Search This Blog

Saturday, May 11, 2019

Clinical trial

From Wikipedia, the free encyclopedia

Clinical trials are experiments or observations done in clinical research. Such prospective biomedical or behavioral research studies on human participants are designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel vaccines, drugs, dietary choices, dietary supplements, and medical devices) and known interventions that warrant further study and comparison. Clinical trials generate data on safety and efficacy. They are conducted only after they have received health authority/ethics committee approval in the country where approval of the therapy is sought. These authorities are responsible for vetting the risk/benefit ratio of the trial – their approval does not mean that the therapy is 'safe' or effective, only that the trial may be conducted.
 
Depending on product type and development stage, investigators initially enroll volunteers or patients into small pilot studies, and subsequently conduct progressively larger scale comparative studies. Clinical trials can vary in size and cost, and they can involve a single research center or multiple centers, in one country or in multiple countries. Clinical study design aims to ensure the scientific validity and reproducibility of the results.

Costs for clinical trials can range into the billions of dollars per approved drug. The sponsor may be a governmental organization or a pharmaceutical, biotechnology or medical device company. Certain functions necessary to the trial, such as monitoring and lab work, may be managed by an outsourced partner, such as a contract research organization or a central laboratory.

Only 10 percent of all drugs started in human clinical trials become an approved drug.

Overview

Trials of drugs

Some clinical trials involve healthy subjects with no pre-existing medical conditions. Other clinical trials pertain to patients with specific health conditions who are willing to try an experimental treatment. 

When participants are healthy volunteers who receive financial incentives, the goals are different than when the participants are sick. During dosing periods, study subjects typically remain under supervision for one to 40 nights. 

Usually pilot experiments are conducted to gain insights for design of the clinical trial to follow. 

There are two goals to testing medical treatments: to learn whether they work well enough, called "efficacy" or "effectiveness"; and to learn whether they are safe enough, called "safety". Neither is an absolute criterion; both safety and efficacy are evaluated relative to how the treatment is intended to be used, what other treatments are available, and the severity of the disease or condition. The benefits must outweigh the risks. For example, many drugs to treat cancer have severe side effects that would not be acceptable for an over-the-counter pain medication, yet the cancer drugs have been approved since they are used under a physician's care, and are used for a life-threatening condition.

In the US, the elderly constitute 14% of the population, while they consume over one-third of drugs. People over 55 (or a similar cutoff age) are often excluded from trials because their greater health issues and drug use complicate data interpretation, and because they have different physiological capacity than younger people. Children and people with unrelated medical conditions are also frequently excluded. Pregnant women are often excluded due to potential risks to the fetus

The sponsor designs the trial in coordination with a panel of expert clinical investigators, including what alternative or existing treatments to compare to the new drug and what type(s) of patients might benefit. If the sponsor cannot obtain enough test subjects at one location investigators at other locations are recruited to join the study. 

During the trial, investigators recruit subjects with the predetermined characteristics, administer the treatment(s) and collect data on the subjects' health for a defined time period. Data include measurements such as vital signs, concentration of the study drug in the blood or tissues, changes to symptoms, and whether improvement or worsening of the condition targeted by the study drug occurs. The researchers send the data to the trial sponsor, who then analyzes the pooled data using statistical tests

Examples of clinical trial goals include assessing the safety and relative effectiveness of a medication or device:
  • On a specific kind of patient, for example, a patient who has been diagnosed with Alzheimer's disease
  • At varying dosages, for example, a 10 milligram dose instead of a 5 milligram dose
  • For a new indication
  • Evaluation for improved efficacy in treating a patient's condition as compared to the standard therapy for that condition
  • Evaluation of the study drug or device relative to two or more already approved/common interventions for that condition, for example, device A versus device B, or therapy A versus therapy B)
While most clinical trials test one alternative to the novel intervention, some expand to three or four and may include a placebo

Except for small, single-location trials, the design and objectives are specified in a document called a clinical trial protocol. The protocol is the trial's "operating manual" and ensures that all researchers perform the trial in the same way on similar subjects and that the data is comparable across all subjects. 

As a trial is designed to test hypotheses and rigorously monitor and assess outcomes, it can be seen as an application of the scientific method, specifically the experimental step. 

The most common clinical trials evaluate new pharmaceutical products, medical devices (such as a new catheter), biologics, psychological therapies, or other interventions. Clinical trials may be required before a national regulatory authority approves marketing of the innovation.

Trials of devices

Similarly to drugs, manufacturers of medical devices in the United States are required to conduct clinical trials for premarket approval. Device trials may compare a new device to an established therapy, or may compare similar devices to each other. An example of the former in the field of vascular surgery is the Open versus Endovascular Repair (OVER trial) for the treatment of abdominal aortic aneurysm, which compared the older open aortic repair technique to the newer endovascular aneurysm repair device. An example of the latter are clinical trials on mechanical devices used in the management of adult female urinary incontinence.

Trials of procedures

Similarly to drugs, medical or surgical procedures may be subjected to clinical trials, such as case-controlled studies for surgical interventions.

History

The concepts behind clinical trials are ancient. The Book of Daniel chapter 1, verses 12 through 15, for instance, describes a planned experiment with both baseline and follow-up observations of two groups who either partook of, or did not partake of, "the King's meat" over a trial period of ten days. Persian physician Avicenna, in The Canon of Medicine (1025) gave similar advice for determining the efficacy of medical drugs and substances.

Development

Edward Jenner vaccinating James Phipps, a boy of eight, on 14 May 1796. Jenner failed to use a control group.
 
Although early medical experimentation was often performed, the use of a control group to provide an accurate comparison for the demonstration of the intervention's efficacy, was generally lacking. For instance, Lady Mary Wortley Montagu, who campaigned for the introduction of inoculation (then called variolation) to prevent smallpox, arranged for seven prisoners who had been sentenced to death to undergo variolation in exchange for their life. Although they survived and did not contract smallpox, there was no control group to assess whether this result was due to the inoculation or some other factor. Similar experiments performed by Edward Jenner over his smallpox vaccine were equally conceptually flawed.

The first proper clinical trial was conducted by the physician James Lind. The disease scurvy, now known to be caused by a Vitamin C deficiency, would often have terrible effects on the welfare of the crew of long distance ocean voyages. In 1740, the catastrophic result of Anson's circumnavigation attracted much attention in Europe; out of 1900 men, 1400 had died, most of them allegedly from having contracted scurvy. John Woodall, an English military surgeon of the British East India Company, had recommended the consumption of citrus fruit (it has an antiscorbutic effect) from the 17th century, but their use did not become widespread.

