Search This Blog

Saturday, March 30, 2019

Henri Poincaré

From Wikipedia, the free encyclopedia

Henri Poincaré
PSM V82 D416 Henri Poincare.png
Henri Poincaré
(photograph published in 1913)
Born29 April 1854
Died17 July 1912 (aged 58)
ResidenceFrance
NationalityFrench
Other namesJules Henri Poincaré
EducationLycée Nancy (now Lycée Henri-Poincaré)
Alma mater
Known for
Awards
Scientific career
FieldsMathematics and physics
Institutions
ThesisSur les propriétés des fonctions définies par les équations différences (1879)
Doctoral advisorCharles Hermite
Doctoral students
Other notable students
Influences
Influenced
Signature
Henri Poincaré Signature.svg

Jules Henri Poincaré was a French mathematician, theoretical physicist, engineer, and philosopher of science. He is often described as a polymath, and in mathematics as "The Last Universalist," since he excelled in all fields of the discipline as it existed during his lifetime.

As a mathematician and physicist, he made many original fundamental contributions to pure and applied mathematics, mathematical physics, and celestial mechanics. He was responsible for formulating the Poincaré conjecture, which was one of the most famous unsolved problems in mathematics until it was solved in 2002–2003 by Grigori Perelman. In his research on the three-body problem, Poincaré became the first person to discover a chaotic deterministic system which laid the foundations of modern chaos theory. He is also considered to be one of the founders of the field of topology.

Poincaré made clear the importance of paying attention to the invariance of laws of physics under different transformations, and was the first to present the Lorentz transformations in their modern symmetrical form. Poincaré discovered the remaining relativistic velocity transformations and recorded them in a letter to Hendrik Lorentz in 1905. Thus he obtained perfect invariance of all of Maxwell's equations, an important step in the formulation of the theory of special relativity. In 1905, Poincaré first proposed gravitational waves (ondes gravifiques) emanating from a body and propagating at the speed of light as being required by the Lorentz transformations.

The Poincaré group used in physics and mathematics was named after him.

Life

Poincaré was born on 29 April 1854 in Cité Ducale neighborhood, Nancy, Meurthe-et-Moselle into an influential family. His father Leon Poincaré (1828–1892) was a professor of medicine at the University of Nancy. His younger sister Aline married the spiritual philosopher Emile Boutroux. Another notable member of Henri's family was his cousin, Raymond Poincaré, a fellow member of the Académie française, who would serve as President of France from 1913 to 1920. He was raised in the Roman Catholic faith.

Education

Plaque on the birthplace of Henri Poincaré at house number 117 on the Grande Rue in the city of Nancy.
 
During his childhood he was seriously ill for a time with diphtheria and received special instruction from his mother, Eugénie Launois (1830–1897). 

In 1862, Henri entered the Lycée in Nancy (now renamed the Lycée Henri-Poincaré in his honour, along with Henri Poincaré University, also in Nancy). He spent eleven years at the Lycée and during this time he proved to be one of the top students in every topic he studied. He excelled in written composition. His mathematics teacher described him as a "monster of mathematics" and he won first prizes in the concours général, a competition between the top pupils from all the Lycées across France. His poorest subjects were music and physical education, where he was described as "average at best". However, poor eyesight and a tendency towards absentmindedness may explain these difficulties. He graduated from the Lycée in 1871 with a bachelor's degree in letters and sciences. 

During the Franco-Prussian War of 1870, he served alongside his father in the Ambulance Corps.

Poincaré entered the École Polytechnique in 1873 and graduated in 1875. There he studied mathematics as a student of Charles Hermite, continuing to excel and publishing his first paper (Démonstration nouvelle des propriétés de l'indicatrice d'une surface) in 1874. From November 1875 to June 1878 he studied at the École des Mines, while continuing the study of mathematics in addition to the mining engineering syllabus, and received the degree of ordinary mining engineer in March 1879.

As a graduate of the École des Mines, he joined the Corps des Mines as an inspector for the Vesoul region in northeast France. He was on the scene of a mining disaster at Magny in August 1879 in which 18 miners died. He carried out the official investigation into the accident in a characteristically thorough and humane way.

At the same time, Poincaré was preparing for his Doctorate in Science in mathematics under the supervision of Charles Hermite. His doctoral thesis was in the field of differential equations. It was named Sur les propriétés des fonctions définies par les équations aux différences partielles. Poincaré devised a new way of studying the properties of these equations. He not only faced the question of determining the integral of such equations, but also was the first person to study their general geometric properties. He realised that they could be used to model the behaviour of multiple bodies in free motion within the solar system. Poincaré graduated from the University of Paris in 1879. 

The young Henri Poincaré

First scientific achievements

After receiving his degree, Poincaré began teaching as junior lecturer in mathematics at the University of Caen in Normandy (in December 1879). At the same time he published his first major article concerning the treatment of a class of automorphic functions

There, in Caen, he met his future wife, Louise Poulin d'Andesi (Louise Poulain d'Andecy) and on 20 April 1881, they married. Together they had four children: Jeanne (born 1887), Yvonne (born 1889), Henriette (born 1891), and Léon (born 1893). 

Poincaré immediately established himself among the greatest mathematicians of Europe, attracting the attention of many prominent mathematicians. In 1881 Poincaré was invited to take a teaching position at the Faculty of Sciences of the University of Paris; he accepted the invitation. During the years of 1883 to 1897, he taught mathematical analysis in École Polytechnique

In 1881–1882, Poincaré created a new branch of mathematics: qualitative theory of differential equations. He showed how it is possible to derive the most important information about the behavior of a family of solutions without having to solve the equation (since this may not always be possible). He successfully used this approach to problems in celestial mechanics and mathematical physics.

