First Men by Olaf Stapledon, first published in 1930. It details the manner in which the last humans, upon discovering that the Solar System will soon be destroyed, send microscopic "seeds of a new humanity" towards potentially habitable areas of the universe.

In 1966 Shklovskii and Sagan speculated that life on Earth may have been seeded through directed panspermia by other civilisations. and in 1973 Crick and Orgel also discussed the concept. Conversely, Mautner and Matloff proposed in 1979, and Mautner examined in detail in 1995 and 1997 the technology and motivation to secure and expand our organic gene/protein life-form by directed panspermia missions to other planetary systems, protoplanetary discs and star-forming clouds. Technological aspects include propulsion by solar sails, deceleration by radiation pressure or viscous drag at the target, and capture of the colonizing micro-organisms by planets. A possible objection is potential interference with local life at the targets, but targeting young planetary systems where local life, especially advanced life, could not have started yet, avoids this problem.

Directed panspermia may be motivated by the desire to perpetuate the common genetic heritage of all terrestrial life. This motivation was formulated as biotic ethics that value the common gene/protein patterns of self propagation, and as panbiotic ethics that aim to secure and expand life in the universe.

Strategies and targets

Directed panspermia may be aimed at nearby young planetary systems such as Alpha PsA (25 ly (light-years) away) and Beta Pictoris (63.4 ly), both of which show accretion discs and signs of comets and planets. More suitable targets may be identified by space telescopes such as the Kepler mission that will identify nearby star systems with habitable astronomical objects. Alternatively, directed panspermia may aim at star-forming interstellar clouds such as Rho Ophiuchi cloud complex (427 ly), that contains clusters of new stars too young to originate local life (425 infrared-emitting young stars aged 100,000 to a million years). Such clouds contain zones with various densities (diffuse cloud < dark fragment < dense core < protostellar condensation < accretion disc) that could selectively capture panspermia capsules of various sizes.

Habitable astronomical objects or habitable zones about nearby stars may be targeted by large (10 kg) missions where microbial capsules are bundled and shielded. Upon arrival, microbial capsules in the payload may be dispersed in orbit for capture by planets. Alternatively, small microbial capsules may be sent in large swarms to habitable planets, protoplanetary discs, or zones of various density in interstellar clouds. The microbial swarm provides minimal shielding but does not require high precision targeting, especially when aiming at large interstellar clouds.

Propulsion and launch

Panspermia missions should deliver microorganisms that can grow in the new habitats. They may be sent in 10−10 kg, 60 μm diameter capsules that allow intact atmospheric entry at the target planets, each containing 100,000 diverse microorganisms suited to various environments. Both for bundled large mass missions and microbial capsule swarms, solar sails may provide the most simple propulsion for interstellar transit. Spherical sails will avoid orientation control both at launch and at deceleration at the targets.

For bundled shielded missions to nearby star systems, solar sails with thicknesses of 10−7 m and areal densities of 0.0001 kg/m2 seem feasible, and sail/payload mass ratios of 10:1 will allow exit velocities near the maximum possible for such sails. Sails with about 540 m radius and area of 106 m2 can impart 10 kg payloads with interstellar cruise velocities of 0.0005 c (1.5x105 m/s) when launched from 1 au (astronomical unit). At this speed, voyage to the Alpha PsA star will last 50,000 y, and to the Rho Opiuchus cloud, 824,000 years.

At the targets, the microbial payload would decompose into 1011 (100 billion) 30 µm capsules to increase the probability of capture. In the swarm strategy to protoplanetary discs and interstellar clouds, 1 mm radius, 4.2x10−6 kg microbial capsules are launched from 1 au using sails of 4.2x10−5 kg with radius of 0.37 m and area of 0.42 m2 to achieve cruising speeds of 0.0005 c. At the target, each capsule decomposes into 4,000 delivery microcapsules of 10−10 kg and of 30 micrometer radius that allow intact entry to planetary atmospheres.

For missions that do not encounter dense gas zones, such as interstellar transit to mature planets or to habitable zones about stars, the microcapsules can be launched directly from 1 au using 10−9 kg sails of 1.8 mm radius to achieve velocities of 0.0005 c to be decelerated by radiation pressure for capture at the targets. The 1 mm and 30 micrometer radius vehicles and payloads are needed in large numbers for both the bundled and swarm missions. These capsules and the miniature sails for swarm missions can be mass manufactured readily.

