Search This Blog

Friday, November 23, 2018

Charles Babbage

From Wikipedia, the free encyclopedia

Charles Babbage
FRS
Charles Babbage - 1860.jpg
Charles Babbage
Born26 December 1791
London (likely Southwark)
Died18 October 1871 (aged 79)
Marylebone, London, UK
NationalityEnglish
CitizenshipBritish
Alma materPeterhouse, Cambridge
Known forDifference engine
Scientific career
FieldsMathematics, engineering, political economy, computer science
InstitutionsTrinity College, Cambridge
InfluencesRobert Woodhouse, Gaspard Monge, John Herschel
InfluencedKarl Marx, John Stuart Mill, Ada Lovelace
Signature
Charles Babbage Signature.svg

Charles Babbage KH FRS (/ˈbæbɪ/; 26 December 1791 – 18 October 1871) was an English polymath. A mathematician, philosopher, inventor and mechanical engineer, Babbage originated the concept of a digital programmable computer.

Considered by some to be a "father of the computer", Babbage is credited with inventing the first mechanical computer that eventually led to more complex electronic designs, though all the essential ideas of modern computers are to be found in Babbage's analytical engine. His varied work in other fields has led him to be described as "pre-eminent" among the many polymaths of his century.

Parts of Babbage's incomplete mechanisms are on display in the Science Museum in London. In 1991, a functioning difference engine was constructed from Babbage's original plans. Built to tolerances achievable in the 19th century, the success of the finished engine indicated that Babbage's machine would have worked.

Early life

Engraving of Charles Babbage dated 1833

Babbage's birthplace is disputed, but according to the Oxford Dictionary of National Biography he was most likely born at 44 Crosby Row, Walworth Road, London, England. A blue plaque on the junction of Larcom Street and Walworth Road commemorates the event.

His date of birth was given in his obituary in The Times as 26 December 1792; but then a nephew wrote to say that Babbage was born one year earlier, in 1791. The parish register of St. Mary's, Newington, London, shows that Babbage was baptised on 6 January 1792, supporting a birth year of 1791.

Babbage c. 1850

Babbage was one of four children of Benjamin Babbage and Betsy Plumleigh Teape. His father was a banking partner of William Praed in founding Praed's & Co. of Fleet Street, London, in 1801. In 1808, the Babbage family moved into the old Rowdens house in East Teignmouth. Around the age of eight, Babbage was sent to a country school in Alphington near Exeter to recover from a life-threatening fever. For a short time he attended King Edward VI Grammar School in Totnes, South Devon, but his health forced him back to private tutors for a time.

Babbage then joined the 30-student Holmwood Academy, in Baker Street, Enfield, Middlesex, under the Reverend Stephen Freeman. The academy had a library that prompted Babbage's love of mathematics. He studied with two more private tutors after leaving the academy. The first was a clergyman near Cambridge; through him Babbage encountered Charles Simeon and his evangelical followers, but the tuition was not what he needed. He was brought home, to study at the Totnes school: this was at age 16 or 17. The second was an Oxford tutor, under whom Babbage reached a level in Classics sufficient to be accepted by Cambridge.

At the University of Cambridge

Babbage arrived at Trinity College, Cambridge, in October 1810. He was already self-taught in some parts of contemporary mathematics; he had read in Robert Woodhouse, Joseph Louis Lagrange, and Marie Agnesi. As a result, he was disappointed in the standard mathematical instruction available at the university.

Babbage, John Herschel, George Peacock, and several other friends formed the Analytical Society in 1812; they were also close to Edward Ryan. As a student, Babbage was also a member of other societies such as The Ghost Club, concerned with investigating supernatural phenomena, and the Extractors Club, dedicated to liberating its members from the madhouse, should any be committed to one.

In 1812 Babbage transferred to Peterhouse, Cambridge. He was the top mathematician there, but did not graduate with honours. He instead received a degree without examination in 1814. He had defended a thesis that was considered blasphemous in the preliminary public disputation; but it is not known whether this fact is related to his not sitting the examination.

After Cambridge

Considering his reputation, Babbage quickly made progress. He lectured to the Royal Institution on astronomy in 1815, and was elected a Fellow of the Royal Society in 1816. After graduation, on the other hand, he applied for positions unsuccessfully, and had little in the way of career. In 1816 he was a candidate for a teaching job at Haileybury College; he had recommendations from James Ivory and John Playfair, but lost out to Henry Walter. In 1819, Babbage and Herschel visited Paris and the Society of Arcueil, meeting leading French mathematicians and physicists. That year Babbage applied to be professor at the University of Edinburgh, with the recommendation of Pierre Simon Laplace; the post went to William Wallace.

With Herschel, Babbage worked on the electrodynamics of Arago's rotations, publishing in 1825. Their explanations were only transitional, being picked up and broadened by Michael Faraday. The phenomena are now part of the theory of eddy currents, and Babbage and Herschel missed some of the clues to unification of electromagnetic theory, staying close to Ampère's force law.

Babbage purchased the actuarial tables of George Barrett, who died in 1821 leaving unpublished work, and surveyed the field in 1826 in Comparative View of the Various Institutions for the Assurance of Lives. This interest followed a project to set up an insurance company, prompted by Francis Baily and mooted in 1824, but not carried out. Babbage did calculate actuarial tables for that scheme, using Equitable Society mortality data from 1762 onwards.

During this whole period Babbage depended awkwardly on his father's support, given his father's attitude to his early marriage, of 1814: he and Edward Ryan wedded the Whitmore sisters. He made a home in Marylebone in London, and founded a large family. On his father's death in 1827, Babbage inherited a large estate (value around £100,000, equivalent to £7.94 million or $10.2 million today), making him independently wealthy. After his wife's death in the same year he spent time travelling. In Italy he met Leopold II, Grand Duke of Tuscany, foreshadowing a later visit to Piedmont. In April 1828 he was in Rome, and relying on Herschel to manage the difference engine project, when he heard that he had become professor at Cambridge, a position he had three times failed to obtain (in 1820, 1823 and 1826).

Royal Astronomical Society

Babbage was instrumental in founding the Royal Astronomical Society in 1820, initially known as the Astronomical Society of London. Its original aims were to reduce astronomical calculations to a more standard form, and to circulate data. These directions were closely connected with Babbage's ideas on computation, and in 1824 he won its Gold Medal, cited "for his invention of an engine for calculating mathematical and astronomical tables".

Babbage's motivation to overcome errors in tables by mechanisation has been a commonplace since Dionysius Lardner wrote about it in 1834 in the Edinburgh Review (under Babbage's guidance). The context of these developments is still debated. Babbage's own account of the origin of the difference engine begins with the Astronomical Society's wish to improve The Nautical Almanac. Babbage and Herschel were asked to oversee a trial project, to recalculate some part of those tables. With the results to hand, discrepancies were found. This was in 1821 or 1822, and was the occasion on which Babbage formulated his idea for mechanical computation. The issue of the Nautical Almanac is now described as a legacy of a polarisation in British science caused by attitudes to Sir Joseph Banks, who had died in 1820.

A portion of the difference engine

Babbage studied the requirements to establish a modern postal system, with his friend Thomas Frederick Colby, concluding there should be a uniform rate that was put into effect with the introduction of the Uniform Fourpenny Post supplanted by the Uniform Penny Post in 1839 and 1840. Colby was another of the founding group of the Society. He was also in charge of the Survey of Ireland. Herschel and Babbage were present at a celebrated operation of that survey, the remeasuring of the Lough Foyle baseline.

British Lagrangian School

The Analytical Society had initially been no more than an undergraduate provocation. During this period it had some more substantial achievements. In 1816 Babbage, Herschel and Peacock published a translation from French of the lectures of Sylvestre Lacroix, which was then the state-of-the-art calculus textbook.

Reference to Lagrange in calculus terms marks out the application of what are now called formal power series. British mathematicians had used them from about 1730 to 1760. As re-introduced, they were not simply applied as notations in differential calculus. They opened up the fields of functional equations (including the difference equations fundamental to the difference engine) and operator (D-module) methods for differential equations. The analogy of difference and differential equations was notationally changing Δ to D, as a "finite" difference becomes "infinitesimal". These symbolic directions became popular, as operational calculus, and pushed to the point of diminishing returns. The Cauchy concept of limit was kept at bay. Woodhouse had already founded this second "British Lagrangian School" with its treatment of Taylor series as formal.

In this context function composition is complicated to express, because the chain rule is not simply applied to second and higher derivatives. This matter was known to Woodhouse by 1803, who took from Louis François Antoine Arbogast what is now called Faà di Bruno's formula. In essence it was known to Abraham De Moivre (1697). Herschel found the method impressive, Babbage knew of it, and it was later noted by Ada Lovelace as compatible with the analytical engine. In the period to 1820 Babbage worked intensively on functional equations in general, and resisted both conventional finite differences and Arbogast's approach (in which Δ and D were related by the simple additive case of the exponential map). But via Herschel he was influenced by Arbogast's ideas in the matter of iteration, i.e. composing a function with itself, possibly many times. Writing in a major paper on functional equations in the Philosophical Transactions (1815/6), Babbage said his starting point was work of Gaspard Monge.

