Search This Blog

Friday, December 14, 2018

Ceres (dwarf planet -- updated)

From Wikipedia, the free encyclopedia

Ceres ⚳
Ceres - RC3 - Haulani Crater (22381131691).jpg
A view of Ceres in natural color, pictured by the Dawn spacecraft in May 2015.
Discovery
Discovered byGiuseppe Piazzi
Discovery date1 January 1801
Designations
MPC designation(1) Ceres
Pronunciation/ˈsɪərz/
Named after
Cerēs
A899 OF; 1943 XB
Dwarf planet
Asteroid belt
AdjectivesCererian /sɪˈrɪəriən/,
rarely Cererean /sɛrɪˈrən/
Orbital characteristics
Epoch 2014-Dec-09
(JD 2,457,000.5)
Aphelion2.9773 AU
(445,410,000 km)
Perihelion2.5577 AU
(382,620,000 km)
2.7675 AU
(414,010,000 km)
Eccentricity0.075823
4.60 yr
1,681.63 d
466.6 d
1.278 yr
Average orbital speed
17.905 km/s
95.9891°
Inclination10.593° to ecliptic
9.20° to invariable plane
80.3293°
72.5220°
Proper orbital elements
2.7670962 AU
Proper eccentricity
0.1161977
Proper inclination
9.6474122°
Proper mean motion
78.193318 deg / yr
4.60397 yr
(1681.601 d)
Precession of perihelion
54.070272 arcsec / yr
Precession of the ascending node
−59.170034 arcsec / yr
Physical characteristics
Dimensions(965.2 × 961.2
× 891.2) ± 2.0 km
Mean radius
473 km
2,770,000 km2
Volume421,000,000 km3
Mass(9.393±0.005)×1020 kg 0.00015 Earths
0.0128 Moons
Mean density
2.161±0.009 g/cm3
Equatorial surface gravity
0.28 m/s2
0.029 g
0.37 (estimate)
Equatorial escape velocity
0.51 km/s
Sidereal rotation period
0.3781 d
9.074170±0.000002 h
Equatorial rotation velocity
92.61 m/s
North pole right ascension
291.42744°
North pole declination
66.764°
0.090±0.0033 (V-band)
Surface temp. min mean max
Kelvin
≈ 168 K 235 K
C
6.64 to 9.34
3.34
0.854″ to 0.339″

Ceres (/ˈsɪərz/; minor-planet designation: 1 Ceres) is the largest object in the asteroid belt that lies between the orbits of Mars and Jupiter, slightly closer to Mars' orbit. With a diameter of 945 km (587 mi), Ceres is the largest of the minor planets, and the only dwarf planet, inside Neptune's orbit. It is the 33rd-largest known body in the Solar System.

Ceres is composed of rock and ice and is estimated to comprise approximately one-third of the mass of the entire asteroid belt. Ceres is the only object in the asteroid belt known to be rounded by its own gravity (though detailed analysis was required to exclude 4 Vesta). From Earth, the apparent magnitude of Ceres ranges from 6.7 to 9.3, peaking once in opposition every 15 to 16 months (its synodic period); thus even at its brightest, it appears too dim to the naked eye, except under extremely dark skies.

Ceres was the first asteroid to be discovered (by Giuseppe Piazzi at Palermo Astronomical Observatory on 1 January 1801). It was originally considered a planet, but was reclassified as an asteroid in the 1850s after many other objects in similar orbits were discovered.

Ceres appears to be differentiated into a rocky core and an icy mantle, and may have a remnant internal ocean of liquid water under the layer of ice. The surface is a mixture of water ice and various hydrated minerals such as carbonates and clay. In January 2014, emissions of water vapor were detected from several regions of Ceres. This was unexpected because large bodies in the asteroid belt typically do not emit vapor, a hallmark of comets.

The robotic NASA spacecraft Dawn entered orbit around Ceres on 6 March 2015. Pictures with a resolution previously unattained were taken during imaging sessions starting in January 2015 as Dawn approached Ceres, showing a cratered surface. Two distinct bright spots (or high-albedo features) inside a crater (different from the bright spots observed in earlier Hubble images) were seen in a 19 February 2015 image, leading to speculation about a possible cryovolcanic origin or outgassing. On 3 March 2015, a NASA spokesperson said the spots are consistent with highly reflective materials containing ice or salts, but that cryovolcanism is unlikely. However, on 2 September 2016, scientists from the Dawn team claimed in a Science paper that a massive cryovolcano called Ahuna Mons is the strongest evidence yet for the existence of these mysterious formations. On 11 May 2015, NASA released a higher-resolution image showing that, instead of one or two spots, there are actually several. On 9 December 2015, NASA scientists reported that the bright spots on Ceres may be related to a type of salt, particularly a form of brine containing magnesium sulfate hexahydrite (MgSO4·6H2O); the spots were also found to be associated with ammonia-rich clays. In June 2016, near-infrared spectra of these bright areas were found to be consistent with a large amount of sodium carbonate (Na
2
CO
3
), implying that recent geologic activity was probably involved in the creation of the bright spots. In July 2018, NASA released a comparison of physical features found on Ceres with similar ones present on Earth. From June to October, 2018, Dawn orbited Ceres from as close as 35 km (22 mi) and as far away as 4,000 km (2,500 mi). The Dawn mission ended due to a lack of fuel on November 1, 2018.

In October 2015, NASA released a true-color portrait of Ceres made by Dawn. In February 2017, organics (tholins) were detected on Ceres in Ernutet crater.

History

Discovery

Piazzi's book Della scoperta del nuovo pianeta Cerere Ferdinandea, outlining the discovery of Ceres, dedicated the new "planet" to Ferdinand I of the Two Sicilies.

Johann Elert Bode, in 1772, first suggested that an undiscovered planet could exist between the orbits of Mars and Jupiter. Kepler had already noticed the gap between Mars and Jupiter in 1596. Bode based his idea on the Titius–Bode law which is a now-discredited hypothesis that was first proposed in 1766. Bode observed that there was a regular pattern in the semi-major axes of the orbits of known planets, and that the pattern was marred only by the large gap between Mars and Jupiter. The pattern predicted that the missing planet ought to have an orbit with a semi-major axis near 2.8 astronomical units (AU). William Herschel's discovery of Uranus in 1781 near the predicted distance for the next body beyond Saturn increased faith in the law of Titius and Bode, and in 1800, a group headed by Franz Xaver von Zach, editor of the Monatliche Correspondenz, sent requests to twenty-four experienced astronomers (whom he dubbed the "celestial police"), asking that they combine their efforts and begin a methodical search for the expected planet. Although they did not discover Ceres, they later found several large asteroids.

One of the astronomers selected for the search was Giuseppe Piazzi, a Catholic priest at the Academy of Palermo, Sicily. Before receiving his invitation to join the group, Piazzi discovered Ceres on 1 January 1801. He was searching for "the 87th [star] of the Catalogue of the Zodiacal stars of Mr la Caille", but found that "it was preceded by another". Instead of a star, Piazzi had found a moving star-like object, which he first thought was a comet. Piazzi observed Ceres a total of 24 times, the final time on 11 February 1801, when illness interrupted his observations. He announced his discovery on 24 January 1801 in letters to only two fellow astronomers, his compatriot Barnaba Oriani of Milan and Johann Elert Bode of Berlin. He reported it as a comet but "since its movement is so slow and rather uniform, it has occurred to me several times that it might be something better than a comet". In April, Piazzi sent his complete observations to Oriani, Bode, and Jérôme Lalande in Paris. The information was published in the September 1801 issue of the Monatliche Correspondenz.

