Search This Blog

Tuesday, December 25, 2018

Sustainable biofuel

From Wikipedia, the free encyclopedia

Sustainable biofuel is biofuel produced in a sustainable manner.

Sustainability standards

In 2008, the Roundtable for Sustainable Biofuels released its proposed standards for sustainable biofuels. This includes 12 principles:
  1. "Biofuel production shall follow international treaties and national laws regarding such things as air quality, water resources, agricultural practices, labor conditions, and more.
  2. Biofuels projects shall be designed and operated in participatory processes that involve all relevant stakeholders in planning and monitoring.
  3. Biofuels shall significantly reduce greenhouse gas emissions as compared to fossil fuels. The principle seeks to establish a standard methodology for comparing greenhouse gases (GHG) benefits.
  4. Biofuel production shall not violate human rights or labor rights, and shall ensure decent work and the well-being of workers.
  5. Biofuel production shall contribute to the social and economic development of local, rural and indigenous peoples and communities.
  6. Biofuel production shall not impair food security.
  7. Biofuel production shall avoid negative impacts on biodiversity, ecosystems and areas of high conservation value.
  8. Biofuel production shall promote practices that improve soil health and minimize degradation.
  9. Surface and groundwater use will be optimized and contamination or depletion of water resources minimized.
  10. Air pollution shall be minimized along the supply chain.
  11. Biofuels shall be produced in the most cost-effective way, with a commitment to improve production efficiency and social and environmental performance in all stages of the biofuel value chain.
  12. Biofuel production shall not violate land rights".
Several countries and regions have introduced policies or adopted standards to promote sustainable biofuels production and use, most prominently the European Union and the United States. The 2009 EU Renewable Energy Directive, which requires 10 percent of transportation energy from renewable energy by 2020, is the most comprehensive mandatory sustainability standard in place as of 2010. 

The EU Renewable Energy Directive requires that the lifecycle greenhouse gas emissions of biofuels consumed be at least 50 percent less than the equivalent emissions from gasoline or diesel by 2017 (and 35 percent less starting in 2011). Also, the feedstocks for biofuels "should not be harvested from lands with high biodiversity value, from carbon-rich or forested land, or from wetlands".
 
As with the EU, the U.S. Renewable Fuel Standard (RFS) and the California Low Carbon Fuel Standard (LCFS) both require specific levels of lifecycle greenhouse gas reductions compared to equivalent fossil fuel consumption. The RFS requires that at least half of the biofuels production mandated by 2022 should reduce lifecycle emissions by 50 percent. The LCFS is a performance standard that calls for a minimum of 10 percent emissions reduction per unit of transport energy by 2020. Both the U.S. and California standards currently address only greenhouse gas emissions, but California plans to "expand its policy to address other sustainability issues associated with liquid biofuels in the future".

In 2009, Brazil also adopted new sustainability policies for sugarcane ethanol, including "zoning regulation of sugarcane expansion and social protocols".

Why it is needed?

Biofuels, in the form of liquid fuels derived from plant materials, are entering the market, driven by factors such as oil price spikes and the need for increased energy security. However, many of these first-generation biofuels that are currently being supplied have been criticised for their adverse impacts on the natural environment, food security, and land use.

The challenge is to support second, third and fourth-generation biofuel development. Second-generation biofuels include new cellulosic technologies, with responsible policies and economic instruments to help ensure that biofuel commercialization is sustainable. Responsible commercialization of biofuels represents an opportunity to enhance sustainable economic prospects in Africa, Latin America and Asia.

Biofuels have a limited ability to replace fossil fuels and should not be regarded as a ‘silver bullet’ to deal with transport emissions. However, they offer the prospect of increased market competition and oil price moderation. A healthy supply of alternative energy sources will help to combat gasoline price spikes and reduce dependency on fossil fuels, especially in the transport sector. Using transportation fuels more efficiently is also an integral part of a sustainable transport strategy.

Biofuel options

Biofuel development and use is a complex issue because there are many biofuel options which are available. Biofuels, such as ethanol and biodiesel, are currently produced from the products of conventional food crops such as the starch, sugar and oil feedstocks from crops that include wheat, maize, sugar cane, palm oil and oilseed rape. Some researchers fear that a major switch to biofuels from such crops would create a direct competition with their use for food and animal feed, and claim that in some parts of the world the economic consequences are already visible, other researchers look at the land available and the enormous areas of idle and abandoned land and claim that there is room for a large proportion of biofuel also from conventional crops.

Second generation biofuels are now being produced from a much broader range of feedstocks including the cellulose in dedicated energy crops (perennial grasses such as switchgrass and Miscanthus giganteus), forestry materials, the co-products from food production, and domestic vegetable waste. Advances in the conversion processes will improve the sustainability of biofuels, through better efficiencies and reduced environmental impact of producing biofuels, from both existing food crops and from cellulosic sources.

In 2007, Ronald Oxburgh suggested in The Courier-Mail that production of biofuels could be either responsible or irresponsible and had several trade-offs: "Produced responsibly they are a sustainable energy source that need not divert any land from growing food nor damage the environment; they can also help solve the problems of the waste generated by Western society; and they can create jobs for the poor where previously were none. Produced irresponsibly, they at best offer no climate benefit and, at worst, have detrimental social and environmental consequences. In other words, biofuels are pretty much like any other product. In 2008 the Nobel prize-winning chemist Paul J. Crutzen published findings that the release of nitrous oxide (N2O) emissions in the production of biofuels means that they contribute more to global warming than the fossil fuels they replace.

According to the Rocky Mountain Institute, sound biofuel production practices would not hamper food and fibre production, nor cause water or environmental problems, and would enhance soil fertility. The selection of land on which to grow the feedstocks is a critical component of the ability of biofuels to deliver sustainable solutions. A key consideration is the minimisation of biofuel competition for prime cropland.

Biofuels are different from fossil fuels in regard to carbon emissions being short term, but are similar to fossil fuels in that biofuels contribute to air pollution. Raw biofuels burned to generate steam for heat and power, produces airborne carbon particulates, carbon monoxide and nitrous oxides. The WHO estimates 3.7 million premature deaths worldwide in 2012 due to air pollution.

Plants used as sustainable biofuel

Sugarcane in Brazil

Sugarcane (Saccharum officinarum) plantation ready for harvest, Ituverava, São Paulo State, Brazil.
 
Mechanized harvesting of sugarcane, Piracicaba, São Paulo, Brazil.
 
Cosan's Costa Pinto sugar cane mill and ethanol distillery plant at Piracicaba, São Paulo, Brazil.

Brazil’s production of ethanol fuel from sugarcane dates back to the 1970s, as a governmental response to the 1973 oil crisis. Brazil is considered the biofuel industry leader and the world's first sustainable biofuels economy.Inslee, Jay; Bracken Hendricks (2007). "6. Homegrown Energy". Apollo's Fire. Island Press, Washington, D.C. pp. 153–155, 160–161. ISBN 978-1-59726-175-3. In 2010 the U.S. Environmental Protection Agency designated Brazilian sugarcane ethanol as an advanced biofuel due to EPA's estimated 61% reduction of total life cycle greenhouse gas emissions, including direct indirect land use change emissions. Brazil sugarcane ethanol fuel program success and sustainability is based on the most efficient agricultural technology for sugarcane cultivation in the world, uses modern equipment and cheap sugar cane as feedstock, the residual cane-waste (bagasse) is used to process heat and power, which results in a very competitive price and also in a high energy balance (output energy/input energy), which varies from 8.3 for average conditions to 10.2 for best practice production.