Academic

From 1828 to 1839 Babbage was Lucasian Professor of Mathematics at Cambridge. Not a conventional resident don, and inattentive to teaching, he wrote three topical books during this period of his life. He was elected a Foreign Honorary Member of the American Academy of Arts and Sciences in 1832. Babbage was out of sympathy with colleagues: George Biddell Airy, his predecessor as Lucasian Professor of Mathematics at Trinity College, Cambridge, thought an issue should be made of his lack of interest in lecturing. Babbage planned to lecture in 1831 on political economy. Babbage's reforming direction looked to see university education more inclusive, universities doing more for research, a broader syllabus and more interest in applications; but William Whewell found the programme unacceptable. A controversy Babbage had with Richard Jones lasted for six years. He never did give a lecture.

It was during this period that Babbage tried to enter politics. Simon Schaffer writes that his views of the 1830s included disestablishment of the Church of England, a broader political franchise, and inclusion of manufacturers as stakeholders. He twice stood for Parliament as a candidate for the borough of Finsbury. In 1832 he came in third among five candidates, missing out by some 500 votes in the two-member constituency when two other reformist candidates, Thomas Wakley and Christopher Temple, split the vote. In his memoirs Babbage related how this election brought him the friendship of Samuel Rogers: his brother Henry Rogers wished to support Babbage again, but died within days. In 1834 Babbage finished last among four. In 1832, Babbage, Herschel and Ivory were appointed Knights of the Royal Guelphic Order, however they were not subsequently made knights bachelor to entitle them to the prefix Sir, which often came with appointments to that foreign order (though Herschel was later created a baronet).

"Declinarians", learned societies and the BAAS

Letter to Sir Humphry Davy, 1822

Babbage now emerged as a polemicist. One of his biographers notes that all his books contain a "campaigning element". His Reflections on the Decline of Science and some of its Causes (1830) stands out, however, for its sharp attacks. It aimed to improve British science, and more particularly to oust Davies Gilbert as President of the Royal Society, which Babbage wished to reform. It was written out of pique, when Babbage hoped to become the junior secretary of the Royal Society, as Herschel was the senior, but failed because of his antagonism to Humphry Davy. Michael Faraday had a reply written, by Gerrit Moll, as On the Alleged Decline of Science in England (1831). On the front of the Royal Society Babbage had no impact, with the bland election of the Duke of Sussex to succeed Gilbert the same year. As a broad manifesto, on the other hand, his Decline led promptly to the formation in 1831 of the British Association for the Advancement of Science (BAAS).

The Mechanics' Magazine in 1831 identified as Declinarians the followers of Babbage. In an unsympathetic tone it pointed out David Brewster writing in the Quarterly Review as another leader; with the barb that both Babbage and Brewster had received public money.

In the debate of the period on statistics (qua data collection) and what is now statistical inference, the BAAS in its Statistical Section (which owed something also to Whewell) opted for data collection. This Section was the sixth, established in 1833 with Babbage as chairman and John Elliot Drinkwater as secretary. The foundation of the Statistical Society followed. Babbage was its public face, backed by Richard Jones and Robert Malthus.

On the Economy of Machinery and Manufactures

On the Economy of Machinery and Manufactures, 1835
 
Babbage's notation for machine parts, explanation from On a method of expressing by signs the action of machinery (1827) of his "Mechanical Notation", invented for his own use in understanding the work on the difference engine, and an influence on the conception of the analytical engine
 
Babbage published On the Economy of Machinery and Manufactures (1832), on the organisation of industrial production. It was an influential early work of operational research. John Rennie the Younger in addressing the Institution of Civil Engineers on manufacturing in 1846 mentioned mostly surveys in encyclopaedias, and Babbage's book was first an article in the Encyclopædia Metropolitana, the form in which Rennie noted it, in the company of related works by John Farey, Jr., Peter Barlow and Andrew Ure. From An essay on the general principles which regulate the application of machinery to manufactures and the mechanical arts (1827), which became the Encyclopædia Metropolitana article of 1829, Babbage developed the schematic classification of machines that, combined with discussion of factories, made up the first part of the book. The second part considered the "domestic and political economy" of manufactures.

The book sold well, and quickly went to a fourth edition (1836). Babbage represented his work as largely a result of actual observations in factories, British and abroad. It was not, in its first edition, intended to address deeper questions of political economy; the second (late 1832) did, with three further chapters including one on piece rate. The book also contained ideas on rational design in factories, and profit sharing.

"Babbage principle"

In Economy of Machinery was described what is now called the "Babbage principle". It pointed out commercial advantages available with more careful division of labour. As Babbage himself noted, it had already appeared in the work of Melchiorre Gioia in 1815. The term was introduced in 1974 by Harry Braverman. Related formulations are the "principle of multiples" of Philip Sargant Florence, and the "balance of processes".

What Babbage remarked is that skilled workers typically spend parts of their time performing tasks that are below their skill level. If the labour process can be divided among several workers, labour costs may be cut by assigning only high-skill tasks to high-cost workers, restricting other tasks to lower-paid workers. He also pointed out that training or apprenticeship can be taken as fixed costs; but that returns to scale are available by his approach of standardisation of tasks, therefore again favouring the factory system. His view of human capital was restricted to minimising the time period for recovery of training costs.

Publishing

Another aspect of the work was its detailed breakdown of the cost structure of book publishing. Babbage took the unpopular line, from the publishers' perspective, of exposing the trade's profitability. He went as far as to name the organisers of the trade's restrictive practices. Twenty years later he attended a meeting hosted by John Chapman to campaign against the Booksellers Association, still a cartel.

Influence

It has been written that "what Arthur Young was to agriculture, Charles Babbage was to the factory visit and machinery". Babbage's theories are said to have influenced the layout of the 1851 Great Exhibition, and his views had a strong effect on his contemporary George Julius Poulett Scrope. Karl Marx argued that the source of the productivity of the factory system was exactly the combination of the division of labour with machinery, building on Adam Smith, Babbage and Ure. Where Marx picked up on Babbage and disagreed with Smith was on the motivation for division of labour by the manufacturer: as Babbage did, he wrote that it was for the sake of profitability, rather than productivity, and identified an impact on the concept of a trade.

John Ruskin went further, to oppose completely what manufacturing in Babbage's sense stood for. Babbage also affected the economic thinking of John Stuart Mill. George Holyoake saw Babbage's detailed discussion of profit sharing as substantive, in the tradition of Robert Owen and Charles Fourier, if requiring the attentions of a benevolent captain of industry, and ignored at the time.

Works by Babbage and Ure were published in French translation in 1830; On the Economy of Machinery was translated in 1833 into French by Édouard Biot, and into German the same year by Gottfried Friedenberg. The French engineer and writer on industrial organisation Léon Lalanne was influenced by Babbage, but also by the economist Claude Lucien Bergery, in reducing the issues to "technology". William Jevons connected Babbage's "economy of labour" with his own labour experiments of 1870. The Babbage principle is an inherent assumption in Frederick Winslow Taylor's scientific management.

Mary Boole, the wife of Babbage's collaborator George Boole claimed that there was profound influence — via her uncle George Everest — of Indian thought in general and Indian logic, in particular, on him and on George Boole, as well as on Augustus De Morgan:
Think what must have been the effect of the intense Hinduizing of three such men as Babbage, De Morgan, and George Boole on the mathematical atmosphere of 1830–65. What share had it in generating the Vector Analysis and the mathematics by which investigations in physical science are now conducted?

Natural theology

In 1837, responding to the series of eight Bridgewater Treatises, Babbage published his Ninth Bridgewater Treatise, under the title On the Power, Wisdom and Goodness of God, as manifested in the Creation. In this work Babbage weighed in on the side of uniformitarianism in a current debate. He preferred the conception of creation in which a God-given natural law dominated, removing the need for continuous "contrivance".

The book is a work of natural theology, and incorporates extracts from related correspondence of Herschel with Charles Lyell. Babbage put forward the thesis that God had the omnipotence and foresight to create as a divine legislator. In this book, Babbage dealt with relating interpretations between science and religion; on the one hand, he insisted that "there exists no fatal collision between the words of Scripture and the facts of nature;" on the one hand, he wrote the Book of Genesis was not meant to be read literally in relation to scientific terms. Against those who said these were in conflict, he wrote "that the contradiction they have imagined can have no real existence, and that whilst the testimony of Moses remains unimpeached, we may also be permitted to confide in the testimony of our senses."

The Ninth Bridgewater Treatise was quoted extensively in Vestiges of the Natural History of Creation. The parallel with Babbage's computing machines is made explicit, as allowing plausibility to the theory that transmutation of species could be pre-programmed.

Plate from the Ninth Bridgewater Treatise, showing a parametric family of algebraic curves acquiring isolated real points

Jonar Ganeri, author of Indian Logic, believes Babbage may have been influenced by Indian thought; one possible route would be through Henry Thomas Colebrooke. Mary Everest Boole argues that Babbage was introduced to Indian thought in the 1820s by her uncle George Everest:
Some time about 1825, [Everest] came to England for two or three years, and made a fast and lifelong friendship with Herschel and with Babbage, who was then quite young. I would ask any fair-minded mathematician to read Babbage's Ninth Bridgewater Treatise and compare it with the works of his contemporaries in England; and then ask himself whence came the peculiar conception of the nature of miracle which underlies Babbage's ideas of Singular Points on Curves (Chap, viii) – from European Theology or Hindu Metaphysic? Oh! how the English clergy of that day hated Babbage's book!