Career

He never fully abandoned his mining career to mathematics. He worked at the Ministry of Public Services as an engineer in charge of northern railway development from 1881 to 1885. He eventually became chief engineer of the Corps de Mines in 1893 and inspector general in 1910. 

Beginning in 1881 and for the rest of his career, he taught at the University of Paris (the Sorbonne). He was initially appointed as the maître de conférences d'analyse (associate professor of analysis). Eventually, he held the chairs of Physical and Experimental Mechanics, Mathematical Physics and Theory of Probability, and Celestial Mechanics and Astronomy. 

In 1887, at the young age of 32, Poincaré was elected to the French Academy of Sciences. He became its president in 1906, and was elected to the Académie française on 5 March 1908. 

In 1887, he won Oscar II, King of Sweden's mathematical competition for a resolution of the three-body problem concerning the free motion of multiple orbiting bodies.

The Poincaré family grave at the Cimetière du Montparnasse
 
In 1893, Poincaré joined the French Bureau des Longitudes, which engaged him in the synchronisation of time around the world. In 1897 Poincaré backed an unsuccessful proposal for the decimalisation of circular measure, and hence time and longitude. It was this post which led him to consider the question of establishing international time zones and the synchronisation of time between bodies in relative motion.

In 1899, and again more successfully in 1904, he intervened in the trials of Alfred Dreyfus. He attacked the spurious scientific claims of some of the evidence brought against Dreyfus, who was a Jewish officer in the French army charged with treason by colleagues. 

Poincaré was the President of the Société Astronomique de France (SAF), the French astronomical society, from 1901 to 1903.

Students

Poincaré had two notable doctoral students at the University of Paris, Louis Bachelier (1900) and Dimitrie Pompeiu (1905).

Death

In 1912, Poincaré underwent surgery for a prostate problem and subsequently died from an embolism on 17 July 1912, in Paris. He was 58 years of age. He is buried in the Poincaré family vault in the Cemetery of Montparnasse, Paris. 

A former French Minister of Education, Claude Allègre, proposed in 2004 that Poincaré be reburied in the Panthéon in Paris, which is reserved for French citizens only of the highest honour.

Work

Summary

Poincaré made many contributions to different fields of pure and applied mathematics such as: celestial mechanics, fluid mechanics, optics, electricity, telegraphy, capillarity, elasticity, thermodynamics, potential theory, quantum theory, theory of relativity and physical cosmology

He was also a populariser of mathematics and physics and wrote several books for the lay public. 

Among the specific topics he contributed to are the following:

Three-body problem

The problem of finding the general solution to the motion of more than two orbiting bodies in the solar system had eluded mathematicians since Newton's time. This was known originally as the three-body problem and later the n-body problem, where n is any number of more than two orbiting bodies. The n-body solution was considered very important and challenging at the close of the 19th century. Indeed, in 1887, in honour of his 60th birthday, Oscar II, King of Sweden, advised by Gösta Mittag-Leffler, established a prize for anyone who could find the solution to the problem. The announcement was quite specific:
Given a system of arbitrarily many mass points that attract each according to Newton's law, under the assumption that no two points ever collide, try to find a representation of the coordinates of each point as a series in a variable that is some known function of time and for all of whose values the series converges uniformly.
In case the problem could not be solved, any other important contribution to classical mechanics would then be considered to be prizeworthy. The prize was finally awarded to Poincaré, even though he did not solve the original problem. One of the judges, the distinguished Karl Weierstrass, said, "This work cannot indeed be considered as furnishing the complete solution of the question proposed, but that it is nevertheless of such importance that its publication will inaugurate a new era in the history of celestial mechanics." (The first version of his contribution even contained a serious error; for details see the article by Diacu and the book by Barrow-Green). The version finally printed contained many important ideas which led to the theory of chaos. The problem as stated originally was finally solved by Karl F. Sundman for n = 3 in 1912 and was generalised to the case of n > 3 bodies by Qiudong Wang in the 1990s.

Work on relativity

Marie Curie and Poincaré talk at the 1911 Solvay Conference

Local time

Poincaré's work at the Bureau des Longitudes on establishing international time zones led him to consider how clocks at rest on the Earth, which would be moving at different speeds relative to absolute space (or the "luminiferous aether"), could be synchronised. At the same time Dutch theorist Hendrik Lorentz was developing Maxwell's theory into a theory of the motion of charged particles ("electrons" or "ions"), and their interaction with radiation. In 1895 Lorentz had introduced an auxiliary quantity (without physical interpretation) called "local time" and introduced the hypothesis of length contraction to explain the failure of optical and electrical experiments to detect motion relative to the aether. Poincaré was a constant interpreter (and sometimes friendly critic) of Lorentz's theory. Poincaré as a philosopher was interested in the "deeper meaning". Thus he interpreted Lorentz's theory and in so doing he came up with many insights that are now associated with special relativity. In The Measure of Time (1898), Poincaré said, " A little reflection is sufficient to understand that all these affirmations have by themselves no meaning. They can have one only as the result of a convention." He also argued that scientists have to set the constancy of the speed of light as a postulate to give physical theories the simplest form. Based on these assumptions he discussed in 1900 Lorentz's "wonderful invention" of local time and remarked that it arose when moving clocks are synchronised by exchanging light signals assumed to travel with the same speed in both directions in a moving frame.

Principle of relativity and Lorentz transformations

In 1881 Poincaré described hyperbolic geometry in terms of Weierstrass coordinates of the hyperboloid model. There, he formulated transformations leaving invariant the Lorentz interval , which makes them mathematically equivalent to the Lorentz transformations in 2+1 dimensions.