Lind conducted the first systematic clinical trial in 1747. He included a dietary supplement of an acidic quality in the experiment after two months at sea, when the ship was already afflicted with scurvy. He divided twelve scorbutic sailors into six groups of two. They all received the same diet but, in addition, group one was given a quart of cider daily, group two twenty-five drops of elixir of vitriol (sulfuric acid), group three six spoonfuls of vinegar, group four half a pint of seawater, group five received two oranges and one lemon, and the last group a spicy paste plus a drink of barley water. The treatment of group five stopped after six days when they ran out of fruit, but by that time one sailor was fit for duty while the other had almost recovered. Apart from that, only group one also showed some effect of its treatment.

After 1750, the discipline began to take its modern shape. John Haygarth demonstrated the importance of a control group for the correct identification of the placebo effect in his celebrated study of the ineffective remedy called Perkin's tractors. Further work in that direction was carried out by the eminent physician Sir William Gull, 1st Baronet in the 1860s.

Frederick Akbar Mahomed (d. 1884), who worked at Guy's Hospital in London, made substantial contributions to the process of clinical trials, where "he separated chronic nephritis with secondary hypertension from what we now term essential hypertension. He also founded the Collective Investigation Record for the British Medical Association; this organization collected data from physicians practicing outside the hospital setting and was the precursor of modern collaborative clinical trials."

Modern trials

Austin Bradford Hill was a pivotal figure in the modern development of clinical trials.
 
Sir Ronald A. Fisher, while working for the Rothamsted experimental station in the field of agriculture, developed his Principles of experimental design in the 1920s as an accurate methodology for the proper design of experiments. Among his major ideas, was the importance of randomization – the random assignment of individuals to different groups for the experiment; replication – to reduce uncertainty, measurements should be repeated and experiments replicated to identify sources of variation; blocking – to arrange experimental units into groups of units that are similar to each other, and thus reducing irrelevant sources of variation; use of factorial experiments – efficient at evaluating the effects and possible interactions of several independent factors.

The British Medical Research Council officially recognized the importance of clinical trials from the 1930s. The Council established the Therapeutic Trials Committee to advise and assist in the arrangement of properly controlled clinical trials on new products that seem likely on experimental grounds to have value in the treatment of disease.

The first randomised curative trial was carried out at the MRC Tuberculosis Research Unit by Sir Geoffrey Marshall (1887–1982). The trial, carried out between 1946–1947, aimed to test the efficacy of the chemical streptomycin for curing pulmonary tuberculosis. The trial was both double-blind and placebo-controlled.

The methodology of clinical trials was further developed by Sir Austin Bradford Hill, who had been involved in the streptomycin trials. From the 1920s, Hill applied statistics to medicine, attending the lectures of renowned mathematician Karl Pearson, among others. He became famous for a landmark study carried out in collaboration with Richard Doll on the correlation between smoking and lung cancer. They carried out a case-control study in 1950, which compared lung cancer patients with matched control and also began a sustained long-term prospective study into the broader issue of smoking and health, which involved studying the smoking habits and health of over 30,000 doctors over a period of several years. His certificate for election to the Royal Society called him "...the leader in the development in medicine of the precise experimental methods now used nationally and internationally in the evaluation of new therapeutic and prophylactic agents." 

International clinical trials day is celebrated on 20 May.

Types

One way of classifying clinical trials is by the way the researchers behave.
  • In an observational study, the investigators observe the subjects and measure their outcomes. The researchers do not actively manage the study.
  • In an interventional study, the investigators give the research subjects a particular medicine or other intervention to compare the treated subjects with those receiving no treatment or the standard treatment. Then the researchers measure how the subjects' health changes.
Another way of classifying trials is by their purpose. The U.S. National Institutes of Health (NIH) organizes trials into five different types:
  • Prevention trials look for better ways to prevent disease in people who have never had the disease or to prevent a disease from returning. These approaches may include medicines, vitamins, vaccines, or lifestyle changes.
  • Screening trials test the best way to detect certain diseases or health conditions.
  • Diagnostic trials are conducted to find better tests or procedures for diagnosing a particular disease or condition.
  • Treatment trials test experimental treatments, new combinations of drugs, or new approaches to surgery or radiation therapy.
  • Quality of life trials (supportive care trials) explore ways to improve comfort and the quality of life for individuals with a chronic illness.
  • Compassionate use trials or expanded access trials provide partially tested, unapproved therapeutics to a small number of patients who have no other realistic options. Usually, this involves a disease for which no effective therapy has been approved, or a patient who has already failed all standard treatments and whose health is too compromised to qualify for participation in randomized clinical trials. Usually, case-by-case approval must be granted by both the United States Food and Drug Administration and the pharmaceutical company for such exceptions.
Another classification is defined by FDA (US Food & Drug Administration). Different types of clinical research are used depending on what the researchers are studying. Below are descriptions of some different kinds of clinical research. 
  • Treatment Research generally involves an intervention such as medication, psychotherapy, new devices, or new approaches to surgery or radiation therapy.
  • Prevention Research looks for better ways to prevent disorders from developing or returning. Different kinds of prevention research may study medicines, vitamins, vaccines, minerals, or lifestyle changes.
  • Diagnostic Research refers to the practice of looking for better ways to identify a particular disorder or condition.
  • Screening Research aims to find the best ways to detect certain disorders or health conditions.
  • Quality of Life Research explores ways to improve comfort and the quality of life for individuals with a chronic illness.
  • Genetic studies aim to improve the prediction of disorders by identifying and understanding how genes and illnesses may be related. Research in this area may explore ways in which a person’s genes make him or her more or less likely to develop a disorder. This may lead to development of tailor-made treatments based on a patient’s genetic make-up.
  • Epidemiological studies seek to identify the patterns, causes, and control of disorders in groups of people.
An important note: some clinical research is “outpatient,” meaning that participants do not stay overnight at the hospital. Some is “inpatient,” meaning that participants will need to stay for at least one night in the hospital or research center. Be sure to ask the researchers what their study requires.
A fourth classification is whether the trial design allows changes based on data accumulated during the trial.
  • Fixed trials consider existing data only during the trial's design, do not modify the trial after it begins and do not assess the results until the study is complete.
  • Adaptive clinical trials use existing data to design the trial, and then use interim results to modify the trial as it proceeds. Modifications include dosage, sample size, drug undergoing trial, patient selection criteria and "cocktail" mix. Adaptive trials often employ a Bayesian experimental design to assess the trial's progress. In some cases, trials have become an ongoing process that regularly adds and drops therapies and patient groups as more information is gained. The aim is to more quickly identify drugs that have a therapeutic effect and to zero in on patient populations for whom the drug is appropriate.
Finally, a common way of distinguishing trials is by phase, which in simple terms, relates to how close the drug is to being clinically proven both effective for its stated purpose and accepted by the regulatory authorities for use for that purpose.