By this time, the apparent position of Ceres had changed (mostly due to Earth's orbital motion), and was too close to the Sun's glare for other astronomers to confirm Piazzi's observations. Toward the end of the year, Ceres should have been visible again, but after such a long time it was difficult to predict its exact position. To recover Ceres, Carl Friedrich Gauss, then 24 years old, developed an efficient method of orbit determination. In only a few weeks, he predicted the path of Ceres and sent his results to von Zach. On 31 December 1801, von Zach and Heinrich W. M. Olbers found Ceres near the predicted position and thus recovered it.

The early observers were only able to calculate the size of Ceres to within an order of magnitude. Herschel underestimated its diameter as 260 km in 1802, whereas in 1811 Johann Hieronymus Schröter overestimated it as 2,613 km.

Name

Piazzi originally suggested the name Cerere Ferdinandea for his discovery, after the goddess Ceres (Roman goddess of agriculture, Cerere in Italian, who was believed to have originated in Sicily and whose oldest temple was there) and King Ferdinand of Sicily. "Ferdinandea", however, was not acceptable to other nations and was dropped. Ceres was called Hera for a short time in Germany. In Greece, it is called Demeter (Δήμητρα), after the Greek equivalent of the Roman Cerēs; in English, that name is used for the asteroid 1108 Demeter

The regular adjectival forms of the name are Cererian and Cererean, derived from the Latin genitive Cereris, but Ceresian is occasionally seen for the goddess (as in the sickle-shaped Ceresian Lake), as is the shorter form Cerean

The old astronomical symbol of Ceres is a sickle, ⟨⚳⟩ (Sickle variant symbol of Ceres), similar to Venus' symbol ⟨⟩ but with a break in the circle. It has a variant ⟨ Cee variant symbol of Ceres ⟩, reversed under the influence of the initial letter 'C' of 'Ceres'. These were later replaced with the generic asteroid symbol of a numbered disk, ⟨①⟩.

Cerium, a rare-earth element discovered in 1803, was named after Ceres. In the same year another element was also initially named after Ceres, but when cerium was named, its discoverer changed the name to palladium, after the second asteroid, 2 Pallas.

Classification

The categorization of Ceres has changed more than once and has been the subject of some disagreement. Johann Elert Bode believed Ceres to be the "missing planet" he had proposed to exist between Mars and Jupiter, at a distance of 419 million km (2.8 AU) from the Sun. Ceres was assigned a planetary symbol, and remained listed as a planet in astronomy books and tables (along with 2 Pallas, 3 Juno, and 4 Vesta) for half a century.

Sizes of the first ten main-belt objects discovered profiled against the Moon. Ceres is far left (1).

As other objects were discovered in the neighborhood of Ceres, it was realized that Ceres represented the first of a new class of objects. In 1802, with the discovery of 2 Pallas, William Herschel coined the term asteroid ("star-like") for these bodies, writing that "they resemble small stars so much as hardly to be distinguished from them, even by very good telescopes". As the first such body to be discovered, Ceres was given the designation 1 Ceres under the modern system of minor-planet designations. By the 1860s, the existence of a fundamental difference between asteroids such as Ceres and the major planets was widely accepted, though a precise definition of "planet" was never formulated.

Ceres (bottom left), the Moon and Earth, shown to scale
Ceres (bottom left), the Moon and Earth, shown to scale
Size comparison of Vesta, Ceres and Eros
Size comparison of Vesta, Ceres and Eros

The 2006 debate surrounding Pluto and what constitutes a planet led to Ceres being considered for reclassification as a planet. A proposal before the International Astronomical Union for the definition of a planet would have defined a planet as "a celestial body that (a) has sufficient mass for its self-gravity to overcome rigid-body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (b) is in orbit around a star, and is neither a star nor a satellite of a planet". Had this resolution been adopted, it would have made Ceres the fifth planet in order from the Sun. This never happened, however, and on 24 August 2006 a modified definition was adopted, carrying the additional requirement that a planet must have "cleared the neighborhood around its orbit". By this definition, Ceres is not a planet because it does not dominate its orbit, sharing it as it does with the thousands of other asteroids in the asteroid belt and constituting only about a third of the mass of the belt. Bodies that met the first proposed definition but not the second, such as Ceres, were instead classified as dwarf planets

Ceres is the largest object in the asteroid belt. It is sometimes assumed that Ceres has been reclassified as a dwarf planet, and that it is therefore no longer considered an asteroid. For example, a news update at Space.com spoke of "Pallas, the largest asteroid, and Ceres, the dwarf planet formerly classified as an asteroid", whereas an IAU question-and-answer posting states, "Ceres is (or now we can say it was) the largest asteroid", though it then speaks of "other asteroids" crossing Ceres' path and otherwise implies that Ceres is still considered an asteroid. The Minor Planet Center notes that such bodies may have dual designations. The 2006 IAU decision that classified Ceres as a dwarf planet never addressed whether it is or is not an asteroid. Indeed, the IAU has never defined the word 'asteroid' at all, having preferred the term 'minor planet' until 2006, and preferring the terms 'small Solar System body' and 'dwarf planet' after 2006. Lang (2011) comments "the [IAU has] added a new designation to Ceres, classifying it as a dwarf planet. ... By [its] definition, Eris, Haumea, Makemake and Pluto, as well as the largest asteroid, 1 Ceres, are all dwarf planets", and describes it elsewhere as "the dwarf planet–asteroid 1 Ceres". NASA continues to refer to Ceres as an asteroid, as do various academic textbooks.

Orbit

Proper (long-term mean) orbital elements compared to osculating (instant) orbital elements for Ceres
Element
type
Semi-major
axis

(in AU)
Orbital
eccentricity
Orbital
inclination
Period
(in days)
Proper 2.7671 0.116198 9.647435 1,681.60
Osculating
(Epoch 23 July 2010 )
2.7653 0.079138 10.586821 1,679.66
Difference 0.0018 0.03706 0.939386 1.94

Orbit of Ceres
Animation of Dawn's trajectory from 27 September 2007 to 5 October 2018
   Dawn  ·   Earth ·   Mars ·   4 Vesta  ·   1 Ceres

Ceres follows an orbit between Mars and Jupiter, within the asteroid belt, with a period of 4.6 Earth years. The orbit is moderately inclined (i = 10.6° compared to 7° for Mercury and 17° for Pluto) and moderately eccentric (e = 0.08 compared to 0.09 for Mars).
The diagram illustrates the orbits of Ceres (blue) and several planets (white and gray). The segments of orbits below the ecliptic are plotted in darker colors, and the orange plus sign is the Sun's location. The top left diagram is a polar view that shows the location of Ceres in the gap between Mars and Jupiter. The top right is a close-up demonstrating the locations of the perihelia (q) and aphelia (Q) of Ceres and Mars. In this diagram (but not in general), the perihelion of Mars is on the opposite side of the Sun from those of Ceres and several of the large main-belt asteroids, including 2 Pallas and 10 Hygiea. The bottom diagram is a side view showing the inclination of the orbit of Ceres compared to the orbits of Mars and Jupiter.
Ceres was once thought to be a member of an asteroid family. The asteroids of this family share similar proper orbital elements, which may indicate a common origin through an asteroid collision some time in the past. Ceres was later found to have spectral properties different from other members of the family, which is now called the Gefion family after the next-lowest-numbered family member, 1272 Gefion. Ceres appears to be merely an interloper in the Gefion family, coincidentally having similar orbital elements but not a common origin.