Religious views

Babbage was raised in the Protestant form of the Christian faith, his family having inculcated in him an orthodox form of worship. He explained:
My excellent mother taught me the usual forms of my daily and nightly prayer; and neither in my father nor my mother was there any mixture of bigotry and intolerance on the one hand, nor on the other of that unbecoming and familiar mode of addressing the Almighty which afterwards so much disgusted me in my youthful years.
— Babbage, (1864)
Rejecting the Athanasian Creed as a "direct contradiction in terms", in his youth he looked to Samuel Clarke's works on religion, of which Being and Attributes of God (1704) exerted a particularly strong influence on him. Later in life, Babbage concluded that the true value of the Christian religion rested, not on speculative [theology] … but … upon those doctrines of kindness and benevolence which that religion claims and enforces, not merely in favour of man himself but of every creature susceptible of pain or of happiness.

In his autobiography Passages from the Life of a Philosopher (1864), Babbage wrote a whole chapter on the topic of religion, where he identified three sources of divine knowledge:
  1. A priori or mystical experience
  2. From Revelation
  3. From the examination of the works of the Creator
He stated, on the basis of the design argument, that studying the works of nature had been the more appealing evidence, and the one which led him to actively profess the existence of God. Advocating for natural theology, he wrote:
In the works of the Creator ever open to our examination, we possess a firm basis on which to raise the superstructure of an enlightened creed. The more man inquires into the laws which regulate the material universe, the more he is convinced that all its varied forms arise from the action of a few simple principles ... The works of the Creator, ever present to our senses, give a living and perpetual testimony of his power and goodness far surpassing any evidence transmitted through human testimony. The testimony of man becomes fainter at every stage of transmission, whilst each new inquiry into the works of the Almighty gives to us more exalted views of his wisdom, his goodness, and his power.
— Babbage, (1864)
Like Samuel Vince, Babbage also wrote a defense of the belief in divine miracles. Against objections previously posed by David Hume, Babbage advocated for the belief of divine agency, stating "we must not measure the credibility or incredibility of an event by the narrow sphere of our own experience, nor forget that there is a Divine energy which overrides what we familiarly call the laws of nature." He alluded to the limits of human experience, expressing: "all that we see in a miracle is an effect which is new to our observation, and whose cause is concealed. The cause may be beyond the sphere of our observation, and would be thus beyond the familiar sphere of nature; but this does not make the event a violation of any law of nature. The limits of man's observation lie within very narrow boundaries, and it would be arrogance to suppose that the reach of man's power is to form the limits of the natural world."

Later life

The Illustrated London News (4 November 1871)

The British Association was consciously modelled on the Deutsche Naturforscher-Versammlung, founded in 1822. It rejected romantic science as well as metaphysics, and started to entrench the divisions of science from literature, and professionals from amateurs. Belonging as he did to the "Wattite" faction in the BAAS, represented in particular by James Watt the younger, Babbage identified closely with industrialists. He wanted to go faster in the same directions, and had little time for the more gentlemanly component of its membership. Indeed, he subscribed to a version of conjectural history that placed industrial society as the culmination of human development (and shared this view with Herschel). A clash with Roderick Murchison led in 1838 to his withdrawal from further involvement. At the end of the same year he sent in his resignation as Lucasian professor, walking away also from the Cambridge struggle with Whewell. His interests became more focussed, on computation and metrology, and on international contacts.

Metrology programme

A project announced by Babbage was to tabulate all physical constants (referred to as "constants of nature", a phrase in itself a neologism), and then to compile an encyclopaedic work of numerical information. He was a pioneer in the field of "absolute measurement". His ideas followed on from those of Johann Christian Poggendorff, and were mentioned to Brewster in 1832. There were to be 19 categories of constants, and Ian Hacking sees these as reflecting in part Babbage's "eccentric enthusiasms". Babbage's paper On Tables of the Constants of Nature and Art was reprinted by the Smithsonian Institution in 1856, with an added note that the physical tables of Arnold Henry Guyot "will form a part of the important work proposed in this article".

Exact measurement was also key to the development of machine tools. Here again Babbage is considered a pioneer, with Henry Maudslay, William Sellers, and Joseph Whitworth.

Engineer and inventor

Through the Royal Society Babbage acquired the friendship of the engineer Marc Brunel. It was through Brunel that Babbage knew of Joseph Clement, and so came to encounter the artisans whom he observed in his work on manufactures. Babbage provided an introduction for Isambard Kingdom Brunel in 1830, for a contact with the proposed Bristol & Birmingham Railway. He carried out studies, around 1838, to show the superiority of the broad gauge for railways, used by Brunel's Great Western Railway.

In 1838, Babbage invented the pilot (also called a cow-catcher), the metal frame attached to the front of locomotives that clears the tracks of obstacles; he also constructed a dynamometer car. His eldest son, Benjamin Herschel Babbage, worked as an engineer for Brunel on the railways before emigrating to Australia in the 1850s.

Babbage also invented an ophthalmoscope, which he gave to Thomas Wharton Jones for testing. Jones, however, ignored it. The device only came into use after being independently invented by Hermann von Helmholtz.

Cryptography

Babbage achieved notable results in cryptography, though this was still not known a century after his death. Letter frequency was category 18 of Babbage's tabulation project. Joseph Henry later defended interest in it, in the absence of the facts, as relevant to the management of movable type.

As early as 1845, Babbage had solved a cipher that had been posed as a challenge by his nephew Henry Hollier, and in the process, he made a discovery about ciphers that were based on Vigenère tables. Specifically, he realized that enciphering plain text with a keyword rendered the cipher text subject to modular arithmetic. During the Crimean War of the 1850s, Babbage broke Vigenère's autokey cipher as well as the much weaker cipher that is called Vigenère cipher today. His discovery was kept a military secret, and was not published. Credit for the result was instead given to Friedrich Kasiski, a Prussian infantry officer, who made the same discovery some years later. However, in 1854, Babbage published the solution of a Vigenère cipher, which had been published previously in the Journal of the Society of Arts. In 1855, Babbage also published a short letter, "Cypher Writing", in the same journal. Nevertheless, his priority was not established until 1985.

Public nuisances

Babbage involved himself in well-publicised but unpopular campaigns against public nuisances. He once counted all the broken panes of glass of a factory, publishing in 1857 a "Table of the Relative Frequency of the Causes of Breakage of Plate Glass Windows": Of 464 broken panes, 14 were caused by "drunken men, women or boys".

Babbage's distaste for commoners ("the Mob") included writing "Observations of Street Nuisances" in 1864, as well as tallying up 165 "nuisances" over a period of 80 days. He especially hated street music, and in particular the music of organ grinders, against whom he railed in various venues. The following quotation is typical:
It is difficult to estimate the misery inflicted upon thousands of persons, and the absolute pecuniary penalty imposed upon multitudes of intellectual workers by the loss of their time, destroyed by organ-grinders and other similar nuisances.
Babbage was not alone in his campaign. A convert to the cause was the MP Michael Thomas Bass.

In the 1860s, Babbage also took up the anti-hoop-rolling campaign. He blamed hoop-rolling boys for driving their iron hoops under horses' legs, with the result that the rider is thrown and very often the horse breaks a leg. Babbage achieved a certain notoriety in this matter, being denounced in debate in Commons in 1864 for "commencing a crusade against the popular game of tip-cat and the trundling of hoops."

Computing pioneer

Part of Charles Babbage's difference engine (#1), assembled after his death by his son, Henry Prevost Babbage (1824–1918), using parts found in Charles' laboratory

Babbage's machines were among the first mechanical computers. That they were not actually completed was largely because of funding problems and clashes of personality, most notably with Airy, the Astronomer Royal.

Babbage directed the building of some steam-powered machines that achieved some modest success, suggesting that calculations could be mechanised. For more than ten years he received government funding for his project, which amounted to £17,000, but eventually the Treasury lost confidence in him.

While Babbage's machines were mechanical and unwieldy, their basic architecture was similar to a modern computer. The data and program memory were separated, operation was instruction-based, the control unit could make conditional jumps, and the machine had a separate I/O unit.

Background on mathematical tables

In Babbage's time, printed mathematical tables were calculated by human computers; in other words, by hand. They were central to navigation, science and engineering, as well as mathematics. Mistakes were known to occur in transcription as well as calculation.

At Cambridge, Babbage saw the fallibility of this process, and the opportunity of adding mechanisation into its management. His own account of his path towards mechanical computation references a particular occasion:
In 1812 he was sitting in his rooms in the Analytical Society looking at a table of logarithms, which he knew to be full of mistakes, when the idea occurred to him of computing all tabular functions by machinery. The French government had produced several tables by a new method. Three or four of their mathematicians decided how to compute the tables, half a dozen more broke down the operations into simple stages, and the work itself, which was restricted to addition and subtraction, was done by eighty computers who knew only these two arithmetical processes. Here, for the first time, mass production was applied to arithmetic, and Babbage was seized by the idea that the labours of the unskilled computers [people] could be taken over completely by machinery which would be quicker and more reliable.
There was another period, seven years later, when his interest was aroused by the issues around computation of mathematical tables. The French official initiative by Gaspard de Prony, and its problems of implementation, were familiar to him. After the Napoleonic Wars came to a close, scientific contacts were renewed on the level of personal contact: in 1819 Charles Blagden was in Paris looking into the printing of the stalled de Prony project, and lobbying for the support of the Royal Society. In works of the 1820s and 1830s, Babbage referred in detail to de Prony's project.

Difference engine

The Science Museum's Difference Engine No. 2, built from Babbage's design

Babbage began in 1822 with what he called the difference engine, made to compute values of polynomial functions. It was created to calculate a series of values automatically. By using the method of finite differences, it was possible to avoid the need for multiplication and division.