Phases

Clinical trials involving new drugs are commonly classified into five phases. Each phase of the drug approval process is treated as a separate clinical trial. The drug-development process will normally proceed through all four phases over many years. If the drug successfully passes through phases 1, 2, and 3, it will usually be approved by the national regulatory authority for use in the general population. Before pharmaceutical companies start clinical trials on a drug, they will also have conducted extensive preclinical studies. Each phase has a different purpose and helps scientists answer a different question. 

Phase Aim Notes
Phase 0 Pharmacodynamics and pharmacokinetics in humans Phase 0 trials are optional first-in-human trials. Single subtherapeutic doses of the study drug or treatment are given to a small number of subjects (typically 10 to 15) to gather preliminary data on the agent's pharmacodynamics (what the drug does to the body) and pharmacokinetics (what the body does to the drugs). For a test drug, the trial documents the absorption, distribution, metabolization, and removal (excretion) of the drug, and the drug's interactions within the body, to confirm that these appear to be as expected.
Phase 1 Screening for safety Often the first-in-man trials. Testing within a small group of people (typically 20–80) to evaluate safety, determine safe dosage ranges, and begin to identify side effects. A drug's side effects could be subtle or long term, or may only happen with a few people, so phase 1 trials are not expected to identify all side effects.
Phase 2 Establishing the efficacy of the drug, usually against a placebo Testing with a larger group of people (typically 100–300) to determine efficacy and to further evaluate its safety. The gradual increase in test group size allows for the evocation of less-common side effects.
Phase 3 Final confirmation of safety and efficacy Testing with large groups of people (typically 1,000–3,000) to confirm its efficacy, evaluate its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow it to be used safely.
Phase 4 Safety studies during sales Postmarketing studies delineate additional information, including the treatment's risks, benefits, and optimal use. As such, they are ongoing during the drug's lifetime of active medical use. (Particularly after approval under FDA Accelerated Approval Program)

Trial design

A fundamental distinction in evidence-based practice is between observational studies and randomized controlled trials. Types of observational studies in epidemiology, such as the cohort study and the case-control study, provide less compelling evidence than the randomized controlled trial. In observational studies, the investigators retrospectively assess associations between the treatments given to participants and their health status, with potential for considerable errors in design and interpretation.

A randomized controlled trial can provide compelling evidence that the study treatment causes an effect on human health.

Currently, some phase 2 and most phase 3 drug trials are designed as randomized, double-blind, and placebo-controlled.
  • Randomized: Each study subject is randomly assigned to receive either the study treatment or a placebo.
  • Blind: The subjects involved in the study do not know which study treatment they receive. If the study is double-blind, the researchers also do not know which treatment a subject receives. This intent is to prevent researchers from treating the two groups differently. A form of double-blind study called a "double-dummy" design allows additional insurance against bias. In this kind of study, all patients are given both placebo and active doses in alternating periods.
  • Placebo-controlled: The use of a placebo (fake treatment) allows the researchers to isolate the effect of the study treatment from the placebo effect.
Clinical studies having small numbers of subjects may be "sponsored" by single researchers or a small group of researchers, and are designed to test simple questions or feasibility to expand the research for a more comprehensive randomized controlled trial.

Active control studies

In many cases, giving a placebo to a person suffering from a disease may be unethical. To address this, it has become a common practice to conduct "active comparator" (also known as "active control") trials. In trials with an active control group, subjects are given either the experimental treatment or a previously approved treatment with known effectiveness.

Master protocol

In such studies, multiple experimental treatments are tested in a single trial. Genetic testing enables researchers to group patients according to their genetic profile, deliver drugs based on that profile to that group and compare the results. Multiple companies can participate, each bringing a different drug. The first such approach targets squamous cell cancer, which includes varying genetic disruptions from patient to patient. Amgen, AstraZeneca and Pfizer are involved, the first time they have worked together in a late-stage trial. Patients whose genomic profiles do not match any of the trial drugs receive a drug designed to stimulate the immune system to attack cancer.

Clinical trial protocol

A clinical trial protocol is a document used to define and manage the trial. It is prepared by a panel of experts. All study investigators are expected to strictly observe the protocol. 

The protocol describes the scientific rationale, objective(s), design, methodology, statistical considerations and organization of the planned trial. Details of the trial are provided in documents referenced in the protocol, such as an investigator's brochure

The protocol contains a precise study plan to assure safety and health of the trial subjects and to provide an exact template for trial conduct by investigators. This allows data to be combined across all investigators/sites. The protocol also informs the study administrators (often a contract research organization). 

The format and content of clinical trial protocols sponsored by pharmaceutical, biotechnology or medical device companies in the United States, European Union, or Japan have been standardized to follow Good Clinical Practice guidance issued by the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). Regulatory authorities in Canada and Australia also follow ICH guidelines. Journals such as Trials, encourage investigators to publish their protocols.

Design features

Informed consent

Example of informed consent document from the PARAMOUNT trial

Clinical trials recruit study subjects to sign a document representing their "informed consent". The document includes details such as its purpose, duration, required procedures, risks, potential benefits, key contacts and institutional requirements. The participant then decides whether to sign the document. The document is not a contract, as the participant can withdraw at any time without penalty. 

Informed consent is a legal process in which a recruit is instructed about key facts before deciding whether to participate. Researchers explain the details of the study in terms the subject can understand. The information is presented in the subject's native language. Generally, children cannot autonomously provide informed consent, but depending on their age and other factors, may be required to provide informed assent.

Statistical power

The number of subjects has a large impact on the ability to reliably detect and measure effects of the intervention. This is described as its "power". The larger the number of participants, the greater the statistical power and the greater the cost. 

The statistical power estimates the ability of a trial to detect a difference of a particular size (or larger) between the treatment and control groups. For example, a trial of a lipid-lowering drug versus placebo with 100 patients in each group might have a power of 0.90 to detect a difference between placebo and trial groups receiving dosage of 10 mg/dL or more, but only 0.70 to detect a difference of 6 mg/dL.

Placebo groups

Merely giving a treatment can have nonspecific effects. These are controlled for by the inclusion of patients who receive only a placebo. Subjects are assigned randomly without informing them to which group they belonged. Many trials are doubled-blinded so that researchers do not know to which group a subject is assigned. 