Resonances

Ceres is in a near-1:1 mean-motion orbital resonance with Pallas (their proper orbital periods differ by 0.2%). However, a true resonance between the two would be unlikely; due to their small masses relative to their large separations, such relationships among asteroids are very rare. Nevertheless, Ceres is able to capture other asteroids into temporary 1:1 resonant orbital relationships (making them temporary trojans) for periods up to 2 million years or more; fifty such objects have been identified.

Transits of planets from Ceres

Mercury, Venus, Earth, and Mars can all appear to cross the Sun, or transit it, from a vantage point on Ceres. The most common transits are those of Mercury, which usually happen every few years, most recently in 2006 and 2010. The most recent transit of Venus was in 1953, and the next will be in 2051; the corresponding dates are 1814 and 2081 for transits of Earth, and 767 and 2684 for transits of Mars.

Rotation and axial tilt

The rotation period of Ceres (the Cererian day) is 9 hours and 4 minutes. It has an axial tilt of 4°. This is small enough for Ceres's polar regions to contain permanently shadowed craters that are expected to act as cold traps and accumulate water ice over time, similar to the situation on the Moon and Mercury. About 0.14% of water molecules released from the surface are expected to end up in the traps, hopping an average of 3 times before escaping or being trapped.

Geology

Ceres has a mass of 9.39×1020 kg as determined from the Dawn spacecraft. With this mass Ceres composes approximately a third of the estimated total 3.0 ± 0.2×1021 kg mass of the asteroid belt, which is in turn approximately 4% of the mass of the Moon. Ceres is massive enough to give it a nearly spherical, equilibrium shape. Among Solar System bodies, Ceres is intermediate in size between the smaller Vesta and the larger Tethys. Its surface area is approximately the same as the land area of India or Argentina. In July 2018, NASA released a comparison of physical features found on Ceres with similar ones present on Earth.

Surface

Notable geological features on Ceres

The surface composition of Ceres is broadly similar to that of C-type asteroids. Some differences do exist. The ubiquitous features in Ceres' IR spectrum are those of hydrated materials, which indicate the presence of significant amounts of water in its interior. Other possible surface constituents include iron-rich clay minerals (cronstedtite) and carbonate minerals (dolomite and siderite), which are common minerals in carbonaceous chondrite meteorites. The spectral features of carbonates and clay minerals are usually absent in the spectra of other C-type asteroids. Sometimes Ceres is classified as a G-type asteroid.
Ceres' surface is relatively warm. The maximum temperature with the Sun overhead was estimated from measurements to be 235 K (approximately −38 °C, −36 °F) on 5 May 1991. Ice is unstable at this temperature. Material left behind by the sublimation of surface ice could explain the dark surface of Ceres compared to the icy moons of the outer Solar System.
Studies by the Hubble Space Telescope reveal that graphite, sulfur, and sulfur dioxide are present on Ceres's surface. The former is evidently the result of space weathering on Ceres's older surfaces; the latter two are volatile under Cererian conditions and would be expected to either escape quickly or settle in cold traps, and are evidently associated with areas with recent geological activity.

Observations prior to Dawn

HST images taken over a span of 2 hours and 20 minutes in 2004

Prior to the Dawn mission, only a few surface features had been unambiguously detected on Ceres. High-resolution ultraviolet Hubble Space Telescope images taken in 1995 showed a dark spot on its surface, which was nicknamed "Piazzi" in honor of the discoverer of Ceres. This was thought to be a crater. Later near-infrared images with a higher resolution taken over a whole rotation with the Keck telescope using adaptive optics showed several bright and dark features moving with Ceres' rotation. Two dark features had circular shapes and were presumed to be craters; one of them was observed to have a bright central region, whereas another was identified as the "Piazzi" feature. Visible-light Hubble Space Telescope images of a full rotation taken in 2003 and 2004 showed eleven recognizable surface features, the natures of which were then undetermined. One of these features corresponds to the "Piazzi" feature observed earlier.
These last observations indicated that the north pole of Ceres pointed in the direction of right ascension 19 h 24 min (291°), declination +59°, in the constellation Draco, resulting in an axial tilt of approximately 3°. Dawn later determined that the north polar axis actually points at right ascension 19 h 25 m 40.3 s (291.418°), declination +66° 45' 50" (about 1.5 degrees from Delta Draconis), which means an axial tilt of 4°.

Observations by Dawn

Permanently shadowed regions capable of accumulating surface ice were identified in the northern hemisphere of Ceres using Dawn.

Dawn revealed that Ceres has a heavily cratered surface; nevertheless, Ceres does not have as many large craters as expected, likely due to past geological processes. An unexpectedly large number of Cererian craters have central pits, perhaps due to cryovolcanic processes, and many have central peaks. Ceres has one prominent mountain, Ahuna Mons; this peak appears to be a cryovolcano and has few craters, suggesting a maximum age of no more than a few hundred million years. A later computer simulation has suggested that there were originally other cryovolcanoes on Ceres that are now unrecognisable due to viscous relaxation. Several bright spots have been observed by Dawn, the brightest spot ("Spot 5") located in the middle of an 80-kilometer (50 mi) crater called Occator. From images taken of Ceres on 4 May 2015, the secondary bright spot was revealed to actually be a group of scattered bright areas, possibly as many as ten. These bright features have an albedo of approximately 40% that are caused by a substance on the surface, possibly ice or salts, reflecting sunlight. A haze periodically appears above Spot 5, the best known bright spot, supporting the hypothesis that some sort of outgassing or sublimating ice formed the bright spots. In March 2016, Dawn found definitive evidence of water molecules on the surface of Ceres at Oxo crater.
On 9 December 2015, NASA scientists reported that the bright spots on Ceres may be related to a type of salt, particularly a form of brine containing magnesium sulfate hexahydrite (MgSO4·6H2O); the spots were also found to be associated with ammonia-rich clays. Near-infrared spectra of these bright areas were reported in 2017 to be consistent with a large amount of sodium carbonate, (Na
2
CO
3
) and smaller amounts of ammonium chloride (NH
4
Cl
) or ammonium bicarbonate (NH
4
HCO
3
). These materials have been suggested to originate from the recent crystallization of brines that reached the surface from below.
Carbon
Organic compounds (tholins) were detected on Ceres in Ernutet crater, and most of the planet's surface is extremely rich in carbon, with approximately 20% carbon by mass in its near surface. The carbon content is more than five times higher than in carbonaceous chondrite meteorites analyzed on Earth. The surface carbon shows evidence of being mixed with products of rock-water interactions, such as clays. This chemistry suggests Ceres formed in a cold environment, perhaps outside the orbit of Jupiter, and that it accreted from ultra-carbon-rich materials in the presence of water, which could provide conditions favorable to organic chemistry.
Ceres - Maps of bright areas
December 2017
December 2015
PIA19316-Ceres-DwarfPlanet-DawnMission-VIR-20150413.jpg
Bright spots on Ceres in visible and infrared:  "Spot 1" (top row) ("cooler" than surroundings);  "Spot 5" (bottom) ("similar in temperature" as surroundings) (April 2015)
"Bright Spot 5" in the crater Occator. Imaged by Dawn from 385 km (239 mi) (LAMO)
Ahuna Mons is an estimated 5 km (3 mi) high on its steepest side. Imaged by Dawn from 385 km (239 mi) in December 2015.