Astrometry and targeting

The panspermia vehicles would be aimed at moving targets whose locations at the time of arrival must be predicted. This can be calculated using their measured proper motions, their distances, and the cruising speeds of the vehicles. The positional uncertainty and size of the target object then allow estimating the probability that the panspermia vehicles will arrive at their targets. The positional uncertainty δy (m) of the target at arrival time is given by equation (1), where α(p) is the resolution of proper motion of the target object (arcsec/year), d is the distance from the Earth(m) and v is the velocity of the vehicle (m/s)
δy = 1.5×10−13 αp(d2/v)
Given the positional uncertainty, the vehicles may be launched with a scatter in a circle about the predicted position of the target. The probability Ptarget for a capsule to hit the target area with radius rtarget (m) is the given by the ratio of the targeting scatter and the target area.
Ptarget = Atarget/π(δy)2 = 4.4×1025 rtarget2v2/(αp2d4)
To apply these equations, the precision of astrometry of star proper motion of 0.00001 arcsec/year, and the solar sail vehicle velocity of 0.0005 c (1.5 × 105 m/s) may be expected within a few decades. For a chosen planetary system, the area Atarget may be the width of the habitable zone, while for interstellar clouds, it may be the sizes of the various density zones of the cloud.

Deceleration and capture

Solar sail missions to Sun-like stars can decelerate by radiation pressure in reverse dynamics of the launch. The sails must be properly oriented at arrival, but orientation control may be avoided using spherical sails. The vehicles must approach the target Sun-like stars at radial distances similar to the launch, about 1 au. After the vehicles are captured in orbit, the microbial capsules may be dispersed in a ring orbiting the star, some within the gravitational capture zone of planets. Missions to accretion discs of planets and to star-forming clouds will decelerate by viscous drag at the rate dv/dt as determined by equation (3), where v is the velocity, rc the radius of the spherical capsule, ρc is density of the capsule and ρm is the density of the medium.
dv/dt = -(3v2/2ρc) ρ m/rc
A vehicle entering the cloud with a velocity of 0.0005 c (1.5 × 105 m/s) will be captured when decelerated to 2,000 m/s, the typical speed of grains in the cloud. The size of the capsules can be designed to stop at zones with various densities in the interstellar cloud. Simulations show that a 35 micron radius capsule will be captured in a dense core, and a 1 mm radius capsule in a protostellar condensation in the cloud. As for approach to accretion discs about stars, a millimetre size capsule entering the 1000 km thick disc face at 0.0005 c will be captured at 100 km into the disc. Therefore, 1 mm sized objects may be the best for seeding protoplanetary discs about new stars and protostellar condensations in interstellar clouds.

The captured panspermia capsules will mix with dust. A fraction of the dust and a proportional fraction of the captured capsules will be delivered to astronomical objects. Dispersing the payload into delivery microcapsules will increase the chance that some will be delivered to habitable objects. Particles of 0.6 - 60 micron radius can remain cold enough to preserve organic matter during atmospheric entry to planets or moons. Accordingly, each 1 mm, 4.2 ×10−6 kg capsule captured in the viscous medium can be dispersed into 42,000 delivery microcapsules of 30 micron radius, each weighing 10−10 kg and containing 100,000 microbes. These objects will not be ejected from the dust cloud by radiation pressure from the star, and will remain mixed with the dust. A fraction of the dust, containing the captured microbial capsules, will be captured by planets or moons, or captured in comets and delivered by them later to planets. The probability of capture, Pcapture, can be estimated from similar processes, such as the capture of interplanetary dust particles by planets and moons in our Solar System, where 10−5 of the Zodiacal cloud maintained by comet ablation, and also a similar fraction of asteroid fragments, is collected by the Earth. The probability of capture of an initially launched capsule by a planet (or astronomical object) Pplanet is given by the equation below, where Ptarget is the probability that the capsule reaches the target accretion disc or cloud zone, and Pcapture is the probability of capture from this zone by a planet.
Pplanet = Ptarget × Pcapture
The probability Pplanet depends on the mixing ratio of the capsules with the dust and on the fraction of the dust delivered to planets. These variables can be estimated for capture in planetary accretion discs or in various zones in the interstellar cloud.