A report commissioned by the United Nations, based on a detailed review of published research up to mid-2009 as well as the input of independent experts world-wide, found that ethanol from sugar cane as produced in Brazil "in some circumstances does better than just “zero emission”. If grown and processed correctly, it has negative emission, pulling CO2 out of the atmosphere, rather than adding it. In contrast, the report found that U.S. use of maize for biofuel is less efficient, as sugarcane can lead to emissions reductions of between 70% and well over 100% when substituted for gasoline. Several other studies have shown that sugarcane-based ethanol reduces greenhouse gases by 86 to 90% if there is no significant land use change.

In another study commissioned by the Dutch government in 2006 to evaluate the sustainability of Brazilian bioethanol concluded that there is sufficient water to supply all foreseeable long-term water requirements for sugarcane and ethanol production. This evaluation also found that consumption of agrochemicals for sugar cane production is lower than in citric, corn, coffee and soybean cropping. The study found that development of resistant sugar cane varieties is a crucial aspect of disease and pest control and is one of the primary objectives of Brazil’s cane genetic improvement programs. Disease control is one of the main reasons for the replacement of a commercial variety of sugar cane.

Another concern is the fact that sugarcane fields are traditionally burned just before harvest to avoid harm to the workers, by removing the sharp leaves and killing snakes and other harmful animals, and also to fertilize the fields with ash. Mechanization will reduce pollution from burning fields and has higher productivity than people, and due to mechanization the number of temporary workers in the sugarcane plantations has already declined. By the 2008 harvest season, around 47% of the cane was collected with harvesting machines.

Regarding the negative impacts of the potential direct and indirect effect of land use changes on carbon emissions, the study commissioned by the Dutch government concluded that "it is very difficult to determine the indirect effects of further land use for sugar cane production (i.e. sugar cane replacing another crop like soy or citrus crops, which in turn causes additional soy plantations replacing pastures, which in turn may cause deforestation), and also not logical to attribute all these soil carbon losses to sugar cane". The Brazilian agency Embrapa estimates that there is enough agricultural land available to increase at least 30 times the existing sugarcane plantation without endangering sensible ecosystems or taking land destined for food crops. Most future growth is expected to take place on abandoned pasture lands, as it has been the historical trend in São Paulo state. Also, productivity is expected to improve even further based on current biotechnology research, genetic improvement, and better agronomic practices, thus contributing to reduce land demand for future sugarcane cultures.

Location of environmentally valuable areas with respect to sugarcane plantations. São Paulo, located in the Southeast Region of Brazil, concentrates two-thirds of sugarcane cultures.
 
Another concern is the risk of clearing rain forests and other environmentally valuable land for sugarcane production, such as the Amazon rainforest, the Pantanal or the Cerrado. Embrapa has rebutted this concern explaining that 99.7% of sugarcane plantations are located at least 2,000 km from the Amazon, and expansion during the last 25 years took place in the Center-South region, also far away from the Amazon rainforest, the Pantanal or the Atlantic forest. In São Paulo state growth took place in abandoned pasture lands. The impact assessment commissioned by the Dutch government supported this argument.

In order to guarantee a sustainable development of ethanol production, in September 2009 the government issued by decree a countrywide agroecological land use zoning to restrict sugarcane growth in or near environmentally sensitive areas. According to the new criteria, 92.5% of the Brazilian territory is not suitable for sugarcane plantation. The government considers that the suitable areas are more than enough to meet the future demand for ethanol and sugar in the domestic and international markets foreseen for the next decades.

Regarding the food vs fuel issue, a World Bank research report published on July 2008 found that "Brazil's sugar-based ethanol did not push food prices appreciably higher". This research paper also concluded that Brazil's sugar cane–based ethanol has not raised sugar prices significantly. An economic assessment report also published in July 2008 by the OECD agrees with the World Bank report regarding the negative effects of subsidies and trade restrictions, but found that the impact of biofuels on food prices are much smaller. A study by the Brazilian research unit of the Fundação Getúlio Vargas regarding the effects of biofuels on grain prices concluded that the major driver behind the 2007-2008 rise in food prices was speculative activity on futures markets under conditions of increased demand in a market with low grain stocks. The study also concluded that there is no correlation between Brazilian sugarcane cultivated area and average grain prices, as on the contrary, the spread of sugarcane was accompanied by rapid growth of grain crops in the country.

Jatropha

India and Africa


Crops like Jatropha, used for biodiesel, can thrive on marginal agricultural land where many trees and crops won't grow, or would produce only slow growth yields. Jatropha cultivation provides benefits for local communities:
Cultivation and fruit picking by hand is labour-intensive and needs around one person per hectare. In parts of rural India and Africa this provides much-needed jobs - about 200,000 people worldwide now find employment through jatropha. Moreover, villagers often find that they can grow other crops in the shade of the trees. Their communities will avoid importing expensive diesel and there will be some for export too.

Cambodia

Cambodia has no proven fossil fuel reserves, and is almost completely dependent on imported diesel fuel for electricity production. Consequently, Cambodians face an insecure supply and pay some of the highest energy prices in the world. The impacts of this are widespread and may hinder economic development.

Biofuels may provide a substitute for diesel fuel that can be manufactured locally for a lower price, independent of the international oil price. The local production and use of biofuel also offers other benefits such as improved energy security, rural development opportunities and environmental benefits. The Jatropha curcas species appears to be a particularly suitable source of biofuel as it already grows commonly in Cambodia. Local sustainable production of biofuel in Cambodia, based on the Jatropha or other sources, offers good potential benefits for the investors, the economy, rural communities and the environment.

Mexico

Jatropha is native to Mexico and Central America and was likely transported to India and Africa in the 1500s by Portuguese sailors convinced it had medicinal uses. In 2008, recognizing the need to diversify its sources of energy and reduce emissions, Mexico passed a law to push developing biofuels that don't threaten food security and the agriculture ministry has since identified some 2.6 million hectares (6.4 million acres) of land with a high potential to produce jatropha. The Yucatán Peninsula, for instance, in addition to being a corn producing region, also contains abandoned sisal plantations, where the growing of Jatropha for biodiesel production would not displace food.

On April 1, 2011 Interjet completed the first Mexican aviation biofuels test flight on an Airbus A320. The fuel was a 70:30 traditional jet fuel biojet blend produced from Jatropha oil provided by three Mexican producers, Global Energías Renovables (a wholly owned subsidiary of U.S.-based Global Clean Energy Holdings, Bencafser S.A. and Energy JH S.A. Honeywell's UOP processed the oil into Bio-SPK (Synthetic Paraffinic Kerosene). Global Energías Renovables operates the largest Jatropha farm in the Americas.

On August 1, 2011 Aeromexico, Boeing, and the Mexican Government participated in the first biojet powered transcontinental flight in aviation history. The flight from Mexico City to Madrid used a blend of 70 percent traditional fuel and 30 percent biofuel (aviation biofuel). The biojet was produced entirely from Jatropha oil.