Assigning a subject to a placebo group can pose an ethical problem if it violates his or her right to receive the best available treatment. The Declaration of Helsinki provides guidelines on this issue.

Duration

Timeline of various approval tracks and research phases in the US
 
Clinical trials are only a small part of the research that goes into developing a new treatment. Potential drugs, for example, first have to be discovered, purified, characterized, and tested in labs (in cell and animal studies) before ever undergoing clinical trials. In all, about 1,000 potential drugs are tested before just one reaches the point of being tested in a clinical trial. For example, a new cancer drug has, on average, six years of research behind it before it even makes it to clinical trials. But the major holdup in making new cancer drugs available is the time it takes to complete clinical trials themselves. On average, about eight years pass from the time a cancer drug enters clinical trials until it receives approval from regulatory agencies for sale to the public. Drugs for other diseases have similar timelines. 

Some reasons a clinical trial might last several years:
  • For chronic conditions such as cancer, it takes months, if not years, to see if a cancer treatment has an effect on a patient.
  • For drugs that are not expected to have a strong effect (meaning a large number of patients must be recruited to observe 'any' effect), recruiting enough patients to test the drug's effectiveness (i.e., getting statistical power) can take several years.
  • Only certain people who have the target disease condition are eligible to take part in each clinical trial. Researchers who treat these particular patients must participate in the trial. Then they must identify the desirable patients and obtain consent from them or their families to take part in the trial.
The biggest barrier to completing studies is the shortage of people who take part. All drug and many device trials target a subset of the population, meaning not everyone can participate. Some drug trials require patients to have unusual combinations of disease characteristics. It is a challenge to find the appropriate patients and obtain their consent, especially when they may receive no direct benefit (because they are not paid, the study drug is not yet proven to work, or the patient may receive a placebo). In the case of cancer patients, fewer than 5% of adults with cancer will participate in drug trials. According to the Pharmaceutical Research and Manufacturers of America (PhRMA), about 400 cancer medicines were being tested in clinical trials in 2005. Not all of these will prove to be useful, but those that are may be delayed in getting approved because the number of participants is so low.

For clinical trials involving potential for seasonal influences (such as airborne allergies, seasonal affective disorder, influenza, and skin diseases), the study may be done during a limited part of the year (such as spring for pollen allergies), when the drug can be tested.

Clinical trials that do not involve a new drug usually have a much shorter duration. (Exceptions are epidemiological studies, such as the Nurses' Health Study).

Administration

Clinical trials designed by a local investigator, and (in the US) federally funded clinical trials, are almost always administered by the researcher who designed the study and applied for the grant. Small-scale device studies may be administered by the sponsoring company. Clinical trials of new drugs are usually administered by a contract research organization (CRO) hired by the sponsoring company. The sponsor provides the drug and medical oversight. A CRO is contracted to perform all the administrative work on a clinical trial. For phases 2, 3 and 4, the CRO recruits participating researchers, trains them, provides them with supplies, coordinates study administration and data collection, sets up meetings, monitors the sites for compliance with the clinical protocol, and ensures the sponsor receives data from every site. Specialist site management organizations can also be hired to coordinate with the CRO to ensure rapid IRB/IEC approval and faster site initiation and patient recruitment. Phase 1 clinical trials of new medicines are often conducted in a specialist clinical trial clinic, with dedicated pharmacologists, where the subjects can be observed by full-time staff. These clinics are often run by a CRO which specialises in these studies. 

At a participating site, one or more research assistants (often nurses) do most of the work in conducting the clinical trial. The research assistant's job can include some or all of the following: providing the local institutional review board (IRB) with the documentation necessary to obtain its permission to conduct the study, assisting with study start-up, identifying eligible patients, obtaining consent from them or their families, administering study treatment(s), collecting and statistically analyzing data, maintaining and updating data files during followup, and communicating with the IRB, as well as the sponsor and CRO.

Marketing

Janet Yang uses the Interactional Justice Model to test the effects of willingness to talk with a doctor and clinical trial enrollment. Results found that potential clinical trial candidates were less likely to enroll in clinical trials if the patient is more willing to talk with their doctor. The reasoning behind this discovery may be patients are happy with their current care. Another reason for the negative relationship between perceived fairness and clinical trial enrollment is the lack of independence from the care provider. Results found that there is a positive relationship between a lack of willingness to talk with their doctor and clinical trial enrollment. Lack of willingness to talk about clinical trials with current care providers may be due to patients' independence from the doctor. Patients who are less likely to talk about clinical trials are more willing to use other sources of information to gain a better insight of alternative treatments. Clinical trial enrollment should be motivated to utilize websites and television advertising to inform the public about clinical trial enrollment.

Information technology

The last decade has seen a proliferation of information technology use in the planning and conduct of clinical trials. Clinical trial management systems are often used by research sponsors or CROs to help plan and manage the operational aspects of a clinical trial, particularly with respect to investigational sites. Advanced analytics for identifying researchers and research sites with expertise in a given area utilize public and private information about ongoing research. Web-based electronic data capture (EDC) and clinical data management systems are used in a majority of clinical trials to collect case report data from sites, manage its quality and prepare it for analysis. Interactive voice response systems are used by sites to register the enrollment of patients using a phone and to allocate patients to a particular treatment arm (although phones are being increasingly replaced with web-based (IWRS) tools which are sometimes part of the EDC system). While patient-reported outcome were often paper based in the past, measurements are increasingly being collected using web portals or hand-held ePRO (or eDiary) devices, sometimes wireless. Statistical software is used to analyze the collected data and prepare them for regulatory submission. Access to many of these applications are increasingly aggregated in web-based clinical trial portals. In 2011, the FDA approved a phase 1 trial that used telemonitoring, also known as remote patient monitoring, to collect biometric data in patients' homes and transmit it electronically to the trial database. This technology provides many more data points and is far more convenient for patients, because they have fewer visits to trial sites.

Ethical aspects

Clinical trials are closely supervised by appropriate regulatory authorities. All studies involving a medical or therapeutic intervention on patients must be approved by a supervising ethics committee before permission is granted to run the trial. The local ethics committee has discretion on how it will supervise noninterventional studies (observational studies or those using already collected data). In the US, this body is called the Institutional Review Board (IRB); in the EU, they are called Ethics committees. Most IRBs are located at the local investigator's hospital or institution, but some sponsors allow the use of a central (independent/for profit) IRB for investigators who work at smaller institutions. 