Biomass requirements

After determining the composition of chosen meteorites, astroecologists performed laboratory experiments that suggest that many colonizing microorganisms and some plants could obtain most of their chemical nutrients from asteroid and cometary materials. However, the scientists noted that phosphate (PO4) and nitrate (NO3–N) critically limit nutrition to many terrestrial lifeforms. For successful missions, enough biomass must be launched and captured for a reasonable chance to initiate life at the target astronomical object. An optimistic requirement is the capture by the planet of 100 capsules with 100,000 microorganisms each, for a total of 10 million organisms with a total biomass of 10−8 kg.

The required biomass to launch for a successful mission is given by following equation. mbiomass (kg) = 10−8 / Pplanet Using the above equations for Ptarget with transit velocities of 0.0005 c, the known distances to the targets, and the masses of the dust in the target regions then allows calculating the biomass that needs to be launched for probable success. With these parameters, as little as 1 gram of biomass (1012 microorganisms) could seed Alpha PsA and 4.5 gram could seed Beta Pictoris. More biomass needs to be launched to the Rho Ophiuchi cloud complex, mainly because its larger distance. A biomass on the order of 300 tons would need to be launched to seed a protostellar condensation or an accretion disc, but two hundred kilograms would be sufficient to seed a young stellar object in the Rho Ophiuchi cloud complex.

Consequently, as long as the required physical range of tolerance are met (e.g.: growth temperature, cosmic radiation shielding, atmosphere and gravity), lifeforms viable on Earth may be chemically nourished by watery asteroid and planetary materials in this and other planetary systems.

Biological payload

The seeding organisms need to survive and multiply in the target environments and establish a viable biosphere. Some of the new branches of life may develop intelligent beings who will further expand life in the galaxy. The messenger microorganisms may find diverse environments, requiring extremophile microorganisms with a range of tolerances, including thermophile (high temperature), psychrophile (low temperature), acidophile (high acidity), halophile (high salinity), oligotroph (low nutrient concentration), xerophile (dry environments) and radioresistant (high radiation tolerance) microorganisms. Genetic engineering may produce polyextremophile microorganisms with several tolerances. The target atmospheres will probably lack oxygen, so the colonizers should include anaerobic microorganisms. Colonizing anaerobic cyanobacteria may later establish atmospheric oxygen that is needed for higher evolution, as it happened on Earth. Aerobic organisms in the biological payload may be delivered to the astronomical objects later when the conditions are right, by comets that captured and preserved the capsules.

The development of eukaryote microorganisms was a major bottleneck to higher evolution on Earth. Including eukaryote microorganisms in the payload can bypass this barrier. Multicellular organisms are even more desirable, but being much heavier than bacteria, fewer can be sent. Hardy tardigrades (water-bears) may be suitable but they are similar to arthropods and would lead to insects. The body-plan of rotifers could lead to higher animals, if the rotifers can be hardened to survive interstellar transit.

Microorganisms or capsules captured in the accretion disc can be captured along with the dust into asteroids. During aqueous alteration the asteroids contain water, inorganic salts and organics, and astroecology experiments with meteorites showed that algae, bacteria, fungi and plant cultures can grow in the asteroids in these media. Microorganisms can then spread in the accreting solar nebula, and will be delivered to planets in comets and in asteroids. The microorganisms can grow on nutrients in the carrier comets and asteroids in the aqueous planetary environments, until they adapt to the local environments and nutrients on the planets.

Signal in the genome

A number of publications since 1979 have proposed the idea that directed panspermia could be demonstrated to be the origin of all life on Earth if a distinctive 'signature' message were found, deliberately implanted into either the genome or the genetic code of the first microorganisms by our hypothetical progenitor. In 2013 a team of physicists claimed that they had found mathematical and semiotic patterns in the genetic code which, they believe, is evidence for such a signature. This claim has not been substantiated by further study, or accepted by the wider scientific community. One outspoken critic is biologist PZ Myers who said, writing in Pharyngula:
Unfortunately, what they’ve so honestly described is good old honest garbage ... Their methods failed to recognize a well-known functional association in the genetic code; they did not rule out the operation of natural law before rushing to falsely infer design ... We certainly don’t need to invoke panspermia. Nothing in the genetic code requires design, and the authors haven’t demonstrated otherwise.
In a later peer-reviewed article, the authors address the operation of natural law in an extensive statistical test, and draw the same conclusion as in the previous article. In special sections they also discuss methodological concerns raised by PZ Myers and some others.