For a prototype difference engine, Babbage brought in Joseph Clement to implement the design, in 1823. Clement worked to high standards, but his machine tools were particularly elaborate. Under the standard terms of business of the time, he could charge for their construction, and would also own them. He and Babbage fell out over costs around 1831.

Some parts of the prototype survive in the Museum of the History of Science, Oxford. This prototype evolved into the "first difference engine." It remained unfinished and the finished portion is located at the Science Museum in London. This first difference engine would have been composed of around 25,000 parts, weighed fifteen tons (13,600 kg), and would have been 8 ft (2.4 m) tall. Although Babbage received ample funding for the project, it was never completed. He later (1847–1849) produced detailed drawings for an improved version,"Difference Engine No. 2", but did not receive funding from the British government. His design was finally constructed in 1989–1991, using his plans and 19th-century manufacturing tolerances. It performed its first calculation at the Science Museum, London, returning results to 31 digits.

Nine years later, in 2000, the Science Museum completed the printer Babbage had designed for the difference engine.

Completed models

The Science Museum has constructed two Difference Engines according to Babbage's plans for the Difference Engine No 2. One is owned by the museum. The other, owned by the technology multimillionaire Nathan Myhrvold, went on exhibition at the Computer History Museum in Mountain View, California on 10 May 2008. The two models that have been constructed are not replicas; Myhrvold's engine is the first design by Babbage, and the Science Museum's is a later model.

Analytical Engine

After the attempt at making the first difference engine fell through, Babbage worked to design a more complex machine called the Analytical Engine. He hired C. G. Jarvis, who had previously worked for Clement as a draughtsman. The Analytical Engine marks the transition from mechanised arithmetic to fully-fledged general purpose computation. It is largely on it that Babbage's standing as computer pioneer rests.

The major innovation was that the Analytical Engine was to be programmed using punched cards: the Engine was intended to use loops of Jacquard's punched cards to control a mechanical calculator, which could use as input the results of preceding computations. The machine was also intended to employ several features subsequently used in modern computers, including sequential control, branching and looping. It would have been the first mechanical device to be, in principle, Turing-complete. The Engine was not a single physical machine, but rather a succession of designs that Babbage tinkered with until his death in 1871.

Part of the Analytical Engine on display, in 1843, left of centre in this engraving of the King George III Museum in King's College, London.

Ada Lovelace and Italian followers

Ada Lovelace, who corresponded with Babbage during his development of the Analytical Engine, is credited with developing an algorithm that would enable the Engine to calculate a sequence of Bernoulli numbers. Despite documentary evidence in Lovelace's own handwriting, some scholars dispute to what extent the ideas were Lovelace's own. For this achievement, she is often described as the first computer programmer; though no programming language had yet been invented.

Lovelace also translated and wrote literature supporting the project. Describing the engine's programming by punch cards, she wrote: "We may say most aptly that the Analytical Engine weaves algebraical patterns just as the Jacquard loom weaves flowers and leaves."

Babbage visited Turin in 1840 at the invitation of Giovanni Plana. In 1842 Charles Wheatstone approached Lovelace to translate a paper of Luigi Menabrea, who had taken notes of Babbage's Turin talks; and Babbage asked her to add something of her own. Fortunato Prandi who acted as interpreter in Turin was an Italian exile and follower of Giuseppe Mazzini.

Swedish followers

Per Georg Scheutz wrote about the difference engine in 1830, and experimented in automated computation. After 1834 and Lardner's Edinburgh Review article he set up a project of his own, doubting whether Babbage's initial plan could be carried out. This he pushed through with his son, Edvard Scheutz. Another Swedish engine was that of Martin Wiberg (1860).

Legacy

In 2011, researchers in Britain proposed a multimillion-pound project, "Plan 28", to construct Babbage's Analytical Engine. Since Babbage's plans were continually being refined and were never completed, they intended to engage the public in the project and crowd-source the analysis of what should be built. It would have the equivalent of 675 bytes of memory, and run at a clock speed of about 7 Hz. They hope to complete it by the 150th anniversary of Babbage's death, in 2021.

Advances in MEMs and nanotechnology have led to recent high-tech experiments in mechanical computation. The benefits suggested include operation in high radiation or high temperature environments. These modern versions of mechanical computation were highlighted in The Economist in its special "end of the millennium" black cover issue in an article entitled "Babbage's Last Laugh".

Due to his association with the town Babbage was chosen in 2007 to appear on the 5 Totnes pound note. An image of Babbage features in the British cultural icons section of the newly designed British passport in 2015.

Family

A granite, horizontal, geometrically elaborate gravestone surrounded by other headstones
Babbage's grave at Kensal Green Cemetery, London, photographed in 2014

On 25 July 1814, Babbage married Georgiana Whitmore at St. Michael's Church in Teignmouth, Devon; her sister Louisa married Edward Ryan. The couple lived at Dudmaston Hall, Shropshire (where Babbage engineered the central heating system), before moving to 5 Devonshire Street, London in 1815.

Charles and Georgiana had eight children, but only four – Benjamin Herschel, Georgiana Whitmore, Dugald Bromhead and Henry Prevost – survived childhood. Charles' wife Georgiana died in Worcester on 1 September 1827, the same year as his father, their second son (also named Charles) and their newborn son Alexander.
  • Benjamin Herschel Babbage (1815-1878)
  • Charles Whitmore Babbage (1817-1827)
  • Georgiana Whitmore Babbage (1818-??)
  • Edward Stewart Babbage (1819-1821)
  • Francis Moore Babbage (1821-??)
  • Dugald Bromhead (Bromheald?) Babbage (1823-1901)
  • (Maj-Gen) Henry Prevost Babbage (1824–1918)
  • Alexander Forbes Babbage (1827–1827)
His youngest surviving son, Henry Prevost Babbage (1824–1918), went on to create six small demonstration pieces for Difference Engine No. 1 based on his father's designs, one of which was sent to Harvard University where it was later discovered by Howard H. Aiken, pioneer of the Harvard Mark I. Henry Prevost's 1910 Analytical Engine Mill, previously on display at Dudmaston Hall, is now on display at the Science Museum.

Death

Charles Babbage's brain is on display at The Science Museum

Babbage lived and worked for over 40 years at 1 Dorset Street, Marylebone, where he died, at the age of 79, on 18 October 1871; he was buried in London's Kensal Green Cemetery. According to Horsley, Babbage died "of renal inadequacy, secondary to cystitis." He had declined both a knighthood and baronetcy. He also argued against hereditary peerages, favouring life peerages instead.

Autopsy report

In 1983 the autopsy report for Charles Babbage was discovered and later published by his great-great-grandson. A copy of the original is also available. Half of Babbage's brain is preserved at the Hunterian Museum in the Royal College of Surgeons in London. The other half of Babbage's brain is on display in the Science Museum, London.

Memorials

Green plaque in London

There is a black plaque commemorating the 40 years Babbage spent at 1 Dorset Street, London. Locations, institutions and other things named after Babbage include:

In fiction and film

Babbage frequently appears in steampunk works; he has been called an iconic figure of the genre. Other works in which Babbage appears include:
  • As a Great Thinker, in the 2008 strategy video game Civilization Revolution.
  • The 2008 short film Babbage.
  • Sydney Padua created The Thrilling Adventures of Lovelace and Babbage, a cartoon alternate history in which Babbage and Lovelace succeed in building the analytic engine. It quotes heavily from the writings of Lovelace, Babbage and their contemporaries.
  • Kate Beaton, cartoonist of webcomic Hark! A Vagrant, devoted one of her comic strips to Charles and Georgiana Babbage.
  • The BBC series 'Victoria' in Season 2, Episode 2 'The Green-Eyed Monster', portrayed by Jo Stone-Fewings.

Publications

Citizen science

From Wikipedia, the free encyclopedia
Citizen science (CS; also known as community science, crowd science, crowd-sourced science, civic science, volunteer monitoring, or networked science) is scientific research conducted, in whole or in part, by amateur (or nonprofessional) scientists. Citizen science is sometimes described as "public participation in scientific research," participatory monitoring, and participatory action research.
 
Scanning the cliffs near Logan Pass for mountain goats as part of the Glacier National Park Citizen Science Program

Definition

The term CS has multiple origins, as well as differing concepts. It was first defined independently in the mid-1990s by Rick Bonney in the United States and Alan Irwin in the United Kingdom. Alan Irwin, a British sociologist, defines CS as "developing concepts of scientific citizenship which foregrounds the necessity of opening up science and science policy processes to the public". Irwin sought to reclaim two dimensions of the relationship between citizens and science: 1) that science should be responsive to citizens' concerns and needs; and 2) that citizens themselves could produce reliable scientific knowledge. The American ornithologist Rick Bonney, unaware of Irwin's work, defined CS as projects in which nonscientists, such as amateur birdwatchers, voluntarily contributed scientific data. This describes a more limited role for citizens in scientific research than Irwin's conception of the term.

The terms citizen science and citizen scientists entered the Oxford English Dictionary (OED) in June 2014. "Citizen science" is defined as "scientific work undertaken by members of the general public, often in collaboration with or under the direction of professional scientists and scientific institutions". "Citizen scientist" is defined as: (a) "a scientist whose work is characterized by a sense of responsibility to serve the best interests of the wider community (now rare)"; or (b) "a member of the general public who engages in scientific work, often in collaboration with or under the direction of professional scientists and scientific institutions; an amateur scientist". The first use of the term "citizen scientist" can be found in the magazine New Scientist in an article about ufology from October 1979.