Pongamia Pinnata in Australia and India

Pongamia pinnata is a legume native to Australia, India, Florida (USA) and most tropical regions, and is now being invested in as an alternative to Jatropha for areas such as Northern Australia, where Jatropha is classed as a noxious weed. Commonly known as simply 'Pongamia', this tree is currently being commercialised in Australia by Pacific Renewable Energy, for use as a Diesel replacement for running in modified Diesel engines or for conversion to Biodiesel using 1st or 2nd Generation Biodiesel techniques, for running in unmodified Diesel engines.

Sweet sorghum in India

Sweet sorghum overcomes many of the shortcomings of other biofuel crops. With sweet sorghum, only the stalks are used for biofuel production, while the grain is saved for food or livestock feed. It is not in high demand in the global food market, and thus has little impact on food prices and food security. Sweet sorghum is grown on already-farmed drylands that are low in carbon storage capacity, so concerns about the clearing of rainforest do not apply. Sweet sorghum is easier and cheaper to grow than other biofuel crops in India and does not require irrigation, an important consideration in dry areas. Some of the Indian sweet sorghum varieties are now grown in Uganda for ethanol production.

A study by researchers at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) found that growing sweet sorghum instead of grain sorghum could increase farmers incomes by US$40 per hectare per crop because it can provide food, feed and fuel. With grain sorghum currently grown on over 11 million hectares (ha) in Asia and on 23.4 million ha in Africa, a switch to sweet sorghum could have a considerable economic impact.

International collaboration on sustainable biofuels

Roundtable on Sustainable Biomaterials

Public attitudes and the actions of key stakeholders can play a crucial role in realising the potential of sustainable biofuels. Informed discussion and dialogue, based both on scientific research and an understanding of public and stakeholder views, is important.

The Roundtable on Sustainable Biofuels is an international initiative which brings together farmers, companies, governments, non-governmental organizations, and scientists who are interested in the sustainability of biofuels production and distribution. During 2008, the Roundtable used meetings, teleconferences, and online discussions to develop a series of principles and criteria for sustainable biofuels production.

In April 2011, the Roundtable on Sustainable Biofuels launched a set of comprehensive sustainability criteria - the “RSB Certification System.” Biofuels producers that meet to these criteria are able to show buyers and regulators that their product has been obtained without harming the environment or violating human rights.

Sustainable Biofuels Consensus

The Sustainable Biofuels Consensus is an international initiative which calls upon governments, the private sector, and other stakeholders to take decisive action to ensure the sustainable trade, production, and use of biofuels. In this way biofuels may play a key role in energy sector transformation, climate stabilization, and resulting worldwide revitalisation of rural areas.

The Sustainable Biofuels Consensus envisions a "landscape that provides food, fodder, fiber, and energy, which offers opportunities for rural development; that diversifies energy supply, restores ecosystems, protects biodiversity, and sequesters carbon".

Better Sugarcane Initiative / Bonsucro

In 2008, a multi-stakeholder process was initiated by the World Wildlife Fund and the International Finance Corporation, the private development arm of the World Bank, bringing together industry, supply chain intermediaries, end-users, farmers and civil society organisations to develop standards for certifying the derivative products of sugar cane, one of which is ethanol fuel.

The Bonsucro standard is based around a definition of sustainability which is founded on five principles:
  1. Obey the law
  2. Respect human rights and labour standards
  3. Manage input, production and processing efficiencies to enhance sustainability
  4. Actively manage biodiversity and ecosystem services
  5. Continuously improve key areas of the business
Biofuel producers that wish to sell products marked with the Bonsucro standard must both ensure that they product to the Production Standard, and that their downstream buyers meet the Chain of Custody Standard. In addition, if they wish to sell to the European market and count against the EU Renewable Energy Directive, then they must adhere to the Bonsucro EU standard, which includes specific greenhouse gas calculations following European Commission calculation guidelines.

Oil price moderation

Biofuels offer the prospect of real market competition and oil price moderation. According to the Wall Street Journal, crude oil would be trading 15 per cent higher and gasoline would be as much as 25 per cent more expensive, if it were not for biofuels. A healthy supply of alternative energy sources will help to combat gasoline price spikes.

Sustainable transport

Biofuels have a limited ability to replace fossil fuels and should not be regarded as a ‘silver bullet’ to deal with transport emissions. Biofuels on their own cannot deliver a sustainable transport system and so must be developed as part of an integrated approach, which promotes other renewable energy options and energy efficiency, as well as reducing the overall energy demand and need for transport. Consideration needs to be given to the development of hybrid and fuel cell vehicles, public transport, and better town and rural planning.

In December 2008 an Air New Zealand jet completed the world's first commercial aviation test flight partially using jatropha-based fuel. More than a dozen performance tests were undertaken in the two-hour test flight which departed from Auckland International Airport. A biofuel blend of 50:50 jatropha and Jet A1 fuel was used to power one of the Boeing 747-400's Rolls-Royce RB211 engines. Air New Zealand set several criteria for its jatropha, requiring that "the land it came from was neither forest nor virgin grassland in the previous 20 years, that the soil and climate it came from is not suitable for the majority of food crops and that the farms are rain fed and not mechanically irrigated". The company has also set general sustainability criteria, saying that such biofuels must not compete with food resources, that they must be as good as traditional jet fuels, and that they should be cost competitive.

In January 2009, Continental Airlines used a sustainable biofuel to power a commercial aircraft for the first time in North America. This demonstration flight marks the first sustainable biofuel demonstration flight by a commercial carrier using a twin-engined aircraft, a Boeing 737-800, powered by CFM International CFM56-7B engines. The biofuel blend included components derived from algae and jatropha plants. The algae oil was provided by Sapphire Energy, and the jatropha oil by Terasol Energy.

In March 2011, Yale University research showed significant potential for sustainable aviation fuel based on jatropha-curcas. According to the research, if cultivated properly, "jatropha can deliver many benefits in Latin America and greenhouse gas reductions of up to 60 percent when compared to petroleum-based jet fuel". Actual farming conditions in Latin America were assessed using sustainability criteria developed by the Roundtable on Sustainable Biofuels. Unlike previous research, which used theoretical inputs, the Yale team conducted many interviews with jatropha farmers and used "field measurements to develop the first comprehensive sustainability analysis of actual projects".

As of June 2011, revised international aviation fuel standards officially allow commercial airlines to blend conventional jet fuel with up to 50 percent biofuels. The renewable fuels "can be blended with conventional commercial and military jet fuel through requirements in the newly issued edition of ASTM D7566, Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons".

In December 2011, the FAA awarded $7.7 million to eight companies to advance the development of commercial aviation biofuels, with a special focus on alcohol to jet fuel. The FAA is assisting in the development of a sustainable fuel (from alcohols, sugars, biomass, and organic matter such as pyrolysis oils) that can be “dropped in” to aircraft without changing current practices and infrastructure. The research will test how the new fuels affect engine durability and quality control standards.

GreenSky London, a biofuels plant under construction in 2014, aimed to take in some 500,000 tonnes of municipal rubbish and change the organic component into 60,000 tonnes of jet fuel, and 40 megawatts of power. By the end of 2015, it was hoped all British Airways flights from London City Airport will be fuelled by waste and rubbish discarded by London residents, leading to carbon savings equivalent to taking 150,000 cars off the road. Unfortunately, the £340m scheme was mothballed in January 2016 following low crude oil prices, jittery investors and a lack of support from the UK government.