He discussed the "principle of relative motion" in two papers in 1900 and named it the principle of relativity in 1904, according to which no physical experiment can discriminate between a state of uniform motion and a state of rest. In 1905 Poincaré wrote to Lorentz about Lorentz's paper of 1904, which Poincaré described as a "paper of supreme importance." In this letter he pointed out an error Lorentz had made when he had applied his transformation to one of Maxwell's equations, that for charge-occupied space, and also questioned the time dilation factor given by Lorentz. In a second letter to Lorentz, Poincaré gave his own reason why Lorentz's time dilation factor was indeed correct after all—it was necessary to make the Lorentz transformation form a group—and he gave what is now known as the relativistic velocity-addition law. Poincaré later delivered a paper at the meeting of the Academy of Sciences in Paris on 5 June 1905 in which these issues were addressed. In the published version of that he wrote:
The essential point, established by Lorentz, is that the equations of the electromagnetic field are not altered by a certain transformation (which I will call by the name of Lorentz) of the form:

and showed that the arbitrary function must be unity for all (Lorentz had set by a different argument) to make the transformations form a group. In an enlarged version of the paper that appeared in 1906 Poincaré pointed out that the combination is invariant. He noted that a Lorentz transformation is merely a rotation in four-dimensional space about the origin by introducing as a fourth imaginary coordinate, and he used an early form of four-vectors. Poincaré expressed a lack of interest in a four-dimensional reformulation of his new mechanics in 1907, because in his opinion the translation of physics into the language of four-dimensional geometry would entail too much effort for limited profit. So it was Hermann Minkowski who worked out the consequences of this notion in 1907.

Mass–energy relation

Like others before, Poincaré (1900) discovered a relation between mass and electromagnetic energy. While studying the conflict between the action/reaction principle and Lorentz ether theory, he tried to determine whether the center of gravity still moves with a uniform velocity when electromagnetic fields are included. He noticed that the action/reaction principle does not hold for matter alone, but that the electromagnetic field has its own momentum. Poincaré concluded that the electromagnetic field energy of an electromagnetic wave behaves like a fictitious fluid (fluide fictif) with a mass density of E/c2. If the center of mass frame is defined by both the mass of matter and the mass of the fictitious fluid, and if the fictitious fluid is indestructible—it's neither created or destroyed—then the motion of the center of mass frame remains uniform. But electromagnetic energy can be converted into other forms of energy. So Poincaré assumed that there exists a non-electric energy fluid at each point of space, into which electromagnetic energy can be transformed and which also carries a mass proportional to the energy. In this way, the motion of the center of mass remains uniform. Poincaré said that one should not be too surprised by these assumptions, since they are only mathematical fictions. 

However, Poincaré's resolution led to a paradox when changing frames: if a Hertzian oscillator radiates in a certain direction, it will suffer a recoil from the inertia of the fictitious fluid. Poincaré performed a Lorentz boost (to order v/c) to the frame of the moving source. He noted that energy conservation holds in both frames, but that the law of conservation of momentum is violated. This would allow perpetual motion, a notion which he abhorred. The laws of nature would have to be different in the frames of reference, and the relativity principle would not hold. Therefore, he argued that also in this case there has to be another compensating mechanism in the ether. 

Poincaré himself came back to this topic in his St. Louis lecture (1904). This time (and later also in 1908) he rejected the possibility that energy carries mass and criticized the ether solution to compensate the above-mentioned problems:
The apparatus will recoil as if it were a cannon and the projected energy a ball, and that contradicts the principle of Newton, since our present projectile has no mass; it is not matter, it is energy. [..] Shall we say that the space which separates the oscillator from the receiver and which the disturbance must traverse in passing from one to the other, is not empty, but is filled not only with ether, but with air, or even in inter-planetary space with some subtile, yet ponderable fluid; that this matter receives the shock, as does the receiver, at the moment the energy reaches it, and recoils, when the disturbance leaves it? That would save Newton's principle, but it is not true. If the energy during its propagation remained always attached to some material substratum, this matter would carry the light along with it and Fizeau has shown, at least for the air, that there is nothing of the kind. Michelson and Morley have since confirmed this. We might also suppose that the motions of matter proper were exactly compensated by those of the ether; but that would lead us to the same considerations as those made a moment ago. The principle, if thus interpreted, could explain anything, since whatever the visible motions we could imagine hypothetical motions to compensate them. But if it can explain anything, it will allow us to foretell nothing; it will not allow us to choose between the various possible hypotheses, since it explains everything in advance. It therefore becomes useless.
He also discussed two other unexplained effects: (1) non-conservation of mass implied by Lorentz's variable mass , Abraham's theory of variable mass and Kaufmann's experiments on the mass of fast moving electrons and (2) the non-conservation of energy in the radium experiments of Madame Curie

It was Albert Einstein's concept of mass–energy equivalence (1905) that a body losing energy as radiation or heat was losing mass of amount m = E/c2 that resolved Poincaré's paradox, without using any compensating mechanism within the ether. The Hertzian oscillator loses mass in the emission process, and momentum is conserved in any frame. However, concerning Poincaré's solution of the Center of Gravity problem, Einstein noted that Poincaré's formulation and his own from 1906 were mathematically equivalent.

Gravitational waves

In 1905 Henri Poincaré first proposed gravitational waves (ondes gravifiques) emanating from a body and propagating at the speed of light. "Il importait d'examiner cette hypothèse de plus près et en particulier de rechercher quelles modifications elle nous obligerait à apporter aux lois de la gravitation. C'est ce que j'ai cherché à déterminer; j'ai été d'abord conduit à supposer que la propagation de la gravitation n'est pas instantanée, mais se fait avec la vitesse de la lumière."