Internal structure

Internal structure of Ceres (August 2018)

Ceres' oblateness is consistent with a differentiated body, a rocky core overlain with an icy mantle. This 100-kilometer-thick mantle (23%–28% of Ceres by mass; 50% by volume) contains up to 200 million cubic kilometers of water, which would be more than the amount of fresh water on Earth. This result is supported by the observations made by the Keck telescope in 2002 and by evolutionary modeling. Also, some characteristics of its surface and history (such as its distance from the Sun, which weakened solar radiation enough to allow some fairly low-freezing-point components to be incorporated during its formation), point to the presence of volatile materials in the interior of Ceres. It has been suggested that a remnant layer of liquid water may have survived to the present under a layer of ice.
Map of Cererian gravity fields: red is high; blue, low.

Shape and gravity field measurements by Dawn confirm Ceres is a body in hydrostatic equilibrium with partial differentiation and isostatic compensation, with a mean moment of inertia of 0.37 (which is similar to that of Callisto at ~0.36). The densities of the core and outer layer are estimated to be 2.46–2.90 and 1.68–1.95 g/cm3, with the latter being about 70–190 km thick. Only partial dehydration of the core is expected. The high density of the outer layer (relative to water ice) reflects its enrichment in silicates and salts. Ceres is the smallest object confirmed to be in hydrostatic equilibrium, being 600 km smaller and less than half the mass of Saturn's moon Rhea, the next smallest such object. Modeling has suggested Ceres could have a small metallic core from partial differentiation of its rocky fraction.

Atmosphere

There are indications that Ceres has a tenuous water vapor atmosphere outgassing from water ice on the surface.
Surface water ice is unstable at distances less than 5 AU from the Sun, so it is expected to sublime if it is exposed directly to solar radiation. Water ice can migrate from the deep layers of Ceres to the surface, but escapes in a very short time. As a result, it is difficult to detect water vaporization. Water escaping from polar regions of Ceres was possibly observed in the early 1990s but this has not been unambiguously demonstrated. It may be possible to detect escaping water from the surroundings of a fresh impact crater or from cracks in the subsurface layers of Ceres. Ultraviolet observations by the IUE spacecraft detected statistically significant amounts of hydroxide ions near Ceres' north pole, which is a product of water vapor dissociation by ultraviolet solar radiation.
In early 2014, using data from the Herschel Space Observatory, it was discovered that there are several localized (not more than 60 km in diameter) mid-latitude sources of water vapor on Ceres, which each give off approximately 1026 molecules (or 3 kg) of water per second. Two potential source regions, designated Piazzi (123°E, 21°N) and Region A (231°E, 23°N), have been visualized in the near infrared as dark areas (Region A also has a bright center) by the W. M. Keck Observatory. Possible mechanisms for the vapor release are sublimation from approximately 0.6 km2 of exposed surface ice, or cryovolcanic eruptions resulting from radiogenic internal heat or from pressurization of a subsurface ocean due to growth of an overlying layer of ice. Surface sublimation would be expected to be lower when Ceres is farther from the Sun in its orbit, whereas internally powered emissions should not be affected by its orbital position. The limited data available was more consistent with cometary-style sublimation; however, subsequent evidence from Dawn strongly suggests ongoing geologic activity could be at least partially responsible.
Studies using Dawn's gamma ray and neutron detector (GRaND) reveal that Ceres is accelerating electrons from the solar wind regularly; although there are several possibilities as to what is causing this, the most accepted is that these electrons are being accelerated by collisions between the solar wind and a tenuous water vapor exosphere.
In 2017, Dawn confirmed that Ceres has a transient atmosphere that appears to be linked to solar activity. Ice on Ceres can sublimate when energetic particles from the Sun hit exposed ice within craters.

Origin and evolution

Ceres is possibly a surviving protoplanet (planetary embryo), which formed 4.57 billion years ago in the asteroid belt. Although the majority of inner Solar System protoplanets (including all lunar- to Mars-sized bodies) either merged with other protoplanets to form terrestrial planets or were ejected from the Solar System by Jupiter, Ceres is thought to have survived relatively intact. An alternative theory proposes that Ceres formed in the Kuiper belt and later migrated to the asteroid belt. The discovery of ammonia salts in Occator crater supports an origin in the outer Solar System. Another possible protoplanet, Vesta, is less than half the size of Ceres; it suffered a major impact after solidifying, losing ~1% of its mass.
The geological evolution of Ceres was dependent on the heat sources available during and after its formation: friction from planetesimal accretion, and decay of various radionuclides (possibly including short-lived extinct radionuclides such as aluminium-26). These are thought to have been sufficient to allow Ceres to differentiate into a rocky core and icy mantle soon after its formation. This process may have caused resurfacing by water volcanism and tectonics, erasing older geological features. Ceres's relatively warm surface temperature implies that any of the resulting ice on its surface would have gradually sublimated, leaving behind various hydrated minerals like clay minerals and carbonates.
Today, Ceres has become considerably less geologically active, with a surface sculpted chiefly by impacts; nevertheless, evidence from Dawn reveals that internal processes have continued to sculpt Ceres's surface to a significant extent, in stark contrast to Vesta and of previous expectations that Ceres would have become geologically dead early in its history due to its small size. The presence of significant amounts of water ice in its crust and evidence of recent geological resurfacing, raises the possibility that Ceres has a layer of liquid water in its interior. This hypothetical layer is often called an ocean. If such a layer of liquid water exists, it is hypothesized to be located between the rocky core and ice mantle like that of the theorized ocean on Europa. The existence of an ocean is more likely if solutes (i.e. salts), ammonia, sulfuric acid or other antifreeze compounds are dissolved in the water.

Potential habitability

Although not as actively discussed as a potential home for microbial extraterrestrial life as Mars, Titan, Europa or Enceladus, there is evidence that Ceres' icy mantle was once a watery subterranean ocean, and that has led to speculations that life could have existed there, and that hypothesized ejecta bearing microorganisms could have come from Ceres to Earth.

Observation and exploration

Observation

Polarimetric map of Ceres

When in opposition near its perihelion, Ceres can reach an apparent magnitude of +6.7. This is generally regarded as too dim to be visible to the naked eye, but under ideal viewing conditions, keen eyes with 20/20 vision may be able to see it. The only other asteroids that can reach a similarly bright magnitude are 4 Vesta and, when in rare oppositions near their perihelions, 2 Pallas and 7 Iris. When in conjunction, Ceres has a magnitude of around +9.3, which corresponds to the faintest objects visible with 10×50 binoculars; thus it can be seen with such binoculars in a naturally dark and clear night sky around new moon.
Some notable observations and milestones for Ceres include the following:
  • 1984 November 13: An occultation of a star by Ceres observed in Mexico, Florida and across the Caribbean.
  • 1995 June 25: Ultraviolet Hubble Space Telescope images with 50-kilometer resolution.
  • 2002: Infrared images with 30-km resolution taken with the Keck telescope using adaptive optics.
  • 2003 and 2004: Visible light images with 30-km resolution (the best prior to the Dawn mission) taken using Hubble.
  • 2012 December 22: Ceres occulted the star TYC 1865-00446-1 over parts of Japan, Russia, and China. Ceres' brightness was magnitude 6.9 and the star, 12.2.
  • 2014: Ceres was found to have an atmosphere with water vapor, confirmed by the Herschel space telescope.
  • 2015: The NASA Dawn spacecraft approached and orbited Ceres, sending detailed images and scientific data back to Earth.