Concept missions

Significantly, panspermia missions can be launched by present or near-future technologies. However, more advanced technologies may be also used when these become available. The biological aspects of directed panspermia may be improved by genetic engineering to produce hardy polyextremophile microorganisms and multicellular organisms, suitable to diverse astronomical objects environments. Hardy polyextremophile anaerobic multicellular eukaryots with high radiation resistance, that can form a self-sustaining ecosystem with cyanobacteria, would combine ideally the features needed for survival and higher evolution.

For advanced missions, ion thrusters or solar sails using beam-powered propulsion accelerated by Earth-based lasers can achieve speeds up to 0.01 c (3 x 106 m/s). Robots may provide in-course navigation, may control the reviving of the frozen microbes periodically during transit to repair radiation damage, and may also choose suitable targets. These propulsion methods and robotics are under development.

Microbial payloads may be also planted on hyperbolic comets bound for interstellar space. This strategy follows the mechanisms of natural panspermia by comets, as suggested by Hoyle and Wikramasinghe. The microorganisms would be frozen in the comets at interstellar temperatures of a few kelvins and protected from radiation for eons. It is unlikely that an ejected comet will be captured in another planetary system, but the probability can be increased by allowing the microbes to multiply during warm perihelion approach to the Sun, then fragmenting the comet. A 1 km radius comet would yield 4.2 x 1012 one-kg seeded fragments, and rotating the comet would eject these shielded icy objects in random directions into the galaxy. This increases a trillion-fold the probability of capture in another planetary system, compared with transport by a single comet. Such manipulation of comets is a speculative long-term prospect.

Motivation and ethics

Directed panspermia aims to secure and expand our family of organic gene/protein life. It may be motivated by the desire to perpetuate the common genetic heritage of all terrestrial life. This motivation was formulated as biotic ethics, that value the common gene/protein patterns of organic life, and as panbiotic ethics that aim to secure and expand life in the universe.

Molecular biology shows complex patterns common to all cellular life, a common genetic code and a common mechanism to translate it into proteins, which in turn help to reproduce the DNA code. Also, shared are the basic mechanisms of energy use and material transport. These self-propagating patterns and processes are the core of organic gene/protein life. Life is unique because of this complexity, and because of the exact coincidence of the laws of physics that allow life to exist. Also unique to life is the pursuit of self-propagation, which implies a human purpose to secure and expand life. These objectives are best secured in space, suggesting a panbiotic ethics aimed to secure this future.

The longevity of human space-faring technological society is uncertain, and it would be prudent to start a directed panspermia program promptly. This program could secure life and allow it to expand in space and in biodiversity with an immense future for trillions of eons.

Objections and counterarguments

The main objection to directed panspermia is that it may interfere with local life at the targets. The colonizing microorganisms may out-compete local life for resources, or infect and harm local organisms. However, this probability can be minimized by targeting newly forming planetary systems, accretion discs and star-forming clouds, where local life, and especially advanced life, could not have emerged yet. If there is local life that is fundamentally different, the colonizing microorganisms may not harm it. If there is local organic gene/protein life, it may exchange genes with the colonizing microorganisms, increasing galactic biodiversity.

Another objection is that space should be left pristine for scientific studies, a reason for planetary quarantine. However, directed panspermia may reach only a few, at most a few hundred new stars, still leaving a hundred billion pristine for local life and for research. A technical objection is the uncertain survival of the messenger organisms during long interstellar transit. Research by simulations, and the development on hardy colonizers is needed to address this questions.

A third argument against engaging in directed panspermia derives from the view that wild animals do not —on the average— have lives worth living, and thus spreading life would be morally wrong. Ng supports this view, focusing mainly on the fact that almost all animal species have many more offspring than are needed to replace them. The large number of offspring implies that most of them will die before reaching reproductive age, providing only a short window of life before an often unpleasant death. Tomasik agrees, but places significant weight on the extreme suffering many animals experience, especially at death. Plant responds in detail to Tomasik, arguing that because of the vast number of diverse species and the difficulty of rating animal pain and pleasure, we cannot determine if animals have lives worth living. If wild animal lives are overall negative in quality (with more suffering than pleasure), then spreading life through panspermia would be spreading needless pain. From this perspective, directed panspermia is to be strictly avoided, unless and until we can determine that the lives of the animals generated by it would average positive.