Social and environmental impact of palm oil

From Wikipedia, the free encyclopedia

Deforestation in Riau province, Sumatra, to make way for an oil palm plantation (2007)
 
Palm oil, produced from the oil palm, is a basic source of income for many farmers in South East Asia, Central and West Africa, and Central America. It is locally used as a cooking oil, exported for use in many commercial food and personal care products and is converted into biofuel. It produces up to 10 times more oil per unit area than soyabeans, rapeseed or sunflowers.

Oil palms produce 38% of the world's vegetable-oil output on 5% of the world’s vegetable-oil farmland. Palm oil plantations are under increasing scrutiny for their effects on the environment, including loss of carbon-sequestering forest land. There is also concern over displacement and disruption of human and animal populations due to palm oil cultivation.

Statistics

Oil palms (Elaeis guineensis)

An estimated 1.5 million small farmers grow the crop in Indonesia, along with about 500,000 people directly employed in the sector in Malaysia, plus those connected with related industries.

As of 2006, the cumulative land area of palm oil plantations is approximately 11,000,000 hectares (42,000 sq mi). In 2005 the Malaysian Palm Oil Association, responsible for about half of the world's crop, estimated that they manage about half a billion perennial carbon-sequestering palm trees. Demand for palm oil has been rising and is expected to climb further. 

Between 1967 and 2000 the area under cultivation in Indonesia expanded from less than 2,000 square kilometres (770 sq mi) to more than 30,000 square kilometres (12,000 sq mi). Deforestation in Indonesia for palm oil (and illegal logging) is so rapid that a 2007 United Nations Environment Programme (UNEP) report said that most of the country's forest might be destroyed by 2022. The rate of forest loss has declined in the past decade.

Global production is forecast at a record 46.9m tonnes in 2010, up from 45.3m in 2009, with Indonesia providing most of the increase.

Social issues

Oil palm is a valuable economic crop and provides a source of employment. It allows small landholders to participate in the cash economy and often results in improvements to local infrastructure and greater access to services such as schools and health facilities. In some areas, the cultivation of oil palm has replaced traditional practices, often due to the higher income potential of palm oil.

However, in some cases, land has been developed by oil palm plantations without consultation or compensation of the indigenous people occupying the land. This has occurred in Papua New Guinea, Colombia, and Indonesia. In the Sarawak state of Malaysian Borneo, there has been debate over whether there was an appropriate level of consultation with the Long Teran Kanan community prior to the development of local land for palm oil plantations. Appropriation of native lands has led to conflict between the plantations and local residents in each of these countries.

According to a 2008 report by NGOs including Friends of the Earth, palm oil companies have also reportedly used force to acquire land from indigenous communities in Indonesia. Additionally, some Indonesian oil palm plantations are dependent on imported labor or undocumented immigrants, which has raised concerns about the working conditions and social impacts of these practices.

Environmental issues

A satellite image showing deforestation in Malaysian Borneo to allow the plantation of oil palm
 
The remaining distribution of the Sumatran orangutan in Indonesia
 
A Sumatran orangutan at Bukit Lawang, Indonesia
 
In Indonesia, rising demand for palm oil and timber has led to the clearing of tropical forest land in Indonesian national parks. According to a 2007 report published by UNEP, at the rate of deforestation at that time, an estimated 98 percent of Indonesian forest would be destroyed by 2022 due to legal and illegal logging, forest fires and the development of palm oil plantations.

Malaysia, the second largest producer of palm oil has pledged to conserve a minimum of 50 percent of its total land area as forests. As of 2010, 58 percent of Malaysia was forested.

Palm oil cultivation has been criticized for:

Water pollution

In some states where oil palm is established, lax enforcement of environmental legislation leads to encroachment of plantations into riparian strips, and release of pollutants such as palm oil mill effluent (POME) in the environment.

More environment-friendly practices have been developed. Among those approaches is anaerobic treatment of POME, which might allow for biogas (methane) production and electricity generation, but it is very difficult to maintain optimum growth conditions for the anaerobic organisms that break down acetate to methane (primarily Methanosaeta concilii, a species of Archaea).

Greenhouse gas emissions

Damage to peatland, partly due to palm oil production, is claimed to contribute to environmental degradation, including four percent of global greenhouse gas emissions and eight percent of all global emissions caused annually by burning fossil fuels, due to the clearing of large areas of rainforest for palm oil plantations. Many Indonesian and Malaysian rainforests lie atop peat bogs that store great quantities of carbon. Forest removal and bog drainage to make way for plantations releases this carbon. 

Researchers are looking for possible solutions and ways to help the situation and have suggested that if enough land is conserved and there remain large enough areas of primary forest reserves, the effects of the palm oil industry may not have as much of an impact on wildlife and biodiversity. Environmental groups like Greenpeace, the Roundtable on Sustainable Palm Oil, and Amnesty International are also taking part in advocating bans on unsustainable palm oil crops and the companies that purchase these exports. 

Environmental groups such as Greenpeace claim that this deforestation produces far more emissions than biofuels remove. Greenpeace identified Indonesian peatlands—unique tropical forests whose dense soil can be burned to release carbon emissions—which are being destroyed to make way for palm oil plantations. Greenpeace argues the peatlands represent massive carbon sinks, and they claim the destruction already accounts for four percent of annual global CO₂ emissions. However, according to the Tropical Peat Research Laboratory, at least one measurement has shown that oil palm plantations are carbon sinks because oil palms convert carbon dioxide into oxygen just as other trees do, and, as reported in Malaysia's Second National Communication to the United Nations Framework Convention on Climate Change, oil palm plantations contribute to Malaysia's net carbon sink.

Greenpeace recorded peatland destruction in the Indonesian province of Riau on the island of Sumatra, home to 25 percent of Indonesia's palm oil plantations. Greenpeace claims this would have devastating consequences for Riau's peatlands, which have already been degraded by industrial development and store a massive 14.6 billion tonnes of carbon, roughly one year's greenhouse gas emissions.

Environmentalists and conservationists have been called upon to team up with palm oil companies to purchase small tracts of existing palm plantation, so they can use the profits to create privately owned nature reserves. It has been suggested that this is a more productive strategy than the current confrontational approach that threatens the livelihoods of millions of smallholders.

National differences

A palm oil plantation in Indonesia

Indonesia and Malaysia

In the two countries responsible for over 80% of world oil palm production, Indonesia and Malaysia, smallholders account for 35–40% of the total area of planted oil palm and as much as 33% of the output. Elsewhere, as in West African countries that produce mainly for domestic and regional markets, smallholders produce up to 90% of the annual harvest.

As a result of Malaysia's commitment to retain natural forest cover on at least 50 percent of the nation's land, the growth of new palm oil plantations has slowed in recent years. According to Malaysia's Plantation Industries and Commodities Minister Bernard Dompok, significant expansion of palm oil is no longer possible, therefore Malaysian farmers are now focusing on increasing production without expansion.

In January 2008, the CEO of the Malaysian Palm Oil Council wrote a letter to the Wall Street Journal stating that Malaysia was aware of the need to pursue a sustainable palm oil industry. Since then the Malaysian government, along with palm oil companies, have increased production of certified sustainable palm oil (CSPO). Malaysia has been recognized by the Roundtable on Sustainable Palm Oil as the largest producer of CSPO, producing 50 percent of the world's supply, and accounting for 40% of CSPO growers worldwide. Indonesia produces 35 percent of the world's CSPO.