Exploration

Artist's conception of Dawn, travelling from Vesta to Ceres

In 1981, a proposal for an asteroid mission was submitted to the European Space Agency (ESA). Named the Asteroidal Gravity Optical and Radar Analysis (AGORA), this spacecraft was to launch some time in 1990–1994 and perform two flybys of large asteroids. The preferred target for this mission was Vesta. AGORA would reach the asteroid belt either by a gravitational slingshot trajectory past Mars or by means of a small ion engine. However, the proposal was refused by ESA. A joint NASA–ESA asteroid mission was then drawn up for a Multiple Asteroid Orbiter with Solar Electric Propulsion (MAOSEP), with one of the mission profiles including an orbit of Vesta. NASA indicated they were not interested in an asteroid mission. Instead, ESA set up a technological study of a spacecraft with an ion drive. Other missions to the asteroid belt were proposed in the 1980s by France, Germany, Italy, and the United States, but none were approved. Exploration of Ceres by fly-by and impacting penetrator was the second main target of the second plan of the multiaimed Soviet Vesta mission, developed in cooperation with European countries for realisation in 1991–1994 but canceled due to the Soviet Union disbanding.
First asteroid image (Ceres and Vesta) from Mars – viewed by Curiosity (20 April 2014)

In the early 1990s, NASA initiated the Discovery Program, which was intended to be a series of low-cost scientific missions. In 1996, the program's study team recommended as a high priority a mission to explore the asteroid belt using a spacecraft with an ion engine. Funding for this program remained problematic for several years, but by 2004 the Dawn vehicle had passed its critical design review.
It was launched on 27 September 2007, as the space mission to make the first visits to both Vesta and Ceres. On 3 May 2011, Dawn acquired its first targeting image 1.2 million kilometers from Vesta. After orbiting Vesta for 13 months, Dawn used its ion engine to depart for Ceres, with gravitational capture occurring on 6 March 2015 at a separation of 61,000 km, four months prior to the New Horizons flyby of Pluto.
Dawn's mission profile called for it to study Ceres from a series of circular polar orbits at successively lower altitudes. It entered its first observational orbit ("RC3") around Ceres at an altitude of 13,500 km on 23 April 2015, staying for only approximately one orbit (fifteen days). The spacecraft subsequently reduced its orbital distance to 4,400 km for its second observational orbit ("survey") for three weeks, then down to 1,470 km ("HAMO;" high altitude mapping orbit) for two months and then down to its final orbit at 375 km ("LAMO;" low altitude mapping orbit) for at least three months. The spacecraft instrumentation includes a framing camera, a visual and infrared spectrometer, and a gamma-ray and neutron detector. These instruments examined Ceres' shape and elemental composition. On 13 January 2015, Dawn took the first images of Ceres at near-Hubble resolution, revealing impact craters and a small high-albedo spot on the surface, near the same location as that observed previously. Additional imaging sessions, at increasingly better resolution took place on 25 January, 4, 12, 19, and 25 February, 1 March, and 10 and 15 April.
Dawn's arrival in a stable orbit around Ceres was delayed after, close to reaching Ceres, it was hit by a cosmic ray, making it take another, longer route around Ceres in back, instead of a direct spiral towards it.
The Chinese Space Agency is designing a sample-return mission from Ceres that would take place during the 2020s.

Asteroid belt

From Wikipedia, the free encyclopedia

The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars.
  Sun
  Jupiter trojans
  Orbits of planets
  Asteroid belt
  Hilda asteroids (Hildas)
  Near-Earth objects (selection)
The relative masses of the top twelve asteroids known compared to the remaining mass of all the other asteroids in the belt.
 
By far the largest object within the belt is Ceres. The total mass of the asteroid belt is significantly less than Pluto's, and approximately twice that of Pluto's moon Charon.

The asteroid belt is the circumstellar disc in the Solar System located roughly between the orbits of the planets Mars and Jupiter. It is occupied by numerous irregularly shaped bodies called asteroids or minor planets. The asteroid belt is also termed the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System such as near-Earth asteroids and trojan asteroids. About half the mass of the belt is contained in the four largest asteroids: Ceres, Vesta, Pallas, and Hygiea. The total mass of the asteroid belt is approximately 4% that of the Moon, or 22% that of Pluto, and roughly twice that of Pluto's moon Charon (whose diameter is 1200 km). 

Ceres, the asteroid belt's only dwarf planet, is about 950 km in diameter, whereas 4 Vesta, 2 Pallas, and 10 Hygiea have mean diameters of less than 600 km. The remaining bodies range down to the size of a dust particle. The asteroid material is so thinly distributed that numerous unmanned spacecraft have traversed it without incident. Nonetheless, collisions between large asteroids do occur, and these can produce an asteroid family whose members have similar orbital characteristics and compositions. Individual asteroids within the asteroid belt are categorized by their spectra, with most falling into three basic groups: carbonaceous (C-type), silicate (S-type), and metal-rich (M-type). 

The asteroid belt formed from the primordial solar nebula as a group of planetesimals. Planetesimals are the smaller precursors of the protoplanets. Between Mars and Jupiter, however, gravitational perturbations from Jupiter imbued the protoplanets with too much orbital energy for them to accrete into a planet. Collisions became too violent, and instead of fusing together, the planetesimals and most of the protoplanets shattered. As a result, 99.9% of the asteroid belt's original mass was lost in the first 100 million years of the Solar System's history. Some fragments eventually found their way into the inner Solar System, leading to meteorite impacts with the inner planets. Asteroid orbits continue to be appreciably perturbed whenever their period of revolution about the Sun forms an orbital resonance with Jupiter. At these orbital distances, a Kirkwood gap occurs as they are swept into other orbits.

Classes of small Solar System bodies in other regions are the near-Earth objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids, and the Oort cloud objects. 

On 22 January 2014, ESA scientists reported the detection, for the first definitive time, of water vapor on Ceres, the largest object in the asteroid belt. The detection was made by using the far-infrared abilities of the Herschel Space Observatory. The finding was unexpected because comets, not asteroids, are typically considered to "sprout jets and plumes". According to one of the scientists, "The lines are becoming more and more blurred between comets and asteroids."

History of observation

Johannes Kepler was the person who first noticed in 1596 that there was something strange about the orbits of Mars and Jupiter.

In 1596, Johannes Kepler predicted “Between Mars and Jupiter, I place a planet” in his Mysterium Cosmographicum. While analyzing Tycho Brahe's data, Kepler thought that there was too large a gap between the orbits of Mars and Jupiter.

In an anonymous footnote to his 1766 translation of Charles Bonnet's Contemplation de la Nature, the astronomer Johann Daniel Titius of Wittenberg noted an apparent pattern in the layout of the planets. If one began a numerical sequence at 0, then included 3, 6, 12, 24, 48, etc., doubling each time, and added four to each number and divided by 10, this produced a remarkably close approximation to the radii of the orbits of the known planets as measured in astronomical units provided one allowed for a "missing planet" (equivalent to 24 in the sequence) between the orbits of Mars (12) and Jupiter (48). In his footnote, Titius declared "But should the Lord Architect have left that space empty? Not at all."

When William Herschel discovered Uranus in 1781, the planet's orbit matched the law almost perfectly, leading astronomers to conclude that there had to be a planet between the orbits of Mars and Jupiter. 

Giuseppe Piazzi, discoverer of Ceres, the largest object in the asteroid belt. For several decades after its discovery, Ceres was known as a planet, after which it was reclassified as an asteroid. In 2006, it was designated as a dwarf planet.