In popular culture

The discovery of an ancient directed panspermia effort is the central theme of "The Chase," an episode of Star Trek: The Next Generation. In the story, Captain Picard must work to complete the penultimate research of his late archaeology professor's career. That professor, Galen, had discovered that DNA fragments seeded into the primordial genetic material of 19 worlds could be rearranged to assemble a computer algorithm. Amid competition (and, later, with begrudging cooperation) from Cardassian, Klingon and Romulan expeditions also exploring Galen's research clues, the Enterprise crew discovers that an alien progenitor race had indeed, 4 billion years prior, seeded genetic material across many star systems, thus directing the evolution of many humanoid species.

Genesis project

The German physicist Claudius Gros has proposed that the technology developed by the Breakthrough Starshot initiative may be utilized in a second step to establish a biosphere of unicellular microbes on otherwise only transiently habitable astronomical objects. The aim of this initiative, the Genesis project, would be to fast forward evolution to a stage equivalent of the precambrian period on Earth. Gros argues that the Genesis project would be realizable within 50-100 years, using low-weight probes equipped with a miniaturized gene laboratory for the in situ cell synthesis of the microbes. The Genesis project extends directed panspermia to eukaryotic life, arguing that it is more likely that complex life is rare,  and not bacterial life.

Introduced species

From Wikipedia, the free encyclopedia
 
Cattle Bos primigenius taurus introduced worldwide
 
Sweet clover (Melilotus sp.), introduced and naturalized to the Americas from Europe as a forage and cover crop.

An introduced species (alien species, exotic species, non-indigenous species, or non-native species) is a species living outside its native distributional range, but which has arrived there by human activity, either deliberate or accidental. Non-native species can have various effects on the local ecosystem. Introduced species that become established and spread beyond the place of introduction are called invasive species. The impact of introduced species is highly variable. Some have a negative effect on a local ecosystem, while other introduced species may have no negative effect or only minor impact. Some species have been introduced intentionally to combat pests. They are called biocontrols and may be regarded as beneficial as an alternative to pesticides in agriculture for example. In some instances the potential for being beneficial or detrimental in the long run remains unknown.

The effects of introduced species on natural environments have gained much scrutiny from scientists, governments, farmers and others.

Terminology: introduced species and subsets





































The formal definition of an introduced species, from the United States Environmental Protection Agency, is A species that has been intentionally or inadvertently brought into a region or area. Also called an exotic or non-native species.

There are many terms associated with introduced species that represent subsets of introduced species, and the terminology associated with introduced species is now in flux for various reasons. Examples of these terms are acclimatized, adventive, naturalized, and immigrant species but those terms refer to a subset of introduced species. The term "invasive" is used to describe introduced species when the introduced species causes substantial damage to the area in which it was introduced.

Subset descriptions:
Acclimatized species: Introduced species that have changed physically and/or behaviorally in order to adjust to their new environment. Acclimatized species are not necessarily optimally adjusted to their new environment and may just be physically/behaviorally sufficient for the new environment.
Adventive species
Naturalized species (plants): A naturalized plant species refers to a non-native plant that does not need human help to reproduce and maintain its population in an area that it is not native to.
General description of introduced species:
In the broadest and most widely used sense, an introduced species is synonymous with non-native and therefore applies as well to most garden and farm organisms; these adequately fit the basic definition given above. However, some sources add to that basic definition "and are now reproducing in the wild",[3] which removes from consideration as introduced species that were raised or grown in gardens or farms that do not survive without tending by people. With respect to plants, these latter are in this case defined as either ornamental or cultivated plants.