Poincaré and Einstein

Einstein's first paper on relativity was published three months after Poincaré's short paper, but before Poincaré's longer version. Einstein relied on the principle of relativity to derive the Lorentz transformations and used a similar clock synchronisation procedure to the one that Poincaré (1900) had described, but Einstein's paper was remarkable in that it contained no references at all. Poincaré never acknowledged Einstein's work on special relativity. However, Einstein expressed sympathy with Poincaré's outlook obliquely in a letter to Hans Vaihinger on 3 May 1919, when Einstein considered Vaihinger's general outlook to be close to his own and Poincaré's to be close to Vaihinger's. In public, Einstein acknowledged Poincaré posthumously in the text of a lecture in 1921 called Geometrie und Erfahrung in connection with non-Euclidean geometry, but not in connection with special relativity. A few years before his death, Einstein commented on Poincaré as being one of the pioneers of relativity, saying "Lorentz had already recognised that the transformation named after him is essential for the analysis of Maxwell's equations, and Poincaré deepened this insight still further ...."

Assessments on Poincaré and relativity

Poincaré's work in the development of special relativity is well recognised, though most historians stress that despite many similarities with Einstein's work, the two had very different research agendas and interpretations of the work. Poincaré developed a similar physical interpretation of local time and noticed the connection to signal velocity, but contrary to Einstein he continued to use the ether-concept in his papers and argued that clocks at rest in the ether show the "true" time, and moving clocks show the local time. So Poincaré tried to keep the relativity principle in accordance with classical concepts, while Einstein developed a mathematically equivalent kinematics based on the new physical concepts of the relativity of space and time.

While this is the view of most historians, a minority go much further, such as E. T. Whittaker, who held that Poincaré and Lorentz were the true discoverers of relativity.

Algebra and number theory

Poincaré introduced group theory to physics, and was the first to study the group of Lorentz transformations. He also made major contributions to the theory of discrete groups and their representations. 

Topological transformation of the torus into a mug

Topology

The subject is clearly defined by Felix Klein in his "Erlangen Program" (1872): the geometry invariants of arbitrary continuous transformation, a kind of geometry. The term "topology" was introduced, as suggested by Johann Benedict Listing, instead of previously used "Analysis situs". Some important concepts were introduced by Enrico Betti and Bernhard Riemann. But the foundation of this science, for a space of any dimension, was created by Poincaré. His first article on this topic appeared in 1894.

His research in geometry led to the abstract topological definition of homotopy and homology. He also first introduced the basic concepts and invariants of combinatorial topology, such as Betti numbers and the fundamental group. Poincaré proved a formula relating the number of edges, vertices and faces of n-dimensional polyhedron (the Euler–Poincaré theorem) and gave the first precise formulation of the intuitive notion of dimension.

Astronomy and celestial mechanics

Chaotic motion in three-body problem (computer simulation).
 
Poincaré published two now classical monographs, "New Methods of Celestial Mechanics" (1892–1899) and "Lectures on Celestial Mechanics" (1905–1910). In them, he successfully applied the results of their research to the problem of the motion of three bodies and studied in detail the behavior of solutions (frequency, stability, asymptotic, and so on). They introduced the small parameter method, fixed points, integral invariants, variational equations, the convergence of the asymptotic expansions. Generalizing a theory of Bruns (1887), Poincaré showed that the three-body problem is not integrable. In other words, the general solution of the three-body problem can not be expressed in terms of algebraic and transcendental functions through unambiguous coordinates and velocities of the bodies. His work in this area was the first major achievement in celestial mechanics since Isaac Newton.

These monographs include an idea of Poincaré, which later became the base for mathematical "chaos theory" (see, in particular, the Poincaré recurrence theorem) and the general theory of dynamical systems. Poincaré authored important works on astronomy for the equilibrium figures of a gravitating rotating fluid. He introduced the important concept of bifurcation points and proved the existence of equilibrium figures such as the non-ellipsoids, including ring-shaped and pear-shaped figures, and their stability. For this discovery, Poincaré received the Gold Medal of the Royal Astronomical Society (1900).

Differential equations and mathematical physics

After defending his doctoral thesis on the study of singular points of the system of differential equations, Poincaré wrote a series of memoirs under the title "On curves defined by differential equations" (1881–1882). In these articles, he built a new branch of mathematics, called "qualitative theory of differential equations". Poincaré showed that even if the differential equation can not be solved in terms of known functions, yet from the very form of the equation, a wealth of information about the properties and behavior of the solutions can be found. In particular, Poincaré investigated the nature of the trajectories of the integral curves in the plane, gave a classification of singular points (saddle, focus, center, node), introduced the concept of a limit cycle and the loop index, and showed that the number of limit cycles is always finite, except for some special cases. Poincaré also developed a general theory of integral invariants and solutions of the variational equations. For the finite-difference equations, he created a new direction – the asymptotic analysis of the solutions. He applied all these achievements to study practical problems of mathematical physics and celestial mechanics, and the methods used were the basis of its topological works.

Character

Photographic portrait of H. Poincaré by Henri Manuel
 
Poincaré's work habits have been compared to a bee flying from flower to flower. Poincaré was interested in the way his mind worked; he studied his habits and gave a talk about his observations in 1908 at the Institute of General Psychology in Paris. He linked his way of thinking to how he made several discoveries. 

The mathematician Darboux claimed he was un intuitif (intuitive), arguing that this is demonstrated by the fact that he worked so often by visual representation. He did not care about being rigorous and disliked logic. (Despite this opinion, Jacques Hadamard wrote that Poincaré's research demonstrated marvelous clarity and Poincaré himself wrote that he believed that logic was not a way to invent but a way to structure ideas and that logic limits ideas.)