To be ethical, researchers must obtain the full and informed consent of participating human subjects. (One of the IRB's main functions is to ensure potential patients are adequately informed about the clinical trial.) If the patient is unable to consent for him/herself, researchers can seek consent from the patient's legally authorized representative. In California, the state has prioritized the individuals who can serve as the legally authorized representative.

In some US locations, the local IRB must certify researchers and their staff before they can conduct clinical trials. They must understand the federal patient privacy (HIPAA) law and good clinical practice. The International Conference of Harmonisation Guidelines for Good Clinical Practice is a set of standards used internationally for the conduct of clinical trials. The guidelines aim to ensure the "rights, safety and well being of trial subjects are protected". 

The notion of informed consent of participating human subjects exists in many countries all over the world, but its precise definition may still vary. 

Informed consent is clearly a 'necessary' condition for ethical conduct but does not 'ensure' ethical conduct. In compassionate use trials the latter becomes a particularly difficult problem. The final objective is to serve the community of patients or future patients in a best-possible and most responsible way. See also Expanded access. However, it may be hard to turn this objective into a well-defined, quantified, objective function. In some cases this can be done, however, for instance, for questions of when to stop sequential treatments, and then quantified methods may play an important role. 

Additional ethical concerns are present when conducting clinical trials on children (pediatrics), and in emergency or epidemic situations.

Conflicts of interest and unfavorable studies

In response to specific cases in which unfavorable data from pharmaceutical company-sponsored research were not published, the Pharmaceutical Research and Manufacturers of America published new guidelines urging companies to report all findings and limit the financial involvement in drug companies by researchers. The US Congress signed into law a bill which requires phase II and phase III clinical trials to be registered by the sponsor on the clinicaltrials.gov website compiled by the National Institutes of Health.

Drug researchers not directly employed by pharmaceutical companies often seek grants from manufacturers, and manufacturers often look to academic researchers to conduct studies within networks of universities and their hospitals, e.g., for translational cancer research. Similarly, competition for tenured academic positions, government grants and prestige create conflicts of interest among academic scientists. According to one study, approximately 75% of articles retracted for misconduct-related reasons have no declared industry financial support. Seeding trials are particularly controversial.

In the United States, all clinical trials submitted to the FDA as part of a drug approval process are independently assessed by clinical experts within the Food and Drug Administration, including inspections of primary data collection at selected clinical trial sites.

In 2001, the editors of 12 major journals issued a joint editorial, published in each journal, on the control over clinical trials exerted by sponsors, particularly targeting the use of contracts which allow sponsors to review the studies prior to publication and withhold publication. They strengthened editorial restrictions to counter the effect. The editorial noted that contract research organizations had, by 2000, received 60% of the grants from pharmaceutical companies in the US. Researchers may be restricted from contributing to the trial design, accessing the raw data, and interpreting the results.

Safety

Responsibility for the safety of the subjects in a clinical trial is shared between the sponsor, the local site investigators (if different from the sponsor), the various IRBs that supervise the study, and (in some cases, if the study involves a marketable drug or device), the regulatory agency for the country where the drug or device will be sold. 

For safety reasons, many clinical trials of drugs are designed to exclude women of childbearing age, pregnant women, or women who become pregnant during the study. In some cases, the male partners of these women are also excluded or required to take birth control measures.

Throughout the clinical trial, the sponsor is responsible for accurately informing the local site investigators of the true historical safety record of the drug, device or other medical treatments to be tested, and of any potential interactions of the study treatment(s) with already approved treatments. This allows the local investigators to make an informed judgment on whether to participate in the study or not. The sponsor is also responsible for monitoring the results of the study as they come in from the various sites as the trial proceeds. In larger clinical trials, a sponsor will use the services of a data monitoring committee (DMC, known in the US as a data safety monitoring board). This independent group of clinicians and statisticians meets periodically to review the unblinded data the sponsor has received so far. The DMC has the power to recommend termination of the study based on their review, for example if the study treatment is causing more deaths than the standard treatment, or seems to be causing unexpected and study-related serious adverse events. The sponsor is responsible for collecting adverse event reports from all site investigators in the study, and for informing all the investigators of the sponsor's judgment as to whether these adverse events were related or not related to the study treatment.

The sponsor and the local site investigators are jointly responsible for writing a site-specific informed consent that accurately informs the potential subjects of the true risks and potential benefits of participating in the study, while at the same time presenting the material as briefly as possible and in ordinary language. FDA regulations state that participating in clinical trials is voluntary, with the subject having the right not to participate or to end participation at any time.

Local site investigators

The ethical principle of primum non nocere ("first, do no harm") guides the trial, and if an investigator believes the study treatment may be harming subjects in the study, the investigator can stop participating at any time. On the other hand, investigators often have a financial interest in recruiting subjects, and could act unethically to obtain and maintain their participation. 

The local investigators are responsible for conducting the study according to the study protocol, and supervising the study staff throughout the duration of the study. The local investigator or his/her study staff are also responsible for ensuring the potential subjects in the study understand the risks and potential benefits of participating in the study. In other words, they (or their legally authorized representatives) must give truly informed consent.

Local investigators are responsible for reviewing all adverse event reports sent by the sponsor. These adverse event reports contain the opinion of both the investigator at the site where the adverse event occurred, and the sponsor, regarding the relationship of the adverse event to the study treatments. Local investigators also are responsible for making an independent judgment of these reports, and promptly informing the local IRB of all serious and study treatment-related adverse events.

When a local investigator is the sponsor, there may not be formal adverse event reports, but study staff at all locations are responsible for informing the coordinating investigator of anything unexpected. The local investigator is responsible for being truthful to the local IRB in all communications relating to the study.

Institutional review boards (IRBs)

Approval by an Institutional Review Board (IRB), or ethics board, is necessary before all but the most informal research can begin. In commercial clinical trials, the study protocol is not approved by an IRB before the sponsor recruits sites to conduct the trial. However, the study protocol and procedures have been tailored to fit generic IRB submission requirements. In this case, and where there is no independent sponsor, each local site investigator submits the study protocol, the consent(s), the data collection forms, and supporting documentation to the local IRB. Universities and most hospitals have in-house IRBs. Other researchers (such as in walk-in clinics) use independent IRBs.

The IRB scrutinizes the study for both medical safety and protection of the patients involved in the study, before it allows the researcher to begin the study. It may require changes in study procedures or in the explanations given to the patient. A required yearly "continuing review" report from the investigator updates the IRB on the progress of the study and any new safety information related to the study.