In Indonesia, the Indigenous Peoples' Alliance of the Archipelago (AMAN) under the direction of Mina Susana Setra has fought for policies that find balance between economic need and indigenous people's rights. 99% of the palm oil concessions in the country concern land that is occupied by indigenous people. In 2012, AMAN led an advocacy team which won a Constitutional Court case recognizing customary land rights; however, implementation of programs that protect indigenous rights, the environment and developers have failed to come to fruition except in limited cases.

Africa

In Africa, the situation is very different compared to Indonesia or Malaysia. In its Human Development Report 2007-2008, the United Nations Development Program says production of palm oil in West Africa is largely sustainable, mainly because it is undertaken on a smallholder level without resorting to diversity-damaging monoculture. The United Nations Food and Agriculture program is encouraging small farmers across Africa to grow palm oil, because the crop offers opportunities to improve livelihoods and incomes for the poor.

Increasing demand

Food and cosmetics companies, including ADM, Unilever, Cargill, Procter & Gamble, Nestle, Kraft and Burger King, are driving the demand for new palm oil supplies, demand was partly driven by a need for a replacement for high trans fat content oils.

Although palm oil is used in the production of biofuels and proposals have been made to use it in large installations, a 2012 report by the International Food Policy Research Institute concluded that the increase in palm oil production is related to food demands, not biofuel demands.

Biodiesel

Biodiesel made from palm oil grown on sustainable non-forest land and from established plantations reduces greenhouse gas emissions. According to Greenpeace, clearing peatland to plant oil palms releases large amounts of greenhouse gasses, and that biodiesel produced from oil palms grown on this land may not result in a net reduction of greenhouse gas emissions. However, research by Malaysia's Tropical Peat Research Unit has found that oil palm plantations developed on peatland produce lower carbon dioxide emissions than forest peat swamp. However, it has been suggested that this research unit was commissioned by politicians who have interests in the palm oil industry.

In 2011, eight of Malaysia's Federal Land Development Authority (FELDA) plantations were certified under the International Sustainability and Carbon Certification System (ISCC), becoming part of Asia's first ISCC certified supply and production chain for palm biodiesel. This certification system complies with the European Union's Renewable Energy Directive (RED). In 2012, the European Commission approved the RSPO's biofuel certification scheme allowing certified sustainable palm oil biofuel to be sold in Europe.

Sustainability

In Borneo, the forest (F), is being replaced by oil palm plantations (G). These changes are irreversible for all practical purposes (H).

The Roundtable on Sustainable Palm Oil (RSPO), founded in 2004, works to promote the production of sustainably sourced palm oil through involvement with growers, processors, food companies, investors and NGOs. Beginning in 2008, palm oil that meets RSPO introduced standards has been designated "certified sustainable palm oil" (CSPO). Within two years of implementation, CSPO-designated palm oil comprised 7 percent of the global palm oil market. As of October 2012, 12 percent of palm oil has been certified by the RSPO. However, in the first year of CSPO certification only 30 percent of sustainable oil was marketed as CSPO.

In The Economist in 2010, the RSPO was criticized for not setting standards for greenhouse-gas emissions for plantations and because its members account for only 40 percent of palm oil production. In a 2007 report, Greenpeace was critical of RSPO-member food companies saying that they are "dependent on suppliers that are actively engaged in deforestation and the conversion of peatlands".

Following a contribution of $1 billion from Norway, in May 2010, Indonesia announced a two-year suspension on new agreements to clear natural forests and peatlands. Additionally, Indonesia announced plans to create its own organization similar to the RSPO, which, as a government certification system, will introduce mandatory regulation for all Indonesian palm oil producers.

In 2011, Malaysia began developing a national certification, the "Malaysia sustainable palm oil" (MSPO) certification, to improve involvement in sustainable palm oil production nationwide. The certification program, aimed at small and medium-sized producers, is expected to be launched in 2014. Malaysia has initiated its own environmental assessment on oil palm industry based on Life Cycle Assessment (LCA) approaches. LCA has been applied to assess the environmental impact of production of oil palm seedlings, oil palm fresh fruit bunches, crude palm oil, crude palm kernel oil and refined palm oil. The assessment on downstream industries such as oil palm plywood and bio-diesel, was also conducted.

Carbon credit programs

Oil palm producers are eligible to take part in Clean Development Mechanism (CDM) programs in which developed nations invest in clean energy projects in developing nations to earn carbon credits to offset their own greenhouse gas emissions and to reduce greenhouse gas emissions worldwide.

Investors have been cautious about investing in palm oil biofuel projects because of the impact the expansion of oil palm plantations has had on tropical rain forests, but according to the South East Asian CDM development company YTL-SV Carbon, many CDM projects in the palm oil sector focus on improving use of waste products to reduce gas emissions and do not contribute to the establishment of new oil palm plantations.

Use of sustainable oil by corporations

The World Wildlife Foundation (WWF) publishes an annual report on the use of sustainable palm oil by major corporations. In the 2011 report, 31 of the 132 companies surveyed received a top score for their use of sustainable palm oil. This represents an increase from 2009, the first year the report was issued, where no companies received top scores.

The WWF reports that 87 companies have committed to using only sustainable palm oil by 2015, including Unilever and Nestlé, both of which committed to exclusively using sustainable palm oil following demonstrations and urgings from environmental organizations in the late 2000s. However, according to the WWF, the overall growth in the use of sustainable palm oil is too slow.

Retailers who have made commitments to offering products containing sustainable oil, including Walmart and Carrefour, have attributed the slow rate of growth in the availability of sustainable palm oil to a lack of consumer interest and awareness in products made with sustainable palm oil. These companies have expressed concern about the potential impact of low consumer demand on the cost and future availability of sustainable palm oil.

Persuading governments

It may be possible to persuade governments of nations that produce competing products to enact protectionist legislation against the products of deforestation, an approach that was presented in a report by the National Farmers Union (United States) and Avoided Deforestation Partners. The 2010 report estimates that protecting the 13,000,000 hectares (50,000 sq mi) of mostly tropical forest that are lost annually worldwide would boost American agricultural revenue by $190–270 billion between 2012 and 2030. However, several conservation groups, including Conservation International, Environmental Defense Fund, National Wildlife Federation, and The Nature Conservancy, presented a rebuttal to the report, stating that it was "based on the assumption, totally unfounded, that deforestation in tropical countries can be easily interrupted, and its conclusions are therefore also unrealistic."

Genetically modified tree

From Wikipedia, the free encyclopedia

Technician checks on genetically modified peach and apple "orchards". Each dish holds experimental trees grown from lab-cultured cells to which researchers have given new genes. Source: USDA.
 
A genetically modified tree (GMt, GM tree, genetically engineered tree, GE tree or transgenic tree) is a tree whose DNA has been modified using genetic engineering techniques. In most cases the aim is to introduce a novel trait to the plant which does not occur naturally within the species. Examples include resistance to certain pests, diseases, environmental conditions, and herbicide tolerance, or the alteration of lignin levels in order to reduce pulping costs. 