Invasive species

Introduction of a species outside its native range is all that is required to be qualified as an "introduced species" such that one can distinguish between introduced species that may not occur except in cultivation, under domestication or captivity whereas others become established outside their native range and reproduce without human assistance. Such species might be termed "naturalized", "established", "wild non-native species". If they further spread beyond the place of introduction and cause damage to nearby species, they are called "invasive". The transition from introduction, to establishment and to invasion has been described in the context of plants. Introduced species are essentially "non-native" species. Invasive species are those introduced species that spreadwidely or quickly and cause harm, be that to the environment, human health, other valued resources or the economy. There have been calls from scientists to consider a species "invasive" only in terms of their spread and reproduction rather than the harm they may cause.

According to a practical definition, an invasive species is one that has been introduced and become a pest in its new location, spreading (invading) by natural means. The term is used to imply both a sense of urgency and actual or potential harm. For example, U.S. Executive Order 13112 (1999) defines "invasive species" as "an alien species whose introduction does or is likely to cause economic or environmental harm or harm to human health". The biological definition of invasive species, on the other hand, makes no reference to the harm they may cause, only to the fact that they spread beyond the area of original introduction.

Although some argue that "invasive" is a loaded word and harm is difficult to define, the fact of the matter is that organisms have and continue to be introduced to areas in which they are not native, sometimes with but usually without much regard to the harm that could result.

From a regulatory perspective, it is neither desirable nor practical to list as undesirable or outright ban all non-native species (although the State of Hawaii has adopted an approach that comes close to this). Regulations require a definitional distinction between non-natives that are deemed especially onerous and all others. Introduced pest species that are officially listed as invasive, best fit the definition of an invasive species. Early detection and rapid response is the most effective strategy for regulating a pest species and reducing economic and environmental impacts of an introduction.
 
In Great Britain, the Wildlife and Countryside Act 1981 prevents the introduction of any animal not naturally occurring in the wild or any of a list of both animals or plants introduced previously and proved to be invasive.

Nature of introductions

By definition, a species is considered "introduced" when its transport into an area outside of its native range is human mediated. Introductions by humans can be described as either intentional or accidental. Intentional introductions have been motivated by individuals or groups who either (1) believe that the newly introduced species will be in some way beneficial to humans in its new location or, (2) species are introduced intentionally but with no regard to the potential impact. Unintentional or accidental introductions are most often a byproduct of human movements, and are thus unbound to human motivations. Subsequent range expansion of introduced species may or may not involve human activity.

Wheat Triticum introduced worldwide from its place of origin Mesopotamia.

Intentional introductions

Species that humans intentionally transport to new regions can subsequently become successfully established in two ways. In the first case, organisms are purposely released for establishment in the wild. It is sometimes difficult to predict whether a species will become established upon release, and if not initially successful, humans have made repeated introductions to improve the probability that the species will survive and eventually reproduce in the wild. In these cases it is clear that the introduction is directly facilitated by human desires.

Male Lophura nycthemera (silver pheasant), a native of East Asia that has been introduced into parts of Europe for ornamental reasons.

In the second case, species intentionally transported into a new region may escape from captive or cultivated populations and subsequently establish independent breeding populations. Escaped organisms are included in this category because their initial transport to a new region is human motivated.

Motivations for intentional introductions

Economic: Perhaps the most common motivation for introducing a species into a new place is that of economic gain. Non-native species can become such a common part of an environment, culture, and even diet that little thought is given to their geographic origin. For example, soybeans, kiwi fruit, wheat, honey bees, and all livestock except the American bison and the turkey are non-native species to North America. Collectively, non-native crops and livestock comprise 98% of US food. These and other benefits from non-natives are so vast that, according to the Congressional Research Service, they probably exceed the costs.

Other examples of species introduced for the purposes of benefiting agriculture, aquaculture or other economic activities are widespread. Eurasian carp was first introduced to the United States as a potential food source. The apple snail was released in Southeast Asia with the intent that it be used as a protein source, and subsequently to places like Hawaii to establish a food industry. In Alaska, foxes were introduced to many islands to create new populations for the fur trade. About twenty species of African and European dung beetles have established themselves in Australia after deliberate introduction by the Australian Dung Beetle Project in an effort to reduce the impact of livestock manure. The timber industry promoted the introduction of Monterey pine (Pinus radiata) from California to Australia and New Zealand as a commercial timber crop. These examples represent only a small subsample of species that have been moved by humans for economic interests.