Muki Haklay cites, from a policy report for the Wilson Center entitled "Citizen Science and Policy: A European Perspective", an alternate first use of the term "citizen science" by R. Kerson in the magazine MIT Technology Review from January 1989. Quoting from the Wilson Center report: "The new form of engagement in science received the name 'citizen science'. The first recorded example of the use of the term is from 1989, describing how 225 volunteers across the US collected rain samples to assist the Audubon Society in an acid-rain awareness raising campaign."

A "Green Paper on Citizen Science" was published in 2013 by the European Commission's Digital Science Unit and Socientize.eu, which included a definition for CS, referring to "the general public engagement in scientific research activities when citizens actively contribute to science either with their intellectual effort or surrounding knowledge or with their tools and resources. Participants provide experimental data and facilities for researchers, raise new questions and co-create a new scientific culture."

Citizen science may be performed by individuals, teams, or networks of volunteers. Citizen scientists often partner with professional scientists to achieve common goals. Large volunteer networks often allow scientists to accomplish tasks that would be too expensive or time consuming to accomplish through other means.

Many citizen-science projects serve education and outreach goals. These projects may be designed for a formal classroom environment or an informal education environment such as museums.

Citizen science has evolved over the past four decades. Recent projects place more emphasis on scientifically sound practices and measurable goals for public education. Modern citizen science differs from its historical forms primarily in the access for, and subsequent scale of, public participation; technology is credited as one of the main drivers of the recent explosion of citizen science activity.

In March 2015, the Office of Science and Technology Policy published a factsheet entitled "Empowering Students and Others through Citizen Science and Crowdsourcing". Quoting: "Citizen science and crowdsourcing projects are powerful tools for providing students with skills needed to excel in science, technology, engineering, and math (STEM). Volunteers in citizen science, for example, gain hands-on experience doing real science, and in many cases take that learning outside of the traditional classroom setting".

Members of the Cascades Butterfly Citizen Science Team pictured on Sauk mountain

In May 2016, a new open-access journal was started by the Citizen Science Association along with Ubiquity Press called Citizen Science: Theory and Practice (CS:T&P). Quoting from the editorial article titled "The Theory and Practice of Citizen Science: Launching a New Journal", "CS:T&P provides the space to enhance the quality and impact of citizen science efforts by deeply exploring the citizen science concept in all its forms and across disciplines. By examining, critiquing, and sharing findings across a variety of citizen science endeavors, we can dig into the underpinnings and assumptions of citizen science and critically analyze its practice and outcomes."

Alternative definitions

Other definitions for citizen science have also been proposed. For example, Bruce Lewenstein of Cornell University's Communication and S&TS departments describes 3 possible definitions:
  • The participation of nonscientists in the process of gathering data according to specific scientific protocols and in the process of using and interpreting that data.
  • The engagement of nonscientists in true decision-making about policy issues that have technical or scientific components.
  • The engagement of research scientists in the democratic and policy process.
Scientists and scholars who have used other definitions include Frank N. von Hippel, Stephen Schneider, Neal Lane and Jon Beckwith. Other alternative terminologies proposed are "civic science" and "civic scientist".

Further, Muki Haklay offers an overview of the typologies of the level of citizen participation in citizen science, which range from "crowdsourcing" (level 1), where the citizen acts as a sensor, to "distributed intelligence" (level 2), where the citizen acts as a basic interpreter, to "participatory science", where citizens contribute to problem definition and data collection (level 3), to "extreme citizen science", which involves collaboration between the citizen and scientists in problem definition, collection and data analysis.

A 2014 Mashable article defines a citizen scientist as: "Anybody who voluntarily contributes his or her time and resources toward scientific research in partnership with professional scientists."

In 2016 the Australian Citizen Science Association released their definition which states "Citizen science involves public participation and collaboration in scientific research with the aim to increase scientific knowledge."

In 2016, the book "Analyzing the Role of Citizen Science in Modern Research" defined citizen science as "work undertaken by civic educators together with citizen communities to advance science, foster a broad scientific mentality, and/or encourage democratic engagement, which allows society to deal rationally with complex modern problems".

Related fields

In a Smart City era, Citizen Science relays on various web-based tools (eg.WebGIS) and becomes Cyber Citizen Science. Some projects, such as SETI@home, use the Internet to take advantage of distributed computing. These projects are generally passive. Computation tasks are performed by volunteers' computers and require little involvement beyond initial setup. There is disagreement as to whether these projects should be classified as citizen science.

The astrophysicist and Galaxy Zoo co-founder Kevin Schawinski stated: "We prefer to call this [Galaxy Zoo] citizen science because it's a better description of what you're doing; you're a regular citizen but you're doing science. Crowd sourcing sounds a bit like, well, you're just a member of the crowd and you're not; you're our collaborator. You're pro-actively involved in the process of science by participating."

Compared to SETI@home, "Galaxy Zoo volunteers do real work. They're not just passively running something on their computer and hoping that they'll be the first person to find aliens. They have a stake in science that comes out of it, which means that they are now interested in what we do with it, and what we find."

Citizen policy may be another result of citizen science initiatives. Bethany Brookshire (pen name SciCurious) writes: "If citizens are going to live with the benefits or potential consequences of science (as the vast majority of them will), it's incredibly important to make sure that they are not only well informed about changes and advances in science and technology, but that they also ... are able to ... influence the science policy decisions that could impact their lives."

Benefits and limitations

In a research report published by the National Park Service in 2008, Brett Amy Thelen and Rachel K. Thiet mention the following concerns, previously reported in the literature, about the validity of volunteer-generated data:
  • Some projects may not be suitable for volunteers, for instance, when they use complex research methods or require arduous or repetitive work;
  • If volunteers lack proper training in research and monitoring protocols, they are at risk of introducing bias into the data;
  • Members may lie about data. This risk is even greater when bounties are awarded as an incentive to participate.
The question of data accuracy, in particular, remains open. John Losey, who created the Lost Ladybug citizen science project, has argued that the cost-effectiveness of citizen science data can outweigh data quality issues, if properly managed.

In December 2016, authors M. Kosmala, A. Wiggins, A. Swanson and B. Simmons published a study in the journal Frontiers in Ecology and the Environment called "Assessing Data Quality in Citizen Science". The abstract describes how ecological and environmental CS projects have enormous potential to advance science. Also, CS projects can influence policy and guide resource management by producing datasets that are otherwise infeasible to generate. In the section "In a Nutshell" (pg3), four condensed conclusions are stated. They are:
  1. Datasets produced by volunteer CSs can have reliably high quality, on par with those produced by professionals.
  2. Individual volunteer accuracy varies, depending on task difficulty and volunteer experience. Multiple methods exist for boosting accuracy to required levels for a given project.
  3. Most types of bias found in CS datasets are also found in professionally produced datasets and can be accommodated using existing statistical tools.
  4. Reviewers of CS projects should look for iterated project design, standardization and appropriateness of volunteer protocols and data analyses, capture of metadata, and accuracy assessment.
They conclude that as CS continues to grow and mature, a key metric of project success they expect to see will be a growing awareness of data quality. They also conclude that CS will emerge as a general tool helping "to collect otherwise unobtainable high-quality data in support of policy and resource management, conservation monitoring, and basic science."

A study of Canadian lepidoptera datasets published in 2018 compared the use of a professionally curated dataset of butterfly specimen records with four years of data from a CS program, eButterfly.  The eButterfly dataset was used as it was determined to be of high quality because of the expert vetting process used on the site, and there existed a historic dataset covering the same geographic area consisting of specimen data, much of it institutional. The authors note that, in this case, CS data provides both novel and complementary information to the specimen data. Five new species were reported from the CS data, and geographic distribution information was improved for over 80% of species in the combined dataset when CS data was included.

Law

In March 2015, the state of Wyoming passed new laws (Senate Files 12 and 80) clarifying that trespassing laws applied even if the trespasser's intention was to gather data to further a U.S. government science program. This hampered some CS researchers who were collecting data while on other people's land.

Ethics

Various studies have been published that explore the ethics of CS, including issues such as intellectual property and project design.(e.g.) The Citizen Science Association (CSA), based at the Cornell Lab of Ornithology, and the European Citizen Science Association (ECSA), based in the Museum für Naturkunde in Berlin, have working groups on ethics and principles.

In September 2015, the European Citizen Science Association (ECSA) published its Ten Principles of Citizen Science, which have been developed by the "Sharing best practice and building capacity" working group of the ECSA, led by the Natural History Museum, London with input from many members of the association.
  • Citizen science projects actively involve citizens in scientific endeavour that generates new knowledge or understanding. Citizens may act as contributors, collaborators, or as project leader and have a meaningful role in the project.
  • Citizen science projects have a genuine science outcome. For example, answering a research question or informing conservation action, management decisions or environmental policy.
  • Both the professional scientists and the citizen scientists benefit from taking part. Benefits may include the publication of research outputs, learning opportunities, personal enjoyment, social benefits, satisfaction through contributing to scientific evidence e.g. to address local, national and international issues, and through that, the potential to influence policy.
  • Citizen scientists may, if they wish, participate in multiple stages of the scientific process. This may include developing the research question, designing the method, gathering and analysing data, and communicating the results.
  • Citizen scientists receive feedback from the project. For example, how their data are being used and what the research, policy or societal outcomes are.
  • Citizen science is considered a research approach like any other, with limitations and biases that should be considered and controlled for. However unlike traditional research approaches, citizen science provides opportunity for greater public engagement and democratisation of science.
  • Citizen science project data and meta-data are made publicly available and where possible, results are published in an open access format. Data sharing may occur during or after the project, unless there are security or privacy concerns that prevent this.
  • Citizen scientists are acknowledged in project results and publications.
  • Citizen science programmes are evaluated for their scientific output, data quality, participant experience and wider societal or policy impact.
  • The leaders of citizen science projects take into consideration legal and ethical issues surrounding copyright, intellectual property, data sharing agreements, confidentiality, attribution, and the environmental impact of any activities.
The medical ethics of internet crowdsourcing has been questioned by Graber & Graber in the Journal of Medical Ethics. In particular, they analyse the effect of games and the crowdsourcing project Foldit. They conclude: "games can have possible adverse effects, and that they manipulate the user into participation".