Regulatory agencies

In the US, the FDA can audit the files of local site investigators after they have finished participating in a study, to see if they were correctly following study procedures. This audit may be random, or for cause (because the investigator is suspected of fraudulent data). Avoiding an audit is an incentive for investigators to follow study procedures. A 'covered clinical study' refers to a trial submitted to the FDA as part of a marketing application (for example, as part of an NDA or 510(k)), about which the FDA may require disclosure of financial interest of the clinical investigator in the outcome of the study. For example, the applicant must disclose whether an investigator owns equity in the sponsor, or owns proprietary interest in the product under investigation. The FDA defines a covered study as "...any study of a drug, biological product or device in humans submitted in a marketing application or reclassification petition that the applicant or FDA relies on to establish that the product is effective (including studies that show equivalence to an effective product) or any study in which a single investigator makes a significant contribution to the demonstration of safety."

Alternatively, many American pharmaceutical companies have moved some clinical trials overseas. Benefits of conducting trials abroad include lower costs (in some countries) and the ability to run larger trials in shorter timeframes, whereas a potential disadvantage exists in lower-quality trial management. Different countries have different regulatory requirements and enforcement abilities. An estimated 40% of all clinical trials now take place in Asia, Eastern Europe, and Central and South America. "There is no compulsory registration system for clinical trials in these countries and many do not follow European directives in their operations", says Jacob Sijtsma of the Netherlands-based WEMOS, an advocacy health organisation tracking clinical trials in developing countries.

Beginning in the 1980s, harmonization of clinical trial protocols was shown as feasible across countries of the European Union. At the same time, coordination between Europe, Japan and the United States led to a joint regulatory-industry initiative on international harmonization named after 1990 as the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) Currently, most clinical trial programs follow ICH guidelines, aimed at "ensuring that good quality, safe and effective medicines are developed and registered in the most efficient and cost-effective manner. These activities are pursued in the interest of the consumer and public health, to prevent unnecessary duplication of clinical trials in humans and to minimize the use of animal testing without compromising the regulatory obligations of safety and effectiveness."

Aggregation of safety data during clinical development

Aggregating safety data across clinical trials during drug development is important because trials are generally designed to focus on determining how well the drug works. The safety data collected and aggregated across multiple trials as the drug is developed allows the sponsor, investigators and regulatory agencies to monitor the aggregate safety profile of experimental medicines as they're developed. The value of assessing aggregate safety data is: a) decisions based on aggregate safety assessment during development of the medicine can be made throughout the medicine's development and b) it sets up the sponsor and regulators well for assessing the medicine's safety after the drug is approved.

Economics

Clinical trial costs vary depending on trial phase, type of trial, and disease studied. A study of clinical trials conducted in the United States from 2004 to 2012 found the average cost of phase I trials to be $1.4 million and $6.6 million, depending on the type of disease. Phase II trials ranged from $7 million to $20 million, and phase III trials from $11 million to $53 million.

The cost of a study depends on many factors, especially the number of sites conducting the study, the number of patients involved, and whether the study treatment is already approved for medical use.
The expenses incurred by a pharmaceutical company in administering a phase 3 or 4 clinical trial may include, among others:
  • production of the drug(s) or device(s) being evaluated
  • staff salaries for the designers and administrators of the trial
  • payments to the contract research organization, the site management organization (if used) and any outside consultants
  • payments to local researchers and their staff for their time and effort in recruiting test subjects and collecting data for the sponsor
  • the cost of study materials and the charges incurred to ship them
  • communication with the local researchers, including on-site monitoring by the CRO before and (in some cases) multiple times during the study
  • one or more investigator training meetings
  • expense incurred by the local researchers, such as pharmacy fees, IRB fees and postage
  • any payments to subjects enrolled in the trial
  • the expense of treating a test subject who develops a medical condition caused by the study drug
These expenses are incurred over several years. 

In the US, sponsors may receive a 50 percent tax credit for clinical trials conducted on drugs being developed for the treatment of orphan diseases. National health agencies, such as the US National Institutes of Health, offer grants to investigators who design clinical trials that attempt to answer research questions of interest to the agency. In these cases, the investigator who writes the grant and administers the study acts as the sponsor, and coordinates data collection from any other sites. These other sites may or may not be paid for participating in the study, depending on the amount of the grant and the amount of effort expected from them. Using internet resources can, in some cases, reduce the economic burden.

Investigators

Investigators are often compensated for their work in clinical trials. These amounts can be small, just covering a partial salary for research assistants and the cost of any supplies (usually the case with national health agency studies), or be substantial and include 'overhead' that allows the investigator to pay the research staff during times between clinical trials.

Subjects

Participants in phase 1 drug trials do not gain any direct health benefit from taking part. They are generally paid a fee for their time, with payments regulated and not related to any risk involved. In later phase trials, subjects may not be paid to ensure their motivation for participating with potential for a health benefit or contributing to medical knowledge. Small payments may be made for study-related expenses such as travel or as compensation for their time in providing follow-up information about their health after the trial treatment ends.

Participant recruitment and participation

Newspaper advertisements seeking patients and healthy volunteers to participate in clinical trials
 
Phase 0 and phase 1 drug trials seek healthy volunteers. Most other clinical trials seek patients who have a specific disease or medical condition. The diversity observed in society should be reflected in clinical trials through the appropriate inclusion of ethnic minority populations. Patient recruitment or participant recruitment plays a significant role in the activities and responsibilities of sites conducting clinical trials.

All volunteers being considered for a trial are required to undertake a medical screening. Requirements differ according to the trial needs, but typically volunteers would be screened in a medical laboratory for:
  • Measurement of the electrical activity of the heart (ECG)
  • Measurement of blood pressure, heart rate and body temperature
  • Blood sampling
  • Urine sampling
  • Weight and height measurement
  • Drug abuse testing
  • Pregnancy testing
It has been observed that participants in clinical trials are disproportionately white. This may reduce the validity of findings in respect of non-white patients.

Locating trials

Depending on the kind of participants required, sponsors of clinical trials, or contract research organizations working on their behalf, try to find sites with qualified personnel as well as access to patients who could participate in the trial. Working with those sites, they may use various recruitment strategies, including patient databases, newspaper and radio advertisements, flyers, posters in places the patients might go (such as doctor's offices), and personal recruitment of patients by investigators.

Volunteers with specific conditions or diseases have additional online resources to help them locate clinical trials. For example, the Fox Trial Finder connects Parkinson's disease trials around the world to volunteers who have a specific set of criteria such as location, age, and symptoms. Other disease-specific services exist for volunteers to find trials related to their condition. Volunteers may search directly on ClinicalTrials.gov to locate trials using a registry run by the U.S. National Institutes of Health and National Library of Medicine.