Toulouse's characterisation

Poincaré's mental organisation was not only interesting to Poincaré himself but also to Édouard Toulouse, a psychologist of the Psychology Laboratory of the School of Higher Studies in Paris. Toulouse wrote a book entitled Henri Poincaré (1910). In it, he discussed Poincaré's regular schedule:
  • He worked during the same times each day in short periods of time. He undertook mathematical research for four hours a day, between 10 a.m. and noon then again from 5 p.m. to 7 p.m.. He would read articles in journals later in the evening.
  • His normal work habit was to solve a problem completely in his head, then commit the completed problem to paper.
  • He was ambidextrous and nearsighted.
  • His ability to visualise what he heard proved particularly useful when he attended lectures, since his eyesight was so poor that he could not see properly what the lecturer wrote on the blackboard.
These abilities were offset to some extent by his shortcomings:
  • He was physically clumsy and artistically inept.
  • He was always in a rush and disliked going back for changes or corrections.
  • He never spent a long time on a problem since he believed that the subconscious would continue working on the problem while he consciously worked on another problem.
In addition, Toulouse stated that most mathematicians worked from principles already established while Poincaré started from basic principles each time (O'Connor et al., 2002). 

His method of thinking is well summarised as:
Habitué à négliger les détails et à ne regarder que les cimes, il passait de l'une à l'autre avec une promptitude surprenante et les faits qu'il découvrait se groupant d'eux-mêmes autour de leur centre étaient instantanément et automatiquement classés dans sa mémoire. (Accustomed to neglecting details and to looking only at mountain tops, he went from one peak to another with surprising rapidity, and the facts he discovered, clustering around their center, were instantly and automatically pigeonholed in his memory.)
— Belliver (1956)

Attitude towards transfinite numbers

Poincaré was dismayed by Georg Cantor's theory of transfinite numbers, and referred to it as a "disease" from which mathematics would eventually be cured. Poincaré said, "There is no actual infinite; the Cantorians have forgotten this, and that is why they have fallen into contradiction."

Honours

Awards
Named after him
Henri Poincaré did not receive the Nobel Prize in Physics, but he had influential advocates like Henri Becquerel or committee member Gösta Mittag-Leffler. The nomination archive reveals that Poincaré received a total of 51 nominations between 1904 and 1912, the year of his death. Of the 58 nominations for the 1910 Nobel Prize, 34 named Poincaré. Nominators included Nobel laureates Hendrik Lorentz and Pieter Zeeman (both of 1902), Marie Curie (of 1903), Albert Michelson (of 1907), Gabriel Lippmann (of 1908) and Guglielmo Marconi (of 1909).

The fact that renowned theoretical physicists like Poincaré, Boltzmann or Gibbs were not awarded the Nobel Prize is seen as evidence that the Nobel committee had more regard for experimentation than theory. In Poincaré's case, several of those who nominated him pointed out that the greatest problem was to name a specific discovery, invention, or technique.

Philosophy

Poincaré had philosophical views opposite to those of Bertrand Russell and Gottlob Frege, who believed that mathematics was a branch of logic. Poincaré strongly disagreed, claiming that intuition was the life of mathematics. Poincaré gives an interesting point of view in his book Science and Hypothesis:
For a superficial observer, scientific truth is beyond the possibility of doubt; the logic of science is infallible, and if the scientists are sometimes mistaken, this is only from their mistaking its rule.
Poincaré believed that arithmetic is a synthetic science. He argued that Peano's axioms cannot be proven non-circularly with the principle of induction (Murzi, 1998), therefore concluding that arithmetic is a priori synthetic and not analytic. Poincaré then went on to say that mathematics cannot be deduced from logic since it is not analytic. His views were similar to those of Immanuel Kant (Kolak, 2001, Folina 1992). He strongly opposed Cantorian set theory, objecting to its use of impredicative definitions.

However, Poincaré did not share Kantian views in all branches of philosophy and mathematics. For example, in geometry, Poincaré believed that the structure of non-Euclidean space can be known analytically. Poincaré held that convention plays an important role in physics. His view (and some later, more extreme versions of it) came to be known as "conventionalism". Poincaré believed that Newton's first law was not empirical but is a conventional framework assumption for mechanics (Gargani, 2012). He also believed that the geometry of physical space is conventional. He considered examples in which either the geometry of the physical fields or gradients of temperature can be changed, either describing a space as non-Euclidean measured by rigid rulers, or as a Euclidean space where the rulers are expanded or shrunk by a variable heat distribution. However, Poincaré thought that we were so accustomed to Euclidean geometry that we would prefer to change the physical laws to save Euclidean geometry rather than shift to a non-Euclidean physical geometry.

Free will

Poincaré's famous lectures before the Société de Psychologie in Paris (published as Science and Hypothesis, The Value of Science, and Science and Method) were cited by Jacques Hadamard as the source for the idea that creativity and invention consist of two mental stages, first random combinations of possible solutions to a problem, followed by a critical evaluation.

Although he most often spoke of a deterministic universe, Poincaré said that the subconscious generation of new possibilities involves chance.
It is certain that the combinations which present themselves to the mind in a kind of sudden illumination after a somewhat prolonged period of unconscious work are generally useful and fruitful combinations... all the combinations are formed as a result of the automatic action of the subliminal ego, but those only which are interesting find their way into the field of consciousness... A few only are harmonious, and consequently at once useful and beautiful, and they will be capable of affecting the geometrician's special sensibility I have been speaking of; which, once aroused, will direct our attention upon them, and will thus give them the opportunity of becoming conscious... In the subliminal ego, on the contrary, there reigns what I would call liberty, if one could give this name to the mere absence of discipline and to disorder born of chance.
Poincaré's two stages—random combinations followed by selection—became the basis for Daniel Dennett's two-stage model of free will.