The rise in the use of genetically modified organisms has added another potential economic advantage to introducing new/modified species into different environments. Companies such as Monsanto that earn much of their profit through the selling of genetically modified seeds has added to the controversy surrounding introduced species. The effect of genetically modified organisms varies from organism to organism and is still being researched today, however the rise of genetically modified organisms has added complexity to the conversations surrounding introduced species.

Human enjoyment

Introductions have also been important in supporting recreation activities or otherwise increasing human enjoyment. Numerous fish and game animals have been introduced for the purposes of sport fishing and hunting (earthworms as invasive species). The introduced amphibian (Ambystoma tigrinum) that threatens the endemic California salamander (Ambystoma californiense) was introduced to California as a source of bait for fishermen. Pet animals have also been frequently transported into new areas by humans, and their escapes have resulted in several successful introductions, such as those of feral cats and parrots.

Many plants have been introduced with the intent of aesthetically improving public recreation areas or private properties. The introduced Norway maple for example occupies a prominent status in many of Canada's parks. The transport of ornamental plants for landscaping use has and continues to be a source of many introductions. Some of these species have escaped horticultural control and become invasive. Notable examples include water hyacinth, salt cedar, and purple loosestrife.
 
In other cases, species have been translocated for reasons of "cultural nostalgia," which refers to instances in which humans who have migrated to new regions have intentionally brought with them familiar organisms. Famous examples include the introduction of starlings to North America by Englishman Eugene Schieffelin, a lover of the works of Shakespeare and the chairman of the American Acclimatization Society, who, it is rumoured, wanted to introduce all of the birds mentioned in Shakespeare's plays into the United States. He deliberately released eighty starlings into Central Park in New York City in 1890, and another forty in 1891.

Yet another prominent example of an introduced species that became invasive is the European rabbit in Australia. Thomas Austin, a British landowner had rabbits released on his estate in Victoria because he missed hunting them. A more recent example is the introduction of the common wall lizard to North America by a Cincinnati boy, George Rau, around 1950 after a family vacation to Italy.

Addressing environmental problems

Intentional introductions have also been undertaken with the aim of ameliorating environmental problems. A number of fast spreading plants such as kudzu have been introduced as a means of erosion control. Other species have been introduced as biological control agents to control invasive species and involves the purposeful introduction of a natural enemy of the target species with the intention of reducing its numbers or controlling its spread.

A special case of introduction is the reintroduction of a species that has become locally endangered or extinct, done in the interests of conservation. Examples of successful reintroductions include wolves to Yellowstone National Park in the U.S., and the red kite to parts of England and Scotland. Introductions or translocations of species have also been proposed in the interest of genetic conservation, which advocates the introduction of new individuals into genetically depauperate populations of endangered or threatened species.

The above examples highlight the intent of humans to introduce species as a means of incurring some benefit. While these benefits have in some cases been realized, introductions have also resulted in unforeseen costs, particularly when introduced species take on characteristics of invasive species.

Unintentional introductions

Unintentional introductions occur when species are transported by human vectors. Increasing rates of human travel are providing accelerating opportunities for species to be accidentally transported into areas in which they are not considered native. For example, three species of rat (the black, Norway and Polynesian) have spread to most of the world as hitchhikers on ships, and arachnids such as scorpions and exotic spiders are sometimes transported to areas far beyond their native range by riding in shipments of tropical fruit. There are also numerous examples of marine organisms being transported in ballast water, one being the zebra mussel. Over 200 species have been introduced to the San Francisco Bay in this manner making it the most heavily invaded estuary in the world. There is also the accidental release of the Africanized honey bees (AHB), known colloquially as "killer bees" or Africanized bee to Brazil in 1957 and the Asian carps to the United States. The insect commonly known as the brown marmorated stink bug (Halyomorpha halys) was introduced accidentally in Pennsylvania. Another form of unintentional introductions is when an intentionally introduced plant carries a parasite or herbivore with it. Some become invasive, for example the oleander aphid, accidentally introduced with the ornamental plant, oleander.

Most accidentally or intentionally introduced species do not become invasive as the ones mentioned above. For instance Some 179 coccinellid species have been introduced to the U.S. and Canada; about 27 of these non-native species have become established, and only a handful can be considered invasive, including the intentionally introduced Harmonia axyridis, multicolored Asian lady beetle. However the small percentage of introduced species that become invasive can produce profound ecological changes. In North America Harmonia axyridis has become the most abundant lady beetle and probably accounts for more observations than all the native lady beetles put together.