Economic worth

In the research paper "Can citizen science enhance public understanding of science?" by Bonney et al. 2016, statistics which analyse the economic worth of citizen science are used, drawn from two papers: i)Sauermann and Franzoni 2015, and ii)Theobald et al. 2015. In "Crowd science user contribution patterns and their implications" by Sauermann and Franzoni (2015), seven projects from the Zooniverse web portal are used to estimate the monetary value of the CS that had taken place. The 7 projects are: Solar Stormwatch, Galaxy Zoo Supernovae, Galaxy Zoo Hubble, Moon Zoo, Old Weather, The Milky Way Project and Planet Hunters. Using data from 180 days in 2010, they find a total of 100,386 users participated, contributing 129,540 hours of unpaid work. Estimating at a rate of $12 an hour (an undergraduate research assistant's basic wage), the total contributions amount to $1,554,474, an average of $222,068 per project. It should be noted that the range over the 7 projects was from $22,717 to $654,130.

In "Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research" by Theobald et al. 2015, the authors surveyed 388 unique biodiversity-based projects. Quoting: "We estimate that between 1.36 million and 2.28 million people volunteer annually in the 388 projects we surveyed, though variation is great" and that "the range of in-kind contribution of the volunteerism in our 388 citizen science projects as between $667 million to $2.5 billion annually."

Worldwide participation in citizen science continues to grow. A list of the top five citizen science communities compiled by Marc Kuchner and Kristen Erickson in July 2018 shows a total of 3.75 million participants, although there is likely substantial overlap between the communities.

Five top citizen science communities as of July 1, 2018.

Education

There have been studies published which examine the place of CS within education.(e.g.) Teaching aids can include books and activity or lesson plans.(e.g.). Some examples of studies are:
From the Second International Handbook of Science Education, a chapter entitled: "Citizen Science, Ecojustice, and Science Education: Rethinking an Education from Nowhere" by Mueller and Tippins (2011), acknowledges in the abstract that: "There is an emerging emphasis in science education on engaging youth in citizen science." The authors also ask: "whether citizen science goes further with respect to citizen development." The abstract ends by stating that the "chapter takes account of the ways educators will collaborate with members of the community to effectively guide decisions, which offers promise for sharing a responsibility for democratizing science with others."

From the journal Democracy and Education, an article entitled: "Lessons Learned from Citizen Science in the Classroom" by authors Gray, Nicosia and Jordan (GNJ) (2012) give a response to a study by Mueller, Tippins and Bryan (MTB) called "The Future of Citizen Science". GNJ begins by stating in the abstract that the study The Future Of Citizen Science: "provides an important theoretical perspective about the future of democratized science and K12 education." But GRB state: "However, the authors (MTB) fail to adequately address the existing barriers and constraints to moving community-based science into the classroom." They end the abstract by arguing: "that the resource constraints of scientists, teachers, and students likely pose problems to moving true democratized science into the classroom."

In 2014, a study was published called "Citizen Science and Lifelong Learning" by R. Edwards in the journal Studies in the Education of Adults. Edwards begins by writing in the abstract that CS projects have expanded over recent years and engaged CSs and professionals in diverse ways. He continues: "Yet there has been little educational exploration of such projects to date." He describes that "there has been limited exploration of the educational backgrounds of adult contributors to citizen science". Edwards explains that CS contributers are referred to as volunteers, citizens or as amateurs. He ends the abstract: "The article will explore the nature and significance of these different characterisations and also suggest possibilities for further research."

In the journal Microbiology and Biology Education a study was published by Shah and Martinez (2015) called "Current Approaches in Implementing Citizen Science in the Classroom". They begin by writing in the abstract that CS is a partnership between inexperienced amateurs and trained scientists. The authors continue: "With recent studies showing a weakening in scientific competency of American students, incorporating citizen science initiatives in the curriculum provides a means to address deficiencies". They argue that combining traditional and innovative methods can help provide a practical experience of science. The abstract ends: "Citizen science can be used to emphasize the recognition and use of systematic approaches to solve problems affecting the community."

In November 2017, authors Mitchell, Triska and Liberatore published a study in Public Library of Science titled "Benefits and Challenges of Incorporating Citizen Science into University Education". The authors begin by stating in the abstract that CSs contribute data with the expectation that it will be used. It reports that CS has been used for first year university students as a means to experience research. They continue: "Surveys of more than 1500 students showed that their environmental engagement increased significantly after participating in data collection and data analysis." However, only a third of students agreed that data collected by CSs was reliable. A positive outcome of this was that the students were more careful of their own research. The abstract ends: "If true for citizen scientists in general, enabling participants as well as scientists to analyse data could enhance data quality, and so address a key constraint of broad-scale citizen science programs."

History

"Citizen science" is a fairly new term but an old practice. Prior to the 20th century, science was often the pursuit of gentleman scientists, amateur or self-funded researchers such as Sir Isaac Newton, Benjamin Franklin, and Charles Darwin. By the mid-20th century, however, science was dominated by researchers employed by universities and government research laboratories. By the 1970s, this transformation was being called into question. Philosopher Paul Feyerabend called for a "democratization of science". Biochemist Erwin Chargaff advocated a return to science by nature-loving amateurs in the tradition of Descartes, Newton, Leibniz, Buffon, and Darwin—science dominated by "amateurship instead of money-biased technical bureaucrats".

A study from 2016 indicates that the largest impact of citizen science is in research on biology, conservation and ecology, and is utilized mainly as a methodology of collecting and classifying data.

Amateur astronomy

Amateur astronomers can build their own equipment and can hold star parties and gatherings, such as Stellafane.

Astronomy has long been a field where amateurs have contributed throughout time, all the way up to the present day.

Collectively, amateur astronomers observe a variety of celestial objects and phenomena sometimes with equipment that they build themselves. Common targets of amateur astronomers include the Moon, planets, stars, comets, meteor showers, and a variety of deep-sky objects such as star clusters, galaxies, and nebulae. Observations of comets and stars are also used to measure the local level of artificial skyglow. One branch of amateur astronomy, amateur astrophotography, involves the taking of photos of the night sky. Many amateurs like to specialize in the observation of particular objects, types of objects, or types of events that interest them.

The American Association of Variable Star Observers has gathered data on variable stars for educational and professional analysis since 1911 and promotes participation beyond its membership on its Citizen Sky website.

Butterfly counts

Butterfly counts have a long tradition of involving individuals in the study of butterflies' range and their relative abundance. Two long-running programs are the UK Butterfly Monitoring Scheme (started in 1976) and the North American Butterfly Association's Butterfly Count Program (started in 1975). There are various protocols for monitoring butterflies and different organizations support one or more of transects, counts and/or opportunistic sightings. eButterfly is an example of a program designed to capture any of the three types of counts for observers in North America. Species-specific programs also exist, with monarchs the prominent example. Two examples of this involve the counting of monarch butterflies during the fall migration to overwintering sites in Mexico: (1) Monarch Watch is a continent-wide project, while (2) the Cape May Monarch Monitoring Project is an example of a local project. The Austrian project Viel-Falter investigated if and how trained and supervised pupils are able to systematically collect data about the occurrence of diurnal butterflies, and how this data could contribute to a permanent butterfly monitoring system. Despite substantial identification uncertainties for some species or species groups, the data collected by pupils was successfully used to predict the general habitat quality for butterflies.

Ornithology

Citizen science projects have become increasingly focused on providing benefits to scientific research. The North American Bird Phenology Program (historically called the Bird Migration and Distribution records) may have been the earliest collective effort of citizens collecting ornithological information in the U.S. The program, dating back to 1883, was started by Wells Woodbridge Cooke. Cooke established a network of observers around North America to collect bird migration records. The Audubon Society's Christmas Bird Count, which began in 1900, is another example of a long-standing tradition of citizen science which has persisted to the present day. Citizen scientists help gather data that will be analyzed by professional researchers, and can be used to produce bird population and biodiversity indicators.

Raptor migration research relies on the data collected by the hawkwatching community. This mostly volunteer group counts migrating accipiters, buteos, falcons, harriers, kites, eagles, osprey, vultures and other raptors at hawk sites throughout North America during the spring and fall seasons. The daily data is uploaded to hawkcount.org where it can be viewed by professional scientists and the public.

Such indices can be useful tools to inform management, resource allocation, policy and planning. For example, European breeding bird survey data provide input for the Farmland Bird Index, adopted by the European Union as a structural indicator of sustainable development. This provides a cost-effective alternative to government monitoring.

Similarly, data collected by citizen scientists as part of BirdLife Australia's has been analysed to produce the first-ever Australian Terrestrial Bird Indices.

Citizen oceanography

The concept of citizen science has been extended to the ocean environment for characterizing ocean dynamics and tracking marine debris. For example, the mobile app Marine Debris Tracker is a joint partnership of National Oceanic and Atmospheric Administration and the University of Georgia. Long term sampling efforts such as the continuous plankton recorder has been fitted on ships of opportunity since 1931. Plankton collection by sailors and subsequent genetic analysis was pioneered in 2013 by Indigo V Expeditions as a way to better understand marine microbial structure and function.