Space

From Wikipedia, the free encyclopedia

A right-handed three-dimensional Cartesian coordinate system used to indicate positions in space.
 
Space is the boundless three-dimensional extent in which objects and events have relative position and direction. Physical space is often conceived in three linear dimensions, although modern physicists usually consider it, with time, to be part of a boundless four-dimensional continuum known as spacetime. The concept of space is considered to be of fundamental importance to an understanding of the physical universe. However, disagreement continues between philosophers over whether it is itself an entity, a relationship between entities, or part of a conceptual framework.

Debates concerning the nature, essence and the mode of existence of space date back to antiquity; namely, to treatises like the Timaeus of Plato, or Socrates in his reflections on what the Greeks called khôra (i.e. "space"), or in the Physics of Aristotle (Book IV, Delta) in the definition of topos (i.e. place), or in the later "geometrical conception of place" as "space qua extension" in the Discourse on Place (Qawl fi al-Makan) of the 11th-century Arab polymath Alhazen. Many of these classical philosophical questions were discussed in the Renaissance and then reformulated in the 17th century, particularly during the early development of classical mechanics. In Isaac Newton's view, space was absolute—in the sense that it existed permanently and independently of whether there was any matter in the space. Other natural philosophers, notably Gottfried Leibniz, thought instead that space was in fact a collection of relations between objects, given by their distance and direction from one another. In the 18th century, the philosopher and theologian George Berkeley attempted to refute the "visibility of spatial depth" in his Essay Towards a New Theory of Vision. Later, the metaphysician Immanuel Kant said that the concepts of space and time are not empirical ones derived from experiences of the outside world—they are elements of an already given systematic framework that humans possess and use to structure all experiences. Kant referred to the experience of "space" in his Critique of Pure Reason as being a subjective "pure a priori form of intuition". 

In the 19th and 20th centuries mathematicians began to examine geometries that are non-Euclidean, in which space is conceived as curved, rather than flat. According to Albert Einstein's theory of general relativity, space around gravitational fields deviates from Euclidean space. Experimental tests of general relativity have confirmed that non-Euclidean geometries provide a better model for the shape of space.

Philosophy of space

Galilei

Galilean and Cartesian theories about space, matter and motion are at the foundation of the Scientific Revolution, which is understood to have culminated with the publication of Newton's Principia in 1687. Newton's theories about space and time helped him explain the movement of objects. While his theory of space is considered the most influential in Physics, it emerged from his predecessors' ideas about the same.

As one of the pioneers of modern science, Galilei revised the established Aristotelian and Ptolemaic ideas about a geocentric cosmos. He backed the Copernican theory that the universe was heliocentric, with a stationary sun at the center and the planets—including the Earth—revolving around the sun. If the Earth moved, the Aristotelian belief that its natural tendency was to remain at rest was in question. Galilei wanted to prove instead that the sun moved around its axis, that motion was as natural to an object as the state of rest. In other words, for Galilei, celestial bodies, including the Earth, were naturally inclined to move in circles. This view displaced another Aristotelian idea—that all objects gravitated towards their designated natural place-of-belonging.

René Descartes

Descartes set out to replace the Aristotelian worldview with a theory about space and motion as determined by natural laws. In other words, he sought a metaphysical foundation or a mechanical explanation for his theories about matter and motion. Cartesian space was Euclidean in structure—infinite, uniform and flat. It was defined as that which contained matter; conversely, matter by definition had a spatial extension so that there was no such thing as empty space.

The Cartesian notion of space is closely linked to his theories about the nature of the body, mind and matter. He is famously known for his "cogito ergo sum" (I think therefore I am), or the idea that we can only be certain of the fact that we can doubt, and therefore think and therefore exist. His theories belong to the rationalist tradition, which attributes knowledge about the world to our ability to think rather than to our experiences, as the empiricists believe. He posited a clear distinction between the body and mind, which is referred to as the Cartesian dualism.

Leibniz and Newton

Following Galilei and Descartes, during the seventeenth century the philosophy of space and time revolved around the ideas of Gottfried Leibniz, a German philosopher–mathematician, and Isaac Newton, who set out two opposing theories of what space is. Rather than being an entity that independently exists over and above other matter, Leibniz held that space is no more than the collection of spatial relations between objects in the world: "space is that which results from places taken together". Unoccupied regions are those that could have objects in them, and thus spatial relations with other places. For Leibniz, then, space was an idealised abstraction from the relations between individual entities or their possible locations and therefore could not be continuous but must be discrete. Space could be thought of in a similar way to the relations between family members. Although people in the family are related to one another, the relations do not exist independently of the people. Leibniz argued that space could not exist independently of objects in the world because that implies a difference between two universes exactly alike except for the location of the material world in each universe. But since there would be no observational way of telling these universes apart then, according to the identity of indiscernibles, there would be no real difference between them. According to the principle of sufficient reason, any theory of space that implied that there could be these two possible universes must therefore be wrong.

Newton took space to be more than relations between material objects and based his position on observation and experimentation. For a relationist there can be no real difference between inertial motion, in which the object travels with constant velocity, and non-inertial motion, in which the velocity changes with time, since all spatial measurements are relative to other objects and their motions. But Newton argued that since non-inertial motion generates forces, it must be absolute. He used the example of water in a spinning bucket to demonstrate his argument. Water in a bucket is hung from a rope and set to spin, starts with a flat surface. After a while, as the bucket continues to spin, the surface of the water becomes concave. If the bucket's spinning is stopped then the surface of the water remains concave as it continues to spin. The concave surface is therefore apparently not the result of relative motion between the bucket and the water. Instead, Newton argued, it must be a result of non-inertial motion relative to space itself. For several centuries the bucket argument was considered decisive in showing that space must exist independently of matter.