Introduced plants

A horse chestnut tree, Aesculus hippocastanum. Native to Greece, it has been introduced across most of Europe and parts of North America as an ornamental plant. The horse chestnut tree is an example of a non-invasive introduced species, as while it is foreign it has naturalised and integrated into the ecosystems it was introduced to without apparent negative effects on native species there

Many non-native plants have been introduced into new territories, initially as either ornamental plants or for erosion control, stock feed, or forestry. Whether an exotic will become an invasive species is seldom understood in the beginning, and many non-native ornamentals languish in the trade for years before suddenly naturalizing and becoming invasive.

Peaches, for example, originated in China, and have been carried to much of the populated world. Tomatoes are native to the Andes. Squash (pumpkins), maize (corn), and tobacco are native to the Americas, but were introduced to the Old World. Many introduced species require continued human intervention to survive in the new environment. Others may become feral, but do not seriously compete with natives, but simply increase the biodiversity of the area.

Dandelions are also introduced species to North America.

A very troublesome marine species in southern Europe is the seaweed Caulerpa taxifolia. Caulerpa was first observed in the Mediterranean Sea in 1984, off the coast of Monaco. By 1997, it had covered some 50 km². It has a strong potential to overgrow natural biotopes, and represents a major risk for sublittoral ecosystems. The origin of the alga in the Mediterranean was thought to be either as a migration through the Suez Canal from the Red Sea, or as an accidental introduction from an aquarium. Another troublesome plant species is the terrestrial plant Phyla canescens, which was intentionally introduced into many countries in North America, Europe, and Africa as an ornamental plant. This species has become invasive in Australia, where it threatens native rare plants and causes erosion and soil slumping around river banks. It has also become invasive in France where it has been listed as an invasive plant species of concern in the Mediterranean region, where it can form monocultures that threaten critical conservation habitats.

Japanese knotweed grows profusely in many nations. Human beings introduced it into many places in the 19th century. It is a source of resveratrol, a dietary supplement.

Chickens Gallus gallus domesticus, from Asia, introduced in the rest of the world

Introduced animals

Bear in mind that most introduced species do not become invasive. Examples of introduced animals that have become invasive include the gypsy moth in eastern North America, the zebra mussel and alewife in the Great Lakes, the Canada goose and gray squirrel in Europe, the muskrat in Europe and Asia, the cane toad and red fox in Australia, nutria in North America, Eurasia, and Africa, and the common brushtail possum in New Zealand. In Taiwan, the success of introduced bird species was related to their native range size and body size; larger species with larger native range sizes were found to have larger introduced range sizes.

One notoriously devastating introduced species is the Small Indian Mongoose (Herpestes Javanicus Auropunctatus). Originating in a region encompassing Iran and India, it was introduced to the West Indies and Hawaii in the late 1800s for pest control. Since it has thrived on prey unequipped to deal with its speed, nearly leading to the local extinction of a variety of species.

Most commonly introduced species

Some species, such as the brown rat, house sparrow, ring-necked pheasant and European starling, have been introduced very widely. In addition there are some agricultural and pet species that frequently become feral; these include rabbits, dogs, ducks, goats, fish, pigs and cats.

Genetics

When a new species is introduced, the species could potentially breed with members of native species, producing hybrids. The effect of the creating of hybrids can range from having little effect, a negative effect, to having devastating effects on native species. Potential negative effects include hybrids that are less fit for their environment resulting in a population decrease. This was seen in the Atlantic Salmon population when high levels of escape from Atlantic Salmon farms into the wild populations resulted in hybrids that had reduced survival. Potential positive effects include adding to the genetic diversity of the population which can increase the adaptation ability of the population and increase the number of healthy individuals within a population. This was seen in the introduction of guppies in Trinidad to encourage population growth and introduce new alleles into the population. The results of this introduction included increased levels of heterozygosity and a larger population size.

On a planetary body

It has been hypothesized that invasive species of microbial life could contaminate a planetary body after the former is introduced by a space probe or spacecraft, either deliberately or unintentionally.

Nature religion

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Nature_religion An aukuras , a type o...