Genetically modified forest trees are not yet approved ("deregulated") for commercial use, with the exception of insect-resistant poplar trees in China. and one case of GM Eucalyptus in Brazil. Several genetically modified forest tree species are undergoing field trials for deregulation, and much of the research is being carried out by the pulp and paper industry, primarily with the intention of increasing the productivity of existing tree stock. Certain genetically modified orchard tree species have been deregulated for commercial use in the United States including the papaya and plum. The development, testing and use of GM trees remains at an early stage in comparison to GM crops.

Research

Research into genetically modified trees has been ongoing since 1988. Concerns surrounding the biosafety implications of releasing genetically modified trees into the wild have held back regulatory approval of GM forest trees. This concern is exemplified in the Convention on Biological Diversity's stance:
The Conference of the Parties, Recognizing the uncertainties related to the potential environmental and socio-economic impacts, including long term and trans-boundary impacts, of genetically modified trees on global forest biological diversity, as well as on the livelihoods of indigenous and local communities, and given the absence of reliable data and of capacity in some countries to undertake risk assessments and to evaluate those potential impacts, recommends parties to take a precautionary approach when addressing the issue of genetically modified trees.
A precondition for further commercialization of GM forest trees is likely to be their complete sterility. Plantation trees remain phenotypically similar to their wild cousins in that most are the product of no more than three generations of artificial selection, therefore, the risk of transgene escape by pollination with compatible wild species is high. One of the most credible science-based concerns with GM trees is their potential for wide dispersal of seed and pollen. The fact that pine pollen travels long distances is well established, moving up to 3,000 kilometers from its source. Additionally, many tree species reproduce for a long time before being harvested. In combination these factors have led some to believe that GM trees are worthy of special environmental considerations over GM crops. Ensuring sterility for GM trees has proven elusive, but efforts are being made. While tree geneticist Steve Strauss predicted that complete containment might be possible by 2020, many questions remain.

Proposed uses

GM trees under experimental development have been modified with traits intended to provide benefit to industry, foresters or consumers. Due to high regulatory and research costs, the majority of genetically modified trees in silviculture consist of plantation trees, such as eucalyptus, poplar, and pine.

Lignin alteration

Several companies and organisations (including ArborGen, GLBRC, ...) in the pulp and paper industry are interested in utilizing GM technology to alter the lignin content of plantation trees (particularly eucalyptus and poplar trees). It is estimated that reducing lignin in plantation trees by genetic modification could reduce pulping costs by up to $15 per cubic metre. Lignin removal from wood fibres conventionally relies on costly and environmentally hazardous chemicals. By developing low-lignin GM trees it is hoped that pulping and bleaching processes will require fewer inputs, therefore, mills supplied by low-lignin GM trees may have a reduced impact on their surrounding ecosystems and communities. However, it is argued that reductions in lignin may compromise the structural integrity of the plant, thereby making it more susceptible to wind, snow, pathogens and disease, which could necessitate pesticide use exceeding that on traditional plantations. This has proven correct, and an alternative approach followed by the University of Columbia was developed. This approach was to introduce chemically labile linkages instead (by inserting a gene from the plant Angelica sinensis ), which allows the lignin to break down much more easy. Due to this new approach, the lignin from the trees not only easily breaks apart when treated with a mild base at temperatures of 100 degrees C, but the trees also maintained their growth potential and strength.

Frost tolerance

Genetic modification can allow trees to cope with abiotic stresses such that their geographic range is broadened. Freeze-tolerant GM eucalyptus trees for use in southern US plantations are currently being tested in open air sites with such an objective in mind. ArborGen, a tree biotechnology company and joint venture of pulp and paper firms Rubicon (New Zealand), MeadWestvaco (US) and International Paper (US) is leading this research. Until now the cultivation of eucalyptus has only been possible on the southern tip of Florida, freeze-tolerance would substantially extend the cultivation range northwards.

Reduced vigour

Orchard trees require a rootstock with reduced vigour to allow them to remain small. Genetic modification could allow the elimination of the rootstock, by making the tree less vigorous, hence reducing its height when fully mature. Research is being done into which genes are responsible for the vigour in orchard trees (such as apples, pears, ...).

Accelerated growth

In Brazil, field trials of fast growing GM eucalyptus are currently underway, they are set to conclude in 2015-2016 with commercialization to result. FuturaGene, a biotechnology company owned by Suzano, a Brazilian pulp and paper company, has been leading this research. Stanley Hirsch, chief executive of FuturaGene has stated: "Our trees grow faster and thicker. We are ahead of everyone. We have shown we can increase the yields and growth rates of trees more than anything grown by traditional breeding." The company is looking to reduce harvest cycles from 7 to 5.5 years with 20-30% more mass than conventional eucalyptus. There is concern that such objectives may further exacerbate the negative impacts of plantation forestry. Increased water and soil nutrient demand from faster growing species may lead to irrecoverable losses in site productivity and further impinge upon neighbouring communities and ecosystems. Researchers at the University of Manchester's Faculty of Life Sciences modified two genes in poplar trees, called PXY and CLE, which are responsible for the rate of cell division in tree trunks. As a result, the trees are growing twice as fast as normal, and also end up being taller, wider and with more leaves.

Disease resistance

Ecologically motivated research into genetic modification is underway. There are ongoing schemes that aim to foster disease resistance in trees such as the American chestnut and the English elm for the purpose of their reintroduction to the wild. Specific diseases have reduced the populations of these emblematic species to the extent that they are mostly lost in the wild. Genetic modification is being pursued concurrently with traditional breeding techniques in an attempt to endow these species with disease resistance.

Current uses

Poplars in China

In 2002 China's State Forestry Administration approved GM poplar trees for commercial use. Subsequently, 1.4 million Bt (insecticide) producing GM poplars were planted in China. They were planted both for their wood and as part of China's 'Green Wall' project, which aims to impede desertification. Reports indicate that the GM poplars have spread beyond the area of original planting  and that contamination of native poplars with the Bt gene is occurring. There is concern with these developments, particularly because the pesticide producing trait may impart a positive selective advantage on the poplar, allowing it a high level of invasiveness.

Regulation of genetic engineering

From Wikipedia, the free encyclopedia

The regulation of genetic engineering varies widely by country. Countries such as the United States, Canada, Lebanon and Egypt use substantial equivalence as the starting point when assessing safety, while many countries such as those in the European Union, Brazil and China authorize GMO cultivation on a case-by-case basis. Many countries allow the import of GM food with authorization, but either do not allow its cultivation (Russia, Norway, Israel) or have provisions for cultivation, but no GM products are yet produced (Japan, South Korea). Most countries that do not allow for GMO cultivation do permit research.
 
One of the key issues concerning regulators is whether GM products should be labeled. Labeling of GMO products in the marketplace is required in 64 countries. Labeling can be mandatory up to a threshold GM content level (which varies between countries) or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%. In Canada and the USA labeling of GM food is voluntary, while in Europe all food (including processed food) or feed which contains greater than 0.9% of approved GMOs must be labelled.

There is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, but that each GM food needs to be tested on a case-by-case basis before introduction. Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe. The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.

There is no evidence to support the idea that the consumption of approved GM food has a detrimental effect on human health. Some scientists and advocacy groups, such as Greenpeace and World Wildlife Fund, have however called for additional and more rigorous testing for GM food.