Kant

In the eighteenth century the German philosopher Immanuel Kant developed a theory of knowledge in which knowledge about space can be both a priori and synthetic. According to Kant, knowledge about space is synthetic, in that statements about space are not simply true by virtue of the meaning of the words in the statement. In his work, Kant rejected the view that space must be either a substance or relation. Instead he came to the conclusion that space and time are not discovered by humans to be objective features of the world, but imposed by us as part of a framework for organizing experience.

Non-Euclidean geometry

Spherical geometry is similar to elliptical geometry. On a sphere (the surface of a ball) there are no parallel lines.
 
Euclid's Elements contained five postulates that form the basis for Euclidean geometry. One of these, the parallel postulate, has been the subject of debate among mathematicians for many centuries. It states that on any plane on which there is a straight line L1 and a point P not on L1, there is exactly one straight line L2 on the plane that passes through the point P and is parallel to the straight line L1. Until the 19th century, few doubted the truth of the postulate; instead debate centered over whether it was necessary as an axiom, or whether it was a theory that could be derived from the other axioms. Around 1830 though, the Hungarian János Bolyai and the Russian Nikolai Ivanovich Lobachevsky separately published treatises on a type of geometry that does not include the parallel postulate, called hyperbolic geometry. In this geometry, an infinite number of parallel lines pass through the point P. Consequently, the sum of angles in a triangle is less than 180° and the ratio of a circle's circumference to its diameter is greater than pi. In the 1850s, Bernhard Riemann developed an equivalent theory of elliptical geometry, in which no parallel lines pass through P. In this geometry, triangles have more than 180° and circles have a ratio of circumference-to-diameter that is less than pi

Type of geometry Number of parallels Sum of angles in a triangle Ratio of circumference to diameter of circle Measure of curvature
Hyperbolic Infinite < 180° > π < 0
Euclidean 1 180° π 0
Elliptical 0 > 180° < π > 0

Gauss and Poincaré

Although there was a prevailing Kantian consensus at the time, once non-Euclidean geometries had been formalised, some began to wonder whether or not physical space is curved. Carl Friedrich Gauss, a German mathematician, was the first to consider an empirical investigation of the geometrical structure of space. He thought of making a test of the sum of the angles of an enormous stellar triangle, and there are reports that he actually carried out a test, on a small scale, by triangulating mountain tops in Germany.

Henri Poincaré, a French mathematician and physicist of the late 19th century, introduced an important insight in which he attempted to demonstrate the futility of any attempt to discover which geometry applies to space by experiment. He considered the predicament that would face scientists if they were confined to the surface of an imaginary large sphere with particular properties, known as a sphere-world. In this world, the temperature is taken to vary in such a way that all objects expand and contract in similar proportions in different places on the sphere. With a suitable falloff in temperature, if the scientists try to use measuring rods to determine the sum of the angles in a triangle, they can be deceived into thinking that they inhabit a plane, rather than a spherical surface. In fact, the scientists cannot in principle determine whether they inhabit a plane or sphere and, Poincaré argued, the same is true for the debate over whether real space is Euclidean or not. For him, which geometry was used to describe space was a matter of convention. Since Euclidean geometry is simpler than non-Euclidean geometry, he assumed the former would always be used to describe the 'true' geometry of the world.

Einstein

In 1905, Albert Einstein published his special theory of relativity, which led to the concept that space and time can be viewed as a single construct known as spacetime. In this theory, the speed of light in a vacuum is the same for all observers—which has the result that two events that appear simultaneous to one particular observer will not be simultaneous to another observer if the observers are moving with respect to one another. Moreover, an observer will measure a moving clock to tick more slowly than one that is stationary with respect to them; and objects are measured to be shortened in the direction that they are moving with respect to the observer. 

Subsequently, Einstein worked on a general theory of relativity, which is a theory of how gravity interacts with spacetime. Instead of viewing gravity as a force field acting in spacetime, Einstein suggested that it modifies the geometric structure of spacetime itself. According to the general theory, time goes more slowly at places with lower gravitational potentials and rays of light bend in the presence of a gravitational field. Scientists have studied the behaviour of binary pulsars, confirming the predictions of Einstein's theories, and non-Euclidean geometry is usually used to describe spacetime.

Mathematics

In modern mathematics spaces are defined as sets with some added structure. They are frequently described as different types of manifolds, which are spaces that locally approximate to Euclidean space, and where the properties are defined largely on local connectedness of points that lie on the manifold. There are however, many diverse mathematical objects that are called spaces. For example, vector spaces such as function spaces may have infinite numbers of independent dimensions and a notion of distance very different from Euclidean space, and topological spaces replace the concept of distance with a more abstract idea of nearness.

Physics

Space is one of the few fundamental quantities in physics, meaning that it cannot be defined via other quantities because nothing more fundamental is known at the present. On the other hand, it can be related to other fundamental quantities. Thus, similar to other fundamental quantities (like time and mass), space can be explored via measurement and experiment. 

Today, our three-dimensional space is viewed as embedded in a four-dimensional spacetime, called Minkowski space. The idea behind space-time is that time is hyperbolic-orthogonal to each of the three spatial dimensions.

Relativity

Before Einstein's work on relativistic physics, time and space were viewed as independent dimensions. Einstein's discoveries showed that due to relativity of motion our space and time can be mathematically combined into one object–spacetime. It turns out that distances in space or in time separately are not invariant with respect to Lorentz coordinate transformations, but distances in Minkowski space-time along space-time intervals are—which justifies the name.