On January 1, 1801, Giuseppe Piazzi, chair of astronomy at the University of Palermo, Sicily, found a tiny moving object in an orbit with exactly the radius predicted by this pattern. He dubbed it "Ceres", after the Roman goddess of the harvest and patron of Sicily. Piazzi initially believed it to be a comet, but its lack of a coma suggested it was a planet.

Thus, the aforementioned pattern, now known as the Titius–Bode law, predicted the semi-major axes of all eight planets of the time (Mercury, Venus, Earth, Mars, Ceres, Jupiter, Saturn and Uranus). 

Fifteen months later, Heinrich Olbers discovered a second object in the same region, Pallas. Unlike the other known planets, Ceres and Pallas remained points of light even under the highest telescope magnifications instead of resolving into discs. Apart from their rapid movement, they appeared indistinguishable from stars.

Accordingly, in 1802, William Herschel suggested they be placed into a separate category, named "asteroids", after the Greek asteroeides, meaning "star-like". Upon completing a series of observations of Ceres and Pallas, he concluded,
Neither the appellation of planets nor that of comets, can with any propriety of language be given to these two stars ... They resemble small stars so much as hardly to be distinguished from them. From this, their asteroidal appearance, if I take my name, and call them Asteroids; reserving for myself, however, the liberty of changing that name, if another, more expressive of their nature, should occur.
By 1807, further investigation revealed two new objects in the region: Juno and Vesta. The burning of Lilienthal in the Napoleonic wars, where the main body of work had been done, brought this first period of discovery to a close.

Despite Herschel's coinage, for several decades it remained common practice to refer to these objects as planets and to prefix their names with numbers representing their date of discovery: 1 Ceres, 2 Pallas, 3 Juno, 4 Vesta. However, in 1845 astronomers detected a fifth object (5 Astraea) and, shortly thereafter, new objects were found at an accelerating rate. Counting them among the planets became increasingly cumbersome. Eventually, they were dropped from the planet list (as first suggested by Alexander von Humboldt in the early 1850s) and Herschel's choice of nomenclature, "asteroids", gradually came into common use.

The discovery of Neptune in 1846 led to the discrediting of the Titius–Bode law in the eyes of scientists because its orbit was nowhere near the predicted position. To date, there is no scientific explanation for the law, and astronomers' consensus regards it as a coincidence.

The expression "asteroid belt" came into use in the very early 1850s, although it is hard to pinpoint who coined the term. The first English use seems to be in the 1850 translation (by E. C. Otté) of Alexander von Humboldt's Cosmos: "[...] and the regular appearance, about the 13th of November and the 11th of August, of shooting stars, which probably form part of a belt of asteroids intersecting the Earth's orbit and moving with planetary velocity". Another early appearance occurred in Robert James Mann's A Guide to the Knowledge of the Heavens: "The orbits of the asteroids are placed in a wide belt of space, extending between the extremes of [...]". The American astronomer Benjamin Peirce seems to have adopted that terminology and to have been one of its promoters.

One hundred asteroids had been located by mid-1868, and in 1891 the introduction of astrophotography by Max Wolf accelerated the rate of discovery still further. A total of 1,000 asteroids had been found by 1921, 10,000 by 1981, and 100,000 by 2000. Modern asteroid survey systems now use automated means to locate new minor planets in ever-increasing quantities.

Origin

The asteroid belt showing the orbital inclinations versus distances from the Sun, with asteroids in the core region of the asteroid belt in red and other asteroids in blue

Formation

In 1802, shortly after discovering Pallas, Olbers suggested to Herschel that Ceres and Pallas were fragments of a much larger planet that once occupied the Mars–Jupiter region, this planet having suffered an internal explosion or a cometary impact many million years before. The large amount of energy required to destroy a planet, combined with the belt's low combined mass, which is only about 4% of the mass of the Moon, do not support the hypothesis. Further, the significant chemical differences between the asteroids become difficult to explain if they come from the same planet. As of 2018, a study was released from researchers at the University of Florida that found the asteroid belt was created from the remnants of several ancient planets instead of a singular planet.

A hypothesis to the asteroid belt creation is that in general, in the Solar System, a planetary formation is thought to have occurred via a process comparable to the long-standing nebular hypothesis: a cloud of interstellar dust and gas collapsed under the influence of gravity to form a rotating disc of material that then further condensed to form the Sun and planets. During the first few million years of the Solar System's history, an accretion process of sticky collisions caused the clumping of small particles, which gradually increased in size. Once the clumps reached sufficient mass, they could draw in other bodies through gravitational attraction and become planetesimals. This gravitational accretion led to the formation of the planets. 

Planetesimals within the region which would become the asteroid belt were too strongly perturbed by Jupiter's gravity to form a planet. Instead, they continued to orbit the Sun as before, occasionally colliding. In regions where the average velocity of the collisions was too high, the shattering of planetesimals tended to dominate over accretion, preventing the formation of planet-sized bodies. Orbital resonances occurred where the orbital period of an object in the belt formed an integer fraction of the orbital period of Jupiter, perturbing the object into a different orbit; the region lying between the orbits of Mars and Jupiter contains many such orbital resonances. As Jupiter migrated inward following its formation, these resonances would have swept across the asteroid belt, dynamically exciting the region's population and increasing their velocities relative to each other.

During the early history of the Solar System, the asteroids melted to some degree, allowing elements within them to be partially or completely differentiated by mass. Some of the progenitor bodies may even have undergone periods of explosive volcanism and formed magma oceans. However, because of the relatively small size of the bodies, the period of melting was necessarily brief (compared to the much larger planets), and had generally ended about 4.5 billion years ago, in the first tens of millions of years of formation. In August 2007, a study of zircon crystals in an Antarctic meteorite believed to have originated from Vesta suggested that it, and by extension the rest of the asteroid belt, had formed rather quickly, within 10 million years of the Solar System's origin.

Evolution

The asteroids are not samples of the primordial Solar System. They have undergone considerable evolution since their formation, including internal heating (in the first few tens of millions of years), surface melting from impacts, space weathering from radiation, and bombardment by micrometeorites. Although some scientists refer to the asteroids as residual planetesimals, other scientists consider them distinct.

The current asteroid belt is believed to contain only a small fraction of the mass of the primordial belt. Computer simulations suggest that the original asteroid belt may have contained the mass equivalent to the Earth. Primarily because of gravitational perturbations, most of the material was ejected from the belt within about 1 million years of formation, leaving behind less than 0.1% of the original mass. Since their formation, the size distribution of the asteroid belt has remained relatively stable: there has been no significant increase or decrease in the typical dimensions of the main-belt asteroids.

The 4:1 orbital resonance with Jupiter, at a radius 2.06 AU, can be considered the inner boundary of the asteroid belt. Perturbations by Jupiter send bodies straying there into unstable orbits. Most bodies formed within the radius of this gap were swept up by Mars (which has an aphelion at 1.67 AU) or ejected by its gravitational perturbations in the early history of the Solar System. The Hungaria asteroids lie closer to the Sun than the 4:1 resonance, but are protected from disruption by their high inclination.

When the asteroid belt was first formed, the temperatures at a distance of 2.7 AU from the Sun formed a "snow line" below the freezing point of water. Planetesimals formed beyond this radius were able to accumulate ice. In 2006 it was announced that a population of comets had been discovered within the asteroid belt beyond the snow line, which may have provided a source of water for Earth's oceans. According to some models, there was insufficient outgassing of water during the Earth's formative period to form the oceans, requiring an external source such as a cometary bombardment.