Citizen study of coral reefs

Underwater photography has become more and more popular since the early 2000s, resulting on millions of pictures posted every year on various websites and social media. This mass of documentation is endowed with an enormous scientific potential, as millions of tourists possess a much superior coverage power than professional scientists, who can not allow themselves to spend so much time in the field. As a consequence, several participative sciences programs have been developped, supported by geo-localization and identification web sites (such as iNaturalist.org). Another example, the Monitoring through many eyes project collates thousands of underwater images of the Great Barrier Reef and provides an interface for elicitation of reef health indicators.

Additionally, the National Oceanic and Atmospheric Administration offers opportunities for volunteer participation. By taking measurements in The United States' National Marine Sanctuaries, citizens are able to contribute data to a variety of marine biology projects. By enabling these citizens, NOAA benefited from 137,000 hours of research during 2016.

There also exist protocols for auto-organization and self-teaching aimed at biodiversity-interested snorkelers, in order for them to turn their observations into sound scientific data, available for research. This kind of approach has been successfully used in Réunion island, allowing for tens of new records and even new species.

Art history

Citizen science has a long tradition in Natural science. But nowadays, citizen science projects can also be found in various fields of science like Art history. For example, the Zooniverse project AnnoTate is a transcription tool developed to enable volunteers to read and transcribe the personal papers of British-born and émigré artists. The papers are drawn from the Tate Archive. Another example of citizen science in art history is ARTigo.[98] ARTigo collects semantic data on artworks from the footprints left by players of games featuring artwork images. From these footprints, ARTigo automatically builds a semantic search engine for artworks.

Modern technology

Newer technologies have increased the options for citizen science. Citizen scientists can build and operate their own instruments to gather data for their own experiments or as part of a larger project. Examples include amateur radio, amateur astronomy, Six Sigma Projects, and Maker activities. Most recently scientist Joshua Pearce has advocated for the creation of open-source hardware based scientific equipment that both citizen scientists and professional scientists, which can be replicated by digital manufacturing techniques such as 3D printing. Multiple studies have shown this approach radically reduces scientific equipment costs. Examples of this approach include water testing, nitrate and other environmental testing, basic biology and optics. Groups such as Public Labs, which is a community where citizen scientists can learn how to investigate environmental concerns using inexpensive DIY techniques, embody this approach.

Citizen Science Center exhibit in the Nature Research Center wing of the North Carolina Museum of Natural Sciences

Video technology has enabled expanded citizen science.[citation needed] The Citizen Science Center in the Nature Research Center wing of the North Carolina Museum of Natural Sciences has exhibits on how to get involved in scientific research and become a citizen scientist. For example, visitors can observe birdfeeders at the Prairie Ridge Ecostation satellite facility via live video feed and record which species they see.

Since 2005, the Genographic Project has used the latest genetic technology to expand our knowledge of the human story, and its pioneering use of DNA testing to engage and involve the public in the research effort has helped to create a new breed of "citizen scientist". Geno 2.0 expands the scope for citizen science, harnessing the power of the crowd to discover new details of human population history. This includes supporting, organization and dissemination of personal DNA (genetic) testing. Like Amateur astronomy, citizen scientists encouraged by volunteer organizations like the International Society of Genetic Genealogy have provided valuable information and research to the professional scientific community.

With unmanned aerial vehicles, further citizen science is enabled. One example is the ESA's AstroDrone smartphone app for gathering robotic data with the Parrot AR.Drone.

Citizens in Space (CIS), a project of the United States Rocket Academy, seeks to combine citizen science with citizen space exploration. CIS is training citizen astronauts to fly as payload operators on suborbital reusable spacecraft that are now in development. CIS will also be developing, and encouraging others to develop, citizen-science payloads to fly on suborbital vehicles. CIS has already acquired a contract for 10 flights on the Lynx suborbital vehicle, being developed by XCOR Aerospace, and plans to acquire additional flights on XCOR Lynx and other suborbital vehicles in the future.

CIS believes that "The development of low-cost reusable suborbital spacecraft will be the next great enabler, allowing citizens to participate in space exploration and space science."

Internet

How your gameplay helps ScienceAtHome build a quantum computer

The Internet has been a boon to citizen science, particularly through gamification. One of the first Internet-based citizen science experiments was NASA's Clickworkers, which enabled the general public to assist in the classification of images, greatly reducing the time to analyze large data sets. Another was the Citizen Science Toolbox, launched in 2003, of the Australian Coastal Collaborative Research Centre. Mozak is a game in which players create 3D reconstructions from images of actual human and mouse neurons, helping to advance understanding of the brain. One of the largest citizen science games is Eyewire, a brain-mapping puzzle game developed at the Massachusetts Institute of Technology that now has over 200,000 players. Another example is Quantum Moves, a game developed by the Center for Driven Community Research at Aarhus University, which uses online community efforts to solve quantum physics problems. The solutions found by players can then be used in the lab to feed computational algorithms used in building a scalable quantum computer.
More generally, Amazon's Mechanical Turk is frequently used in the creation, collection, and processing of data by paid citizens. There is controversy as to whether or not the data collected through such services is reliable, as it is subject to participants' desire for compensation. However, use of Mechanical Turk tends to quickly produce more diverse participant backgrounds, as well as comparably accurate data when compared to traditional collection methods.

The internet has also enabled citizen scientists to gather data to be analyzed by professional researchers. Citizen science networks are often involved in the observation of cyclic events of nature (phenology), such as effects of global warming on plant and animal life in different geographic areas, and in monitoring programs for natural-resource management. On BugGuide.Net, an online community of naturalists who share observations of arthropod, amateurs and professional researchers contribute to the analysis. By October 2014, BugGuide has over 808,718 images submitted by more than 27,846 contributors.

An NASA/JPL image from the Zooniverse's The Milky Way Project showing a hierarchical bubble structure

The Zooniverse is home to the internet's largest, most popular and most successful citizen science projects.] The Zooniverse and the suite of projects it contains is produced, maintained and developed by the Citizen Science Alliance (CSA). The member institutions of the CSA work with many academic and other partners around the world to produce projects that use the efforts and ability of volunteers to help scientists and researchers deal with the flood of data that confronts them. On June 29, 2015, the Zooniverse released a new software version with a project-building tool allowing any registered user to create a project. Project owners may optionally complete an approval process to have their projects listed on the Zooniverse site and promoted to the Zooniverse community. A NASA/JPL picture to the right gives an example from one of Zooniverse's projects The Milky Way Project.

The website CosmoQuest has as its goal "To create a community of people bent on together advancing our understanding of the universe; a community of people who are participating in doing science, who can explain why what they do matters, and what questions they are helping to answer.

CrowdCrafting enables its participants to create and run projects where volunteers help with image classification, transcription, geocoding and more. The platform is powered by PyBossa software, a free and open-source framework for crowdsourcing.

Project Soothe is a citizen science research project based at the University of Edinburgh. The aim of this research is to create a bank of soothing images, submitted by members of the public, which can be used to help others through psychotherapy and research in the future. Since 2015, Project Soothe has received over 600 soothing photographs from people in 23 countries. Anyone aged 12 years or over are eligible to participate in this research in two ways: (1) By submitting soothing photos that they have taken with a description of why the images make them feel soothed (2) By rating the photos that have been submitted by people worldwide for their soothability. 

Smartphone bandwidth

The bandwidth and ubiquity afforded by smartphone technology has vastly expanded the opportunities for citizen science. Examples include iNaturalist, the San Francisco project, the WildLab, Project Noah, and Aurorasurus. Due to their ubiquity, for example, Twitter, Facebook, and smartphones have been useful for citizen scientists, having enabled them to discover and propagate a new type of aurora dubbed "STEVE" in 2016.

There are also smartphone apps for monitoring birds, marine wildlife and other organisms, and the "Loss of the Night".

An Android app Sapelli is a mobile data-collection and -sharing platform designed with a particular focus on non-literate and illiterate users with little or no prior ICT experience. A smartphone focussed platform for Citizen Science applications is SPOTTERON, which creates synergy effects for projects by sharing a common feature set.

"The Crowd and the Cloud" is a four-part series broadcast during April 2017, which examines citizen science. It shows how smartphones, computers and mobile technology enable regular citizens to become part of a 21st-century way of doing science. The programs also demonstrate how CSs help professional scientists to advance knowledge, which helps speed up new discoveries and innovations. The Crowd & The Cloud is based upon work supported by the National Science Foundation.

Seismology

Since 1975, in order to improve earthquake detection and collect useful information, the European-Mediterranean Seismological Centre monitors the visits of earthquake eyewitnesses to its website and relies on Facebook and Twitter.

Hydrology

Citizen science has been used to provide valuable data in hydrology (catchment science), notably flood risk, water quality and water resource management. A growth in internet use and smartphone ownership has allowed users to collect and share real-time flood-risk information using, for example, social media and web-based forms. Although traditional data collection methods are well-established, citizen science is being used to fill the data gaps on a local level, and is therefore meaningful to individual communities. It has been demonstrated that citizen science is particularly advantageous during a flash flood because the public are more likely to witness these rarer hydrological events than scientists.