Research

The risk information seeking and processing (RISP) model analyzes social implications that affect attitudes and decision making pertaining to clinical trials. People who hold a higher stake or interest in the treatment provided in a clinical trial showed a greater likelihood of seeking information about clinical trials. Cancer patients reported more optimistic attitudes towards clinical trials than the general population. Having a more optimistic outlook on clinical trials also leads to greater likelihood of enrolling.

Friday, May 10, 2019

Childhood leukemia

From Wikipedia, the free encyclopedia

Childhood leukemia
Pediatric patients receiving chemotherapy.jpg
Two girls with acute lymphocytic leukemia demonstrating intravenous access for chemotherapy.

Childhood leukemia is leukemia that occurs in a child and is a type of childhood cancer. Childhood leukemia is the most common childhood cancer, accounting for 29% of cancers in children aged 0–14 in 2018. There are multiple forms of leukemia that occur in children, the most common being acute lymphoblastic leukemia (ALL) followed by acute myeloid leukemia (AML). Survival rates vary depending on the type of leukemia, but may be as high as 90% in ALL.

Leukemia is a hematological malignancy or a cancer of the blood. It develops in the bone marrow, the soft inner part of bones where new blood cells are made. When a child has leukemia, the bone marrow produces white blood cells that do not mature correctly. Normal healthy cells only reproduce when there is enough space for them. The body will regulate the production of cells by sending signals of when to stop production. When a child has leukemia, the cells do not respond to the signals telling them when to stop and when to produce cells. The bone marrow becomes crowded resulting in problems producing other blood cells.

Common childhood leukemia signs and symptoms include excessive tiredness, easy bruising or bleeding, bone pain and paleness.

Types

Leukemia is usually described either as "acute", which grows quickly, or "chronic", which grows slowly. The vast majority of childhood leukemia is acute, and chronic leukemias are more common in adults than in children. Acute leukemias typically develop and worsen quickly (over periods of days to weeks). Chronic leukemias develop over a slower period of time (months), but are more difficult to treat than acute leukemias. The following are some of the main types of leukemia that occur in children.

Acute lymphoblastic

The most common form childhood leukemia is acute lymphocytic (or lymphoblastic) leukemia (ALL), which makes up 75-80% of childhood leukemia diagnoses. ALL is a form of leukemia that affects lymphocytes, a type of white blood cells which fights infection. When a patient has ALL, the bone marrow makes too many immature white blood cells and they do not mature correctly. These white blood cells also do not work correctly to fight infection. The white blood cells over-produce, crowding the other blood cells in the bone marrow.

Acute myelogenous

Another type of acute leukemia is acute myelogenous leukemia (AML). AML accounts for most of the remaining cases of leukemia in children, comprising about 20% of childhood leukemia. AML is cancer of the blood in which too many myeloblasts (immature white blood cells) are produced in the bone marrow. The marrow continues to produce abnormal cells that crowd the other blood cells and do not work properly to fight infection.

Acute promyelocytic

Acute promyelocytic leukemia (APL) is a specific type of AML. In this leukemia promyelocytes are produced and build up in the bone marrow. A specific chromosome translocation (a type of genetic change) is found in patients with APL. Genes on chromosome 15 change places with genes on chromosome 17. This genetic change prevents the promyelocytes from maturing properly.

Chronic myelogenous

Chronic myelogenous leukemia (CML) is a chronic leukemia that develops slowly, over months to years. CML is rare in children, but does occur. CML patients have too many immature white blood cells being produced, and the cells crowd the other healthy blood cells. A chromosome translocation occurs in patients with CML. Part of chromosome 9 breaks off and attaches itself to chromosome 22, facilitating exchange of genetic material between chromosomes 9 and 22. The rearrangement of the chromosomes changes the positions and functions of certain genes, which causes uncontrolled cell growth.

Chronic lymphocytic leukemia (CLL) is another form of chronic leukemia, but is extremely rare in children.

Juvenile myelomonocytic

Juvenile myelomonocytic leukemia (JMML) is a form of leukemia in which myelomonocytic cells are overproduced. It is sometimes considered a myeloproliferative neoplasm. It is rare and most commonly occurs in children under the age of four. In JMML, the myelomonocytic cells produced by the bone marrow and invade the spleen, lungs, and intestines.

Signs and symptoms

Most initial symptoms of leukemia are related to problems with the bone-marrow function. There are a variety of symptoms that children may experience. The symptoms tend to appear quickly in acute leukemia and slowly over time in chronic leukemia. Symptoms in the different types of childhood leukemia include:
  • feelings of fatigue or weakness
  • repetitive infections or fever
  • bone and joint pain
  • refusing to walk, which likely results from bone pain or fatigue
  • easy bleeding or bruising (including petechiae)
  • increased paleness of skin
  • abdominal pain or fullness, which may cause shortness of breath or loss of appetite
  • swollen lymph nodes under the arms, in the groin, chest and neck.
  • enlarged spleen or liver
  • weight loss
  • rash

Causes

The exact cause of most cases of childhood leukemia is not known. Most children with leukemia do not have any known risk factors.

One hypothesis is that childhood acute lymphoblastic leukemia (ALL) is caused by a two-step process, starting with a prenatal genetic mutation and then exposure to infections While this theory is possible, there is not enough evidence in patients currently to either support or refute the relationship between infection and developing ALL.

There is evidence linking maternal alcohol consumption to AML development in children. Indoor insecticide exposure has also been linked to the development of childhood leukemias. High levels of coffee consumption during pregnancy (2-3 cups/day or greater) have been linked to childhood leukemia as well.

It has also been suggested that allergies are linked to the development of childhood leukemia but this is not supported by current evidence.

Diagnosis

Childhood leukemia is diagnosed in a variety of ways. The diagnostic procedures confirm if there is leukemia present, the extent of the leukemia (how far it has spread), and the type of leukemia. The diagnostic procedures are similar for the different types of leukemias:
  • A bone-marrow aspiration and biopsy to look for and collect leukemia cells. In aspiration, a fluid sample is removed from the marrow. In biopsy, bone marrow cells are removed. Usually both procedures are performed at the same time and used together to help with diagnosis.
  • Tests called immunophenotyping and cytogenetic analysis are performed on the cells to further determine the type and subtype of leukemia.
  • A complete blood count, which is a measurement of size, number, and maturity of different blood cells in blood.
  • Blood tests may include blood chemistry, evaluation of liver and kidney functions, and genetic studies.
  • A spinal tap: a special needle is placed into the lower back into the spinal canal, which is the area around the spinal cord. Cerebral spinal fluid is fluid that bathes the child's brain and spinal cord. A small amount of cerebral spinal fluid is sent for testing to determine if leukemia cells are present.