History

The development of a regulatory framework concerning genetic engineering began in 1975, at Asilomar, California. The first use of Recombinant DNA (rDNA) technology had just been successfully accomplished by Stanley Cohen and Herbert Boyer two years previously and the scientific community recognized that as well as benefits this technology could also pose some risks. The Asilomar meeting recommended a set of guidelines regarding the cautious use of recombinant technology and any products resulting from that technology. The Asilomar recommendations were voluntary, but in 1976 the US National Institute of Health (NIH) formed a rDNA advisory committee. This was followed by other regulatory offices (the United States Department of Agriculture (USDA), Environmental Protection Agency (EPA) and Food and Drug Administration (FDA)), effectively making all rDNA research tightly regulated in the USA.

In 1982 the Organisation for Economic Co-operation and Development (OECD) released a report into the potential hazards of releasing genetically modified organisms into the environment as the first transgenic plants were being developed. As the technology improved and genetically organisms moved from model organisms to potential commercial products the USA established a committee at the Office of Science and Technology (OSTP) to develop mechanisms to regulate the developing technology. In 1986 the OSTP assigned regulatory approval of genetically modified plants in the US to the USDA, FDA and EPA.

The basic concepts for the safety assessment of foods derived from GMOs have been developed in close collaboration under the auspices of the OECD, the World Health Organization (WHO) and Food and Agriculture Organization (FAO). A first joint FAO/WHO consultation in 1990 resulted in the publication of the report ‘Strategies for Assessing the Safety of Foods Produced by Biotechnology’ in 1991. Building on that, an international consensus was reached by the OECD’s Group of National Experts on Safety in Biotechnology, for assessing biotechnology in general, including field testing GM crops. That Group met again in Bergen, Norway in 1992 and reached consensus on principles for evaluating the safety of GM food; its report, ‘The safety evaluation of foods derived by modern technology – concepts and principles’ was published in 1993. That report recommends conducting the safety assessment of a GM food on a case-by-case basis through comparison to an existing food with a long history of safe use. This basic concept has been refined in subsequent workshops and consultations organized by the OECD, WHO, and FAO, and the OECD in particular has taken the lead in acquiring data and developing standards for conventional foods to be used in assessing substantial equivalence.

The Cartagena Protocol on Biosafety was adopted on 29 January 2000 and entered into force on 11 September 2003. It is an international treaty that governs the transfer, handling, and use of genetically modified (GM) organisms. It is focused on movement of GMOs between countries and has been called a de facto trade agreement. One hundred and fifty-seven countries are members of the Protocol and many use it as a reference point for their own regulations. Also in 2003 the Codex Alimentarius Commission of the FAO/WHO adopted a set of "Principles and Guidelines on foods derived from biotechnology" to help countries coordinate and standardize regulation of GM food to help ensure public safety and facilitate international trade. and updated its guidelines for import and export of food in 2004.

The European Union first introduced laws requiring GMO's to be labelled in 1997. In 2013, Connecticut became the first state to enact a labeling law in the USA, although it would not take effect until other states followed suit.

In the laboratory

Institutions that conduct certain types of scientific research must obtain permission from government authorities and ethical committees before they conduct any experiments. Universities and research institutes generally have a special committee that is responsible for approving any experiments that involve genetic engineering. Many experiments also need permission from a national regulatory group. Most countries have exempt dealings for genetically modified organisms (GMOs) that only pose a low risk. These include systems using standard laboratory strains as the hosts, recombinant DNA that does not code for a vertebrate toxin or is not derived from a micro-organism that can cause disease in humans. Exempt dealings usually do not require approval from the national regulator. GMOs that pose a low risk if certain management practices are complied with are classified as notifiable low risk dealings. The final classification is for any uses of GMOs that do not meet the previous criteria. These are known as licensed dealings and include cloning any genes that code for vertebrate toxins or using hosts that are capable of causing disease in humans. Licensed dealings require the approval of the national regulator.

Work with exempt GMOs do not need to be carried out in certified laboratories. All others must be contained in a Physical Containment level 1 (PC1) or Physical Containment level 2 (PC2) laboratories. Laboratory work with GMOs classified as low risk, which include knockout mice, are carried out in PC1 lab. This is the case for modifications that do not confer an advantage to the animal or doesn't secrete any infectious agents. If a laboratory strain that is used isn't covered by exempt dealings or the inserted DNA could code for a pathogenic gene, it must be carried out in a PC2 laboratory.

Release

Europe and United States

The approaches taken by governments to assess and manage the risks associated with the use of genetic engineering technology and the development and release of GMOs vary from country to country, with some of the most marked differences occurring between the United States and Europe. The U.S. regulatory policy is governed by the Coordinated Framework for Regulation of Biotechnology The policy has three tenets: "(1) U.S. policy would focus on the product of genetic modification (GM) techniques, not the process itself, (2) only regulation grounded in verifiable scientific risks would be tolerated, and (3) GM products are on a continuum with existing products and, therefore, existing statutes are sufficient to review the products." European Union by contrast enacted regulatory laws in 2003 that provided possibly the most stringent GMO regulations in the world. All GMOs, along with irradiated food, are considered "new food" and subject to extensive, case-by-case, science-based food evaluation by the European Food Safety Authority (EFSA). The criteria for authorization fall in four broad categories: "safety," "freedom of choice," "labeling," and "traceability."

The European Union has heavily contrasted its regulations and restrictions regarding genetic engineering compared to those of the United States. The European Parliament's Committee on the Environmental, Public Health, and Consumer Protection pushed forward and adopted a "safety first" principle regarding the case of GMOs, calling for any negative health consequences from GMOs to be held liable. On the other hand, the United States still takes on a less hands-on approach to the regulation of GMOs, with the FDA and USDA only looking over pesticide and plant health facets of GMOs. Despite the overall global increase in the production in GMOs, the European Union has still stalled GMOs fully integrating into its food supply. This has definitely affected various countries, including the United States, when trading with the EU.

However, although the European Union has had relatively strict regulations regarding the genetically modified food, Europe is now allowing newer versions of modified maize and other agricultural produce. Also, the level of GMO acceptance in the European Union varies across its countries with Spain and Portugal being more permissive of GMOs than France and the Nordic population. One notable exception however is Sweden. In this country, the government has declared that the GMO definition (according to Directive 2001/18/EC) stipulates that foreign DNA needs to be present in an organism for it to qualify as a genetically modified organisms. Organisms that thus have the foreign DNA removed (for example via selective breeding) do not qualify as GMO's, even if gene editing has thus been used to make the organism.

For a genetically modified organism to be approved for release in the U.S., it must be assessed under the Plant Protection Act by the Animal and Plant Health Inspection Service (APHIS) agency within the USDA and may also be assessed by the FDA and the EPA, depending on the intended use of the organism. The USDA evaluate the plants potential to become weeds, the FDA reviews plants that could enter or alter the food supply, and the EPA regulates genetically modified plants with pesticide properties, as well as agrochemical residues. In Europe the EFSA reports to the European Commission who then draft a proposal for granting or refusing the authorisation. This proposal is submitted to the Section on GM Food and Feed of the Standing Committee on the Food Chain and Animal Health and if accepted it will be adopted by the EC or passed on to the Council of Agricultural Ministers. Once in the Council it has three months to reach a qualified majority for or against the proposal, if no majority is reached the proposal is passed back to the EC who will then adopt the proposal. However, even after authorization, individual EU member states can ban individual varieties under a 'safeguard clause' if there are "justifiable reasons" that the variety may cause harm to humans or the environment. The member state must then supply sufficient evidence that this is the case. The Commission is obliged to investigate these cases and either overturn the original registrations or request the country to withdraw its temporary restriction.