Africa and South America

There are many CS projects in Africa and South America. Some examples in Africa are:
  • In South Africa (SA), CS projects include: the Stream Assessment Scoring System (miniSASS) which "encourages enhanced catchment management for water security in a climate stressed society."
Snapshot Serengeti classifies animals at the Serengeti National Park in Tanzania
  • Also in SA, "Members of the public, or 'citizen scientists' are helping researchers from the University of Pretoria to identify Phytophthora species present in the fynbos."
  • In June 2016, citizen science experts from across East Africa gathered in Nairobi, Kenya for a symposium organised by the Tropical Biology Association (TBA) in partnership with the Centre for Ecology & Hydrology (CEH). The aim was "to harness the growing interest and expertise in East Africa to stimulate new ideas and collaborations in citizen science." Rosie Trevelyan of the TBA said: "We need to enhance our knowledge about the status of Africa's species and the threats facing them. And scientists can't do it all on their own. At the same time, citizen science is an extremely effective way of connecting people more closely to nature and enrolling more people in conservation action".
  • The website Zooniverse hosts several African CS projects, including: Snapshot Serengeti, Wildcam Gorongosa and Jungle Rhythms.
  • Nigeria has the Ibadan Bird Club whose to aim is to "exchange ideas and share knowledge about birds, and get actively involved in the conservation of birds and biodiversity."
  • In Namibia, Giraffe Spotter.org is "project that will provide people with an online citizen science platform for giraffes".
  • Within the Republic of the Congo, the territories of an indigenous people have been mapped so that "the Mbendjele tribe can protect treasured trees from being cut down by logging companies". An Android open-source app called Sapelli was used by the Mbendjele which helped them map "their tribal lands and highlighted trees that were important to them, usually for medicinal reasons or religious significance. Congolaise Industrielle des Bois then verified the trees that the tribe documented as valuable and removed them from its cutting schedule. The tribe also documented illegal logging and poaching activities."
  • In West Africa, the irradication of the recent outbreak of Ebola virus disease was partly helped by CS. "Communities learnt how to assess the risks posed by the disease independently of prior cultural assumptions, and local empiricism allowed cultural rules to be reviewed, suspended or changed as epidemiological facts emerged." "Citizen science is alive and well in all three Ebola-affected countries. And if only a fraction of the international aid directed at rebuilding health systems were to be redirected towards support for citizen science, that might be a fitting memorial to those who died in the epidemic."
Asháninka children in school
  • In 2015 the Asháninka people from Apiwtxa, which crosses the border between Brazil and Peru, began using the Android app Sapelli to monitor their land. The Ashaninka have "faced historical pressures of disease, exploitation and displacement, and today still face the illegal invasion of their lands by loggers and hunters. This monitoring project shows how the Apiwtxa Ashaninka from the Kampa do Rio Amônia Indigenous Territory, Brazil, are beginning to use smartphones and technological tools to monitor these illegal activities more effectively."
  • In Argentina, two smartphone Android applications are available for CS. i) AppEAR has been developed at the Institute of Limnology and was launched in May 2016. Joaquín Coachman is a researcher who developed an "application that appeals to the collaboration of users of mobile devices in collecting data that allow the study of aquatic ecosystems" (translation). Coachman stated: "Not much of citizen science in Argentina, just a few more oriented to astronomy specific cases. As ours is the first. And I have volunteers from different parts of the country that are interested in joining together to centralize data. That's great because these types of things require many people participate actively and voluntarily" (translation). ii) eBird was launched in 2013, and has so far identified 965 species of birds. eBird in Argentina is "developed and managed by the Cornell Lab of Ornithology at Cornell University, one of the most important ornithological institutions in the world, and locally presented recently with the support of the Ministry of Science, Technology and Productive Innovation of the Nation (MINCyT)" (translation).
  • Projects in Brazil include: i) Platform and mobile app 'Missions' has been developed by IBM in their São Paulo research lab with Brazil's Ministry for Environment and Innovation (BMEI). Sergio Borger, an IBM team lead in São Paulo, devised the crowdsourced approach when BMEI approached the company in 2010. They were looking for a way to create a central repository for the rainforest data. Users can upload photos of a plant species and its components, enter its characteristics (such as color and size), compare it against a catalog photo and classify it. The classification results are juried by crowdsourced ratings. ii) Exoss Citizen Science is a member of Astronomers Without Borders and seeks to explore the southern sky for new meteors and radiants. Users can report meteor fireballs through uploading pictures on to a webpage or by linking to YouTube.

    A jaguar in Pantanal; an example of Brazilian biodiversity.
  • iii) The Information System on Brazilian Biodiversity (SiBBr) was launched in 2014 "aiming to encourage and facilitate the publication, integration, access and use of information about the biodiversity of the country." Their initial goal "was to gather 2.5 million occurrence records of species from biological collections in Brazil and abroad up to the end of 2016. It is now expected that SiBBr reach 9 million of records in 2016." Andrea Portela said: "In 2016, we will begin with the citizen science. They are tools that enable anyone, without any technical knowledge, to participate. With this we will achieve greater engagement with society. People will be able to have more interaction with the platform, contribute and comment on what Brazil has. iv) The Brazilian Marine Megafauna Project (Iniciativa Pro Mar) is working with the European CSA towards its main goal, which is the "sensibilization of society for marine life issues" and concerns about pollution and the over-exploitation of natural resources.[161] Having started as a project monitoring manta ray, it now extends to whale shark and educating schools and divers within the Santos area. Its social media activities include a live streaming of a CS course to help divers identify marine megafauna. v) A smartphone app called Plantix has been developed by the Leibniz Centre for Agricultural Landscape Research (ZALF) which helps Brazilian farmers discover crop diseases quicker and helps fight them more efficiently. Brazil is a very large agricultural exporter, but between 10-30% of crops fail because of disease. "The database currently includes 175 frequently occurring crop diseases and pests as well as 40,000 photos. The identification algorithm of the app improves with every image which records a success rate of over 90 per cent as of approximately 500 photos per crop disease." vi) In an Atlantic Ocean forest region in Brazil, an effort to map the genetic riches of soil is under way. The Drugs From Dirt initiative, based at the Rockefeller University, seeks to turn up bacteria that yield new types of antibiotics- the Brazilian region being particularly rich in potentially useful bacterial genes. Approximately a quarter of the 185 soil samples have been taken by Citizen Scientists without which the project could not run.
  • In Chile CS projects include (some websites in Spanish): i) Testing new cancer therapies with scientists from the Science Foundation for Life. ii) Monitoring the population of the Chilean bumblebee. iii) Monitoring the invasive ladybird Chinita arlequín. iv) Collecting rain water data. (v) Monitoring various pollinating fly populations. (vi) Providing information and field data on the abundance and distribution of various species of rockfish.
  • Projects in Colombia include (some websites in Spanish): i) The Communications Project of the Humboldt Institute along with the Organization for Education and Environmental Protection initiated projects in the Bogotá wetlands of Cordoba and El Burro, which have a lot of biodiversity. ii) In the Model Forest of Risaralda, the Colombia 'proyecto de Ciencia Abierta y Colaborativa' promotes citizen participation in research related to the local environment is adapting to climate change. The first meeting took place in the Flora and Fauna Sanctuary Otún Quimbaya. iii) The Citizen Network Environmental Monitoring (CLUSTER), based in the city of Bucaramanga, seeks to engage younger students in data science, who are trained in building weather stations with open repositories based on free software and open hardware data. iv) The Symposium on Biodiversity has adapted the CS tool iNaturalist for use in Colombia. v) The Sinchi Amazonic Institute of Scientific Research seeks to encourage the development and diffusion of knowledge, values and technologies on the management of natural resources for ethnic groups in the Amazon. This research should further the use of participatory action research schemes and promoting participation communities.
  • Since 2010, the Pacific Biodiversity Institute (PBI) seeks "volunteers to help identify, describe and protect wildland complexes and roadless areas in South America". The PBI "are engaged in an ambitious project with our Latin American conservation partners to map all the wildlands in South America, to evaluate their contribution to global biodiversity and to share and disseminate this information."

Conferences

The first Conference on Public Participation in Scientific Research was held in Portland, Oregon in August 2012. Citizen science is now often a theme at large conferences, such as the annual meeting of the American Geophysical Union.

In 2010, 2012 and 2014 there were three Citizen Cybersience summits, organised by the Citizen Cyberscience Centre in Geneva. The 2014 summit was hosted in London and attracted over 300 participants.

In January 2015, the ETH Zürich and University of Zürich hosted an international meeting on the "Challenges and Opportunities in Citizen Science".

The first citizen science conference hosted by the Citizen Science Association was in San Jose, California, in February 2015 in partnership with the AAAS conference. The Citizen Science Association conference, CitSci 2017, was held in Saint Paul, Minnesota, United States, between May 17 and 20, 2017. The conference had more than 600 attendees. The next CitSci is in March 2019 in Raleigh, USA.

The platform "Österreich forscht" hosts the annual Austrian citizen science conference since 2015.

National and regional portals

Nation or region Portal Notes
Australia Australian Citizen Science Association
Australia Australian Citizen Science Project Finder
Austria Österreich Forscht
Canada Citizen science portal
Denmark Citizen Science Portalen
France Open
Germany Bürger schaffen Wissen
Global Scistarter
Global Zooniverse: People-powered research
Ireland Environmental Protection Agency
Netherlands and Flanders EOS Wetenschap
Scotland Citizen Science with TCV.
Spain Observatorio De La Ciencia Ciudadana
Sweden Arenas for co-operation through citizen science
Switzerland Schweiz Forscht
United Kingdom UK Environment Observation Framework
United States USA Government Official Website

Representation of a Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Representation_of_a_Lie_group...