In addition, time and space dimensions should not be viewed as exactly equivalent in Minkowski space-time. One can freely move in space but not in time. Thus, time and space coordinates are treated differently both in special relativity (where time is sometimes considered an imaginary coordinate) and in general relativity (where different signs are assigned to time and space components of spacetime metric). 

Furthermore, in Einstein's general theory of relativity, it is postulated that spacetime is geometrically distorted – curved – near to gravitationally significant masses.

One consequence of this postulate, which follows from the equations of general relativity, is the prediction of moving ripples of spacetime, called gravitational waves. While indirect evidence for these waves has been found (in the motions of the Hulse–Taylor binary system, for example) experiments attempting to directly measure these waves are ongoing at the LIGO and Virgo collaborations. LIGO scientists reported the first such direct observation of gravitational waves on 14 September 2015.

Cosmology

Relativity theory leads to the cosmological question of what shape the universe is, and where space came from. It appears that space was created in the Big Bang, 13.8 billion years ago and has been expanding ever since. The overall shape of space is not known, but space is known to be expanding very rapidly due to the cosmic inflation.

Spatial measurement

The measurement of physical space has long been important. Although earlier societies had developed measuring systems, the International System of Units, (SI), is now the most common system of units used in the measuring of space, and is almost universally used.

Currently, the standard space interval, called a standard meter or simply meter, is defined as the distance traveled by light in a vacuum during a time interval of exactly 1/299,792,458 of a second. This definition coupled with present definition of the second is based on the special theory of relativity in which the speed of light plays the role of a fundamental constant of nature.

Geographical space

Geography is the branch of science concerned with identifying and describing places on Earth, utilizing spatial awareness to try to understand why things exist in specific locations. Cartography is the mapping of spaces to allow better navigation, for visualization purposes and to act as a locational device. Geostatistics apply statistical concepts to collected spatial data of Earth to create an estimate for unobserved phenomena.

Geographical space is often considered as land, and can have a relation to ownership usage (in which space is seen as property or territory). While some cultures assert the rights of the individual in terms of ownership, other cultures will identify with a communal approach to land ownership, while still other cultures such as Australian Aboriginals, rather than asserting ownership rights to land, invert the relationship and consider that they are in fact owned by the land. Spatial planning is a method of regulating the use of space at land-level, with decisions made at regional, national and international levels. Space can also impact on human and cultural behavior, being an important factor in architecture, where it will impact on the design of buildings and structures, and on farming. 

Ownership of space is not restricted to land. Ownership of airspace and of waters is decided internationally. Other forms of ownership have been recently asserted to other spaces—for example to the radio bands of the electromagnetic spectrum or to cyberspace

Public space is a term used to define areas of land as collectively owned by the community, and managed in their name by delegated bodies; such spaces are open to all, while private property is the land culturally owned by an individual or company, for their own use and pleasure.

Abstract space is a term used in geography to refer to a hypothetical space characterized by complete homogeneity. When modeling activity or behavior, it is a conceptual tool used to limit extraneous variables such as terrain.

In psychology

Psychologists first began to study the way space is perceived in the middle of the 19th century. Those now concerned with such studies regard it as a distinct branch of psychology. Psychologists analyzing the perception of space are concerned with how recognition of an object's physical appearance or its interactions are perceived, see, for example, visual space

Other, more specialized topics studied include amodal perception and object permanence. The perception of surroundings is important due to its necessary relevance to survival, especially with regards to hunting and self preservation as well as simply one's idea of personal space

Several space-related phobias have been identified, including agoraphobia (the fear of open spaces), astrophobia (the fear of celestial space) and claustrophobia (the fear of enclosed spaces). 

The understanding of three-dimensional space in humans is thought to be learned during infancy using unconscious inference, and is closely related to hand-eye coordination. The visual ability to perceive the world in three dimensions is called depth perception.

In the Social Sciences

Space has been studied in the social sciences from the perspectives of Marxism, feminism, postmodernism, postcolonialism, urban theory and critical geography. These theories account for the effect of the history of colonialism, transatlantic slavery and globalization on our understanding and experience of space and place. The topic has garnered attention since the 1980s, after the publication of Henri Lefebvre's The Production of Space . In this book, Lefebvre applies Marxist ideas about the production of commodities and accumulation of capital to discuss space as a social product. His focus is on the multiple and overlapping social processes that produce space.

In his book The Condition of Postmodernity, David Harvey describes what he terms the "time-space compression." This is the effect of technological advances and capitalism on our perception of time, space and distance. Changes in the modes of production and consumption of capital affect and are affected by developments in transportation and technology. These advances create relationships across time and space, new markets and groups of wealthy elites in urban centers, all of which annihilate distances and affect our perception of linearity and distance.

In his book Thirdspace, Edward Soja describes space and spatiality as an integral and neglected aspect of what he calls the "trialectics of being," the three modes that determine how we inhabit, experience and understand the world. He argues that critical theories in the Humanities and Social Sciences study the historical and social dimensions of our lived experience, neglecting the spatial dimension. He builds on Henri Lefebvre's work to address the dualistic way in which humans understand space—as either material/physical or as represented/imagined. Lefebvre's "lived space" and Soja's "thridspace" are terms that account for the complex ways in which humans understand and navigate place, which "firstspace" and "Secondspace" (Soja's terms for material and imagined spaces respectively) do not fully encompass. 

Postcolonial theorist Homi Bhabha's concept of Third Space is different from Soja's Thirdspace, even though both terms offer a way to think outside the terms of a binary logic. Bhabha's Third Space is the space in which hybrid cultural forms and identities exist. In his theories, the term hybrid describes new cultural forms that emerge through the interaction between colonizer and colonized.

Education

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Education Education is the transmissio...