Other countries

The level of regulation in other countries lies in between Europe and the United States. Common Market for Eastern and Southern Africa (COMASA) is responsible for assessing the safety of GMOs in most of Africa, although the final decision lies with each individual country. India and China are the two largest producers of genetically modified products in Asia. The Office of Agricultural Genetic Engineering Biosafety Administration (OAGEBA) is responsible for regulation in China, while in India it is the Institutional Biosafety Committee (IBSC), Review Committee on Genetic Manipulation (RCGM) and Genetic Engineering Approval Committee (GEAC). Brazil and Argentina are the 2nd and 3rd largest producers of GM food. In Argentine assessment of GM products for release is provided by the National Agricultural Biotechnology Advisory Committee (environmental impact), the National Service of Health and Agrifood Quality (food safety) and the National Agribusiness Direction (effect on trade), with the final decision made by the Secretariat of Agriculture, Livestock, Fishery and Food. In Brazil the National Biosafety Technical Commission is responsible for assessing environmental and food safety and prepares guidelines for transport, importation and field experiments involving GM products, while the Council of Ministers evaluates the commercial and economical issues with release. Health Canada and the Canadian Food Inspection Agency are responsible for evaluating the safety and nutritional value of genetically modified foods released in Canada. License applications for the release of all genetically modified organisms in Australia is overseen by the Office of the Gene Technology Regulator, while regulation is provided by the Therapeutic Goods Administration for GM medicines or Food Standards Australia New Zealand for GM food. The individual state governments can then assess the impact of release on markets and trade and apply further legislation to control approved genetically modified products.

The regulation agencies by geographical regions
Region Regulator/s Notes
USA USDA, FDA and EPA
Europe European Food Safety Authority
Canada Health Canada and the Canadian Food Inspection Agency Based on whether a product has novel features regardless of method of origin
Africa Common Market for Eastern and Southern Africa Final decision lies with each individual country.
China Office of Agricultural Genetic Engineering Biosafety Administration
India Institutional Biosafety Committee, Review Committee on Genetic Manipulation and Genetic Engineering Approval Committee
Argentina National Agricultural Biotechnology Advisory Committee (environmental impact), the National Service of Health and Agrifood Quality (food safety) and the National Agribusiness Direction (effect on trade) Final decision made by the Secretariat of Agriculture, Livestock, Fishery and Food.
Brazil National Biosafety Technical Commission (environmental and food safety) and the Council of Ministers (commercial and economical issues)
Australia Office of the Gene Technology Regulator (overseas all), Therapeutic Goods Administration (GM medicines) and Food Standards Australia New Zealand (GM food). The individual state governments can then assess the impact of release on markets and trade and apply further legislation to control approved genetically modified products.

Labeling

One of the key issues concerning regulators is whether GM products should be labeled. Labeling can be mandatory up to a threshold GM content level (which varies between countries) or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%. In Canada and the United States labeling of GM food is voluntary, while in Europe all food (including processed food) or feed which contains greater than 0.9% of approved GMOs must be labelled. In the US state of Oregon., voters rejected Measure 27, which would have required labeling of all genetically modified foods. Japan, Malaysia, New Zealand, and Australia require labeling so consumers can exercise choice between foods that have genetically modified, conventional or organic origins.

Trade

The Cartagena Protocol sets the requirements for the international trade of GMO's between countries that are signatories to it. Any shipments contain geneticially modified organisms that are intended to be used as feed, food or for processing must be identified and a list of the transgenic events be available.

Substantial equivalence

"Substantial equivalence" is a starting point for the safety assessment for GM foods that is widely used by national and international agencies—including the Canadian Food Inspection Agency, Japan's Ministry of Health and Welfare and the U.S. Food and Drug Administration, the United Nation’s Food and Agriculture Organization, the World Health Organization and the OECD.

A quote from FAO, one of the agencies that developed the concept, is useful for defining it: "Substantial equivalence embodies the concept that if a new food or food component is found to be substantially equivalent to an existing food or food component, it can be treated in the same manner with respect to safety (i.e., the food or food component can be concluded to be as safe as the conventional food or food component)". The concept of substantial equivalence also recognises the fact that existing foods often contain toxic components (usually called antinutrients) and are still able to be consumed safely—in practice there is some tolerable chemical risk taken with all foods, so a comparative method for assessing safety needs to be adopted. For instance, potatoes and tomatoes can contain toxic levels of respectively, solanine and alpha-tomatine alkaloids.

To decide if a modified product is substantially equivalent, the product is tested by the manufacturer for unexpected changes in a limited set of components such as toxins, nutrients, or allergens that are present in the unmodified food. The manufacturer's data is then assessed by a regulatory agency, such as the U.S. Food and Drug Administration. That data, along with data on the genetic modification itself and resulting proteins (or lack of protein), is submitted to regulators. If regulators determine that the submitted data show no significant difference between the modified and unmodified products, then the regulators will generally not require further food safety testing. However, if the product has no natural equivalent, or shows significant differences from the unmodified food, or for other reasons that regulators may have (for instance, if a gene produces a protein that had not been a food component before), the regulators may require that further safety testing be carried out.

A 2003 review in Trends in Biotechnology identified seven main parts of a standard safety test:
  1. Study of the introduced DNA and the new proteins or metabolites that it produces;
  2. Analysis of the chemical composition of the relevant plant parts, measuring nutrients, anti-nutrients as well as any natural toxins or known allergens;
  3. Assess the risk of gene transfer from the food to microorganisms in the human gut;
  4. Study the possibility that any new components in the food might be allergens;
  5. Estimate how much of a normal diet the food will make up;
  6. Estimate any toxicological or nutritional problems revealed by this data in light of data on equivalent foods;
  7. Additional animal toxicity tests if there is the possibility that the food might pose a risk.
There has been discussion about applying new biochemical concepts and methods in evaluating substantial equivalence, such as metabolic profiling and protein profiling. These concepts refer, respectively, to the complete measured biochemical spectrum (total fingerprint) of compounds (metabolites) or of proteins present in a food or crop. The goal would be to compare overall the biochemical profile of a new food to an existing food to see if the new food's profile falls within the range of natural variation already exhibited by the profile of existing foods or crops. However, these techniques are not considered sufficiently evaluated, and standards have not yet been developed, to apply them.

Genetically modified animals

Transgenic animals have genetically modified DNA. Animals are different from plants in a variety of ways—biology, life cycles, or potential environmental impacts. GM plants and animals were being developed around the same time, but due to the complexity of their biology and inefficiency with laboratory equipment use, their appearance in the market was delayed.

There are six categories that genetically engineered (GE) animals are approved for:
  1. Use for biomedical research. Smaller mammalians can be used as models in scientific research to represent other mammals.
  2. Used to develop innovative kinds of fish for environmental monitoring.
  3. Used to produce proteins that humans lack. This can be for therapeutic use, for example, treatment of diseases in other mammals.
  4. Use for investigating and finding cures for diseases. Can be used for introducing disease resistance in GM breeds.
  5. Used to create manufacturing products for industry use.
  6. Used for improving food quality.

Rydberg atom

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Rydberg_atom Figure 1: Electron orbi...