Characteristics

951 Gaspra, the first asteroid imaged by a spacecraft, as viewed during Galileo's 1991 flyby; colors are exaggerated
 
Fragment of the Allende meteorite, a carbonaceous chondrite that fell to Earth in Mexico in 1969

Contrary to popular imagery, the asteroid belt is mostly empty. The asteroids are spread over such a large volume that it would be improbable to reach an asteroid without aiming carefully. Nonetheless, hundreds of thousands of asteroids are currently known, and the total number ranges in the millions or more, depending on the lower size cutoff. Over 200 asteroids are known to be larger than 100 km, and a survey in the infrared wavelengths has shown that the asteroid belt has between 700,000 and 1.7 million asteroids with a diameter of 1 km or more. The apparent magnitudes of most of the known asteroids are between 11 and 19, with the median at about 16.

The total mass of the asteroid belt is estimated to be between 2.8×1021 and 3.2×1021 kilograms, which is just 4% of the mass of the Moon. The four largest objects, Ceres, 4 Vesta, 2 Pallas, and 10 Hygiea, account for half of the belt's total mass, with almost one-third accounted for by Ceres alone.

Composition

The current belt consists primarily of three categories of asteroids: C-type or carbonaceous asteroids, S-type or silicate asteroids, and M-type or metallic asteroids. 

Carbonaceous asteroids, as their name suggests, are carbon-rich. They dominate the asteroid belt's outer regions. Together they comprise over 75% of the visible asteroids. They are redder in hue than the other asteroids and have a very low albedo. Their surface composition is similar to carbonaceous chondrite meteorites. Chemically, their spectra match the primordial composition of the early Solar System, with only the lighter elements and volatiles removed. 

S-type (silicate-rich) asteroids are more common toward the inner region of the belt, within 2.5 AU of the Sun. The spectra of their surfaces reveal the presence of silicates and some metal, but no significant carbonaceous compounds. This indicates that their materials have been significantly modified from their primordial composition, probably through melting and reformation. They have a relatively high albedo and form about 17% of the total asteroid population. 

M-type (metal-rich) asteroids form about 10% of the total population; their spectra resemble that of iron-nickel. Some are believed to have formed from the metallic cores of differentiated progenitor bodies that were disrupted through collision. However, there are also some silicate compounds that can produce a similar appearance. For example, the large M-type asteroid 22 Kalliope does not appear to be primarily composed of metal. Within the asteroid belt, the number distribution of M-type asteroids peaks at a semi-major axis of about 2.7 AU. It is not yet clear whether all M-types are compositionally similar, or whether it is a label for several varieties which do not fit neatly into the main C and S classes.

Hubble views extraordinary multi-tailed asteroid P/2013 P5.
 
One mystery of the asteroid belt is the relative rarity of V-type or basaltic asteroids. Theories of asteroid formation predict that objects the size of Vesta or larger should form crusts and mantles, which would be composed mainly of basaltic rock, resulting in more than half of all asteroids being composed either of basalt or olivine. Observations, however, suggest that 99 percent of the predicted basaltic material is missing. Until 2001, most basaltic bodies discovered in the asteroid belt were believed to originate from the asteroid Vesta (hence their name V-type). However, the discovery of the asteroid 1459 Magnya revealed a slightly different chemical composition from the other basaltic asteroids discovered until then, suggesting a different origin. This hypothesis was reinforced by the further discovery in 2007 of two asteroids in the outer belt, 7472 Kumakiri and (10537) 1991 RY16, with a differing basaltic composition that could not have originated from Vesta. These latter two are the only V-type asteroids discovered in the outer belt to date.

The temperature of the asteroid belt varies with the distance from the Sun. For dust particles within the belt, typical temperatures range from 200 K (−73 °C) at 2.2 AU down to 165 K (−108 °C) at 3.2 AU However, due to rotation, the surface temperature of an asteroid can vary considerably as the sides are alternately exposed to solar radiation and then to the stellar background.

Main-belt comets

Several otherwise unremarkable bodies in the outer belt show cometary activity. Because their orbits cannot be explained through the capture of classical comets, it is thought that many of the outer asteroids may be icy, with the ice occasionally exposed to sublimation through small impacts. Main-belt comets may have been a major source of the Earth's oceans because the deuterium-hydrogen ratio is too low for classical comets to have been the principal source.

Orbits

The asteroid belt (showing eccentricities), with the asteroid belt in red and blue ("core" region in red)
 
Most asteroids within the asteroid belt have orbital eccentricities of less than 0.4, and an inclination of less than 30°. The orbital distribution of the asteroids reaches a maximum at an eccentricity of around 0.07 and an inclination below 4°. Thus although a typical asteroid has a relatively circular orbit and lies near the plane of the ecliptic, some asteroid orbits can be highly eccentric or travel well outside the ecliptic plane. 

Sometimes, the term main belt is used to refer only to the more compact "core" region where the greatest concentration of bodies is found. This lies between the strong 4:1 and 2:1 Kirkwood gaps at 2.06 and 3.27 AU, and at orbital eccentricities less than roughly 0.33, along with orbital inclinations below about 20°. As of 2006, this "core" region contained 93% of all discovered and numbered minor planets within the Solar System. The JPL Small-Body Database lists over 670,000 known main belt asteroids.

Kirkwood gaps

Number of asteroids in the asteroid belt as a function of their semi-major axis. The dashed lines indicate the Kirkwood gaps, where orbital resonances with Jupiter destabilize orbits. The color gives a possible division into three zones:

  Zone I: inner main-belt (a < 2.5 AU)
  Zone II: middle main-belt (2.5 AU < a < 2.82 AU)
  Zone III: outer main-belt (a > 2.82 AU)

The semi-major axis of an asteroid is used to describe the dimensions of its orbit around the Sun, and its value determines the minor planet's orbital period. In 1866, Daniel Kirkwood announced the discovery of gaps in the distances of these bodies' orbits from the Sun. They were located in positions where their period of revolution about the Sun was an integer fraction of Jupiter's orbital period. Kirkwood proposed that the gravitational perturbations of the planet led to the removal of asteroids from these orbits.

When the mean orbital period of an asteroid is an integer fraction of the orbital period of Jupiter, a mean-motion resonance with the gas giant is created that is sufficient to perturb an asteroid to new orbital elements. Asteroids that become located in the gap orbits (either primordially because of the migration of Jupiter's orbit, or due to prior perturbations or collisions) are gradually nudged into different, random orbits with a larger or smaller semi-major axis. 

The gaps are not seen in a simple snapshot of the locations of the asteroids at any one time because asteroid orbits are elliptical, and many asteroids still cross through the radii corresponding to the gaps. The actual spatial density of asteroids in these gaps does not differ significantly from the neighboring regions.

The main gaps occur at the 3:1, 5:2, 7:3, and 2:1 mean-motion resonances with Jupiter. An asteroid in the 3:1 Kirkwood gap would orbit the Sun three times for each Jovian orbit, for instance. Weaker resonances occur at other semi-major axis values, with fewer asteroids found than nearby. (For example, an 8:3 resonance for asteroids with a semi-major axis of 2.71 AU.)

The main or core population of the asteroid belt is sometimes divided into three zones, based on the most prominent Kirkwood gaps:
  1. Zone I lies between the 4:1 resonance (2.06 AU) and 3:1 resonance (2.5 AU) Kirkwood gaps.
  2. Zone II continues from the end of Zone I out to the 5:2 resonance gap (2.82 AU).
  3. Zone III extends from the outer edge of Zone II to the 2:1 resonance gap (3.28 AU).
The asteroid belt may also be divided into the inner and outer belts, with the inner belt formed by asteroids orbiting nearer to Mars than the 3:1 Kirkwood gap (2.5 AU), and the outer belt formed by those asteroids closer to Jupiter's orbit.