Treatment

Treatment for childhood leukemia is based on a number of factors, including the type of leukemia, characteristics of the leukemia, prognostic characteristics (children with worse prognostic characteristics receive more aggressive therapy, see Prognosis section), response to therapy, and extent of the disease at diagnosis. Treatment is typically managed by a team of health care professionals, consisting of pediatric oncologists, social workers, pediatric nurse specialists, and pediatricians among others.

Types

Young girl receiving chemotherapy treatment
 
While the exact treatment plan is determined by the type of leukemia and factors listed above, there are five types of therapies that are generally used to treat all childhood leukemias. Four of these are standard treatment and one is in clinical trials. The four specific types of treatments that are traditionally used are Chemotherapy, Stem cell transplant, Radiation therapy and Targeted therapy. Immunotherapy is another type of therapy that is currently in clinical trials.

Chemotherapy is a treatment that uses chemicals to interfere with the cancer cells ability to grow and reproduce. Chemotherapy can be used alone or in combination with other therapies. Chemotherapy can be given either as a pill to swallow orally, an injection into the fat or muscle, through an IV directly into the bloodstream or directly into the spinal column.

Stem cell transplant is a process in which the blood-forming cells that are abnormal (like leukemia cells) or that were destroyed by chemotherapy are replaced with healthy new blood-forming cells. A stem-cell transplant can help the human body produce more healthy white blood cells, red blood cells, or platelets. It also reduces the risk of life-threatening conditions such as anemia, or hemorrhage. Stem cell transplants can be done by obtaining cells from the bone-marrow, blood or umbilical-cord blood. Stem cell transplants can use the cells from one's self, called an autologous stem cell transplant or they can use cells from another person, known as an allogenic stem cell transplant. The type used in childhood leukemia is typically allogenic. The donors used must be a match to the child getting the transplant by a marker called HLA.
 
Radiation therapy uses various types of radiation to kill cancer cells. 

Targeted therapy is the use of medication to specifically kill the cancerous cells. The medication is able to leave healthy normal cells alone while it targets the cancer. These include tyrosine kinase inhibitors (TKIs), monoclonal antibodies, and proteasome inhibitors.

Immunotherapy is a type of therapy that uses the child's own immune system to fight the cancer. This therapy is currently in clinical trials.

ALL

Treatment for childhood ALL consists of three phases: Induction, Consolidation/Intensification, and Maintenance.
  • Induction is intended to kill the large majority of the cancer cells. It typically lasts for 4–6 weeks and uses chemotherapy and glucocorticoids. After induction, the goal is to put the cancer into remission. Remission means that cancer is no longer detected in the bone marrow or blood and that normal cells have returned to the bone marrow. However, remission does not mean that the cancer is cured. It is thought there are still cancer cells that are hiding in the body, so more treatment is needed to kill them.
  • Consolidation/Intensification is used to kill any remaining cells that have the potential to become cancerous. It consists of more chemotherapy and lasts for a few months.
  • Maintenance is a lower intensity chemotherapy regimen that used to kill any more remaining cells in the bone marrow that could regrow into cancer cells and cause the leukemia to come back. It lasts for 18–30 months.
Immunotherapy, radiation therapy, stem cell transplant, and targeted therapies may also be used in the treatment of ALL. This will depend on the extent of ALL, the characteristics of the ALL and if it has recurred (come back after initial treatment).

AML

Childhood AML is a more challenging cancer to treat than childhood ALL. Childhood AML treatment usually consists higher dose chemotherapy given over a shorter period of time compared to ALL treatment. Due to this shorter and more intense treatment, side effects are also more intense. These children are therefore treated in treatment centers or hospitals where they will stay for longer period of their treatment. Treatment for AML consists of 2 phases: Induction and Consolidation. There is no Maintenance phase of therapy in AML as it was not shown to lower chances of the cancer coming back.
  • Induction is aimed at killing leukemia in the blood and bone marrow. Its goal is to put the cancer into remission. Treatments used in induction therapy for childhood AML may include chemotherapy, targeted therapy, radiation therapy, stem cell transplant, or other treatments as part of a clinical trial. The exact treatment will vary depending on characteristics of the child and the cancer.
  • Consolidation begins after remission is obtained and is aimed at killing any remaining cancer cells. It will again vary depending on specifics about the patient and cancer. It typically will consist of chemotherapy followed by a stem cell transplant.
In addition to these treatments, there are also clinical trials of immunotherapy and targeted therapy for AML. The APL type of AML is also treated with all-trans retinoic acid or arsenic trioxide therapy in addition to what is listed above.

Other childhood leukemias

JMML is typically treated by chemotherapy followed by a stem cell transplant. CML is typically treated with targeted therapy and possibly a stem cell transplant if it comes back or does not respond to the targeted therapy at first.

Prognosis

The 5-year survival rate for children with leukemia is 83.6% in the USA. This means that 83.6% of children diagnosed with leukemia live for 5 years or more after their diagnosis. This is greatly improved from a 5-year survival rate of 36.5% in 1975. The improvement is largely attributed to advances in therapy, particularly therapy for ALL. The outlook or prognosis for an individual child is affected by the type of leukemia. In addition, there are certain characteristics of the patients and cancers that help doctors predict the prognosis (and determine treatment). These are referred to as prognostic factors. Generally prognostic factors are more meaningful in ALL than in AML.

ALL

The 5-year survival rate for children and adolescents under the age of 15 years diagnosed with ALL was 91.8% in the USA between 2007 and 2013. The survival rate for children under the age of 5 years with ALL was 94% during the same time period.

Prognostic factors in ALL:
  • Age at diagnosis: Children between the ages of 1–9 years with B-cell ALL (a specific type of ALL) have better cure rates than children less than 1 year old or over 10 years old. This does not seem to matter in T-cell ALL (another specific type of ALL).
  • White blood cell count at diagnosis: Children with very high white blood cell counts at diagnosis are higher risk patients than those with lower counts.
  • Specific type of ALL
  • Spread to other organs (such as the brain, spinal cord, and testicles) signifies worse prognosis
  • Chromosome changes: Patients whose leukemia cells have more chromosomes are more likely to be cured. Different chromosome translocations are also associated with different prognoses.
  • Initial treatment response: Children who respond to treatment quickly initially have a better prognosis.

AML

The survival rate for children under the age of 15 years with AML was 66.4% in the USA between 2007 and 2013. This is lower than the rates for ALL.

Prognostic factors for AML:
  • Age at diagnosis: Children under 2 years old may have a better prognosis than older