Collisions

The zodiacal light, a minor part of which is created by dust from collisions in the asteroid belt

The high population of the asteroid belt makes for a very active environment, where collisions between asteroids occur frequently (on astronomical time scales). Collisions between main-belt bodies with a mean radius of 10 km are expected to occur about once every 10 million years. A collision may fragment an asteroid into numerous smaller pieces (leading to the formation of a new asteroid family). Conversely, collisions that occur at low relative speeds may also join two asteroids. After more than 4 billion years of such processes, the members of the asteroid belt now bear little resemblance to the original population. 

Along with the asteroid bodies, the asteroid belt also contains bands of dust with particle radii of up to a few hundred micrometres. This fine material is produced, at least in part, from collisions between asteroids, and by the impact of micrometeorites upon the asteroids. Due to the Poynting–Robertson effect, the pressure of solar radiation causes this dust to slowly spiral inward toward the Sun.

The combination of this fine asteroid dust, as well as ejected cometary material, produces the zodiacal light. This faint auroral glow can be viewed at night extending from the direction of the Sun along the plane of the ecliptic. Asteroid particles that produce the visible zodiacal light average about 40 μm in radius. The typical lifetimes of main-belt zodiacal cloud particles are about 700,000 years. Thus, to maintain the bands of dust, new particles must be steadily produced within the asteroid belt. It was once thought that collisions of asteroids form a major component of the zodiacal light. However, computer simulations by Nesvorný and colleagues attributed 85 percent of the zodiacal-light dust to fragmentations of Jupiter-family comets, rather than to comets and collisions between asteroids in the asteroid belt. At most 10 percent of the dust is attributed to the asteroid belt.

Meteorites

Some of the debris from collisions can form meteoroids that enter the Earth's atmosphere. Of the 50,000 meteorites found on Earth to date, 99.8 percent are believed to have originated in the asteroid belt.

Families and groups

This plot of orbital inclination (ip) versus eccentricity (ep) for the numbered main-belt asteroids clearly shows clumpings representing asteroid families.
 
In 1918, the Japanese astronomer Kiyotsugu Hirayama noticed that the orbits of some of the asteroids had similar parameters, forming families or groups.

Approximately one-third of the asteroids in the asteroid belt are members of an asteroid family. These share similar orbital elements, such as semi-major axis, eccentricity, and orbital inclination as well as similar spectral features, all of which indicate a common origin in the breakup of a larger body. Graphical displays of these elements, for members of the asteroid belt, show concentrations indicating the presence of an asteroid family. There are about 20 to 30 associations that are almost certainly asteroid families. Additional groupings have been found that are less certain. Asteroid families can be confirmed when the members display common spectral features. Smaller associations of asteroids are called groups or clusters. 

Some of the most prominent families in the asteroid belt (in order of increasing semi-major axes) are the Flora, Eunoma, Koronis, Eos, and Themis families. The Flora family, one of the largest with more than 800 known members, may have formed from a collision less than 1 billion years ago. The largest asteroid to be a true member of a family (as opposed to an interloper in the case of Ceres with the Gefion family) is 4 Vesta. The Vesta family is believed to have formed as the result of a crater-forming impact on Vesta. Likewise, the HED meteorites may also have originated from Vesta as a result of this collision.

Three prominent bands of dust have been found within the asteroid belt. These have similar orbital inclinations as the Eos, Koronis, and Themis asteroid families, and so are possibly associated with those groupings.

The main belt evolution after the Late Heavy Bombardment was very likely affected by the passages of large Centaurs and trans-Neptunian objects (TNOs). Centaurs and TNOs that reach the inner Solar System can modify the orbits of main belt asteroids, though only if their mass is of the order of 10−9 M for single encounters or, one order less in case of multiple close encounters. However Centaurs and TNOs are unlikely to have significantly dispersed young asteroid families in the main belt, but they can have perturbed some old asteroid families. Current main belt asteroids that originated as Centaurs or trans-Neptunian objects may lie in the outer belt with short lifetime of less than 4 million years, most likely between 2.8 and 3.2 AU at larger eccentricities than typical of main belt asteroid.

Periphery

Skirting the inner edge of the belt (ranging between 1.78 and 2.0 AU, with a mean semi-major axis of 1.9 AU) is the Hungaria family of minor planets. They are named after the main member, 434 Hungaria; the group contains at least 52 named asteroids. The Hungaria group is separated from the main body by the 4:1 Kirkwood gap and their orbits have a high inclination. Some members belong to the Mars-crossing category of asteroids, and gravitational perturbations by Mars are likely a factor in reducing the total population of this group.

Another high-inclination group in the inner part of the asteroid belt is the Phocaea family. These are composed primarily of S-type asteroids, whereas the neighboring Hungaria family includes some E-types. The Phocaea family orbit between 2.25 and 2.5 AU from the Sun. 

Skirting the outer edge of the asteroid belt is the Cybele group, orbiting between 3.3 and 3.5 AU. These have a 7:4 orbital resonance with Jupiter. The Hilda family orbit between 3.5 and 4.2 AU, and have relatively circular orbits and a stable 3:2 orbital resonance with Jupiter. There are few asteroids beyond 4.2 AU, until Jupiter's orbit. Here the two families of Trojan asteroids can be found, which, at least for objects larger than 1 km, are approximately as numerous as the asteroids of the asteroid belt.

New families

Some asteroid families have formed recently, in astronomical terms. The Karin Cluster apparently formed about 5.7 million years ago from a collision with a progenitor asteroid 33 km in radius. The Veritas family formed about 8.3 million years ago; evidence includes interplanetary dust recovered from ocean sediment.

More recently, the Datura cluster appears to have formed about 530,000 years ago from a collision with a main-belt asteroid. The age estimate is based on the probability of the members having their current orbits, rather than from any physical evidence. However, this cluster may have been a source for some zodiacal dust material. Other recent cluster formations, such as the Iannini cluster (c. 1–5 million years ago), may have provided additional sources of this asteroid dust.

Exploration

Artist's concept of the Dawn spacecraft with Vesta and Ceres

The first spacecraft to traverse the asteroid belt was Pioneer 10, which entered the region on 16 July 1972. At the time there was some concern that the debris in the belt would pose a hazard to the spacecraft, but it has since been safely traversed by 12 spacecraft without incident. Pioneer 11, Voyagers 1 and 2 and Ulysses passed through the belt without imaging any asteroids. Galileo imaged 951 Gaspra in 1991 and 243 Ida in 1993, NEAR imaged 253 Mathilde in 1997 and landed on 433 Eros in February of 2001, Cassini imaged 2685 Masursky in 2000, Stardust imaged 5535 Annefrank in 2002, New Horizons imaged 132524 APL in 2006, Rosetta imaged 2867 Šteins in September 2008 and 21 Lutetia in July 2010, and Dawn orbited Vesta between July 2011 and September 2012 and has orbited Ceres since March 2015. On its way to Jupiter, Juno traversed the asteroid belt without collecting science data.[92] Due to the low density of materials within the belt, the odds of a probe running into an asteroid are now estimated at less than 1 in 1 billion.

Most belt asteroids imaged to date have come from brief flyby opportunities by probes headed for other targets. Only the Dawn, NEAR and Hayabusa missions have studied asteroids for a protracted period in orbit and at the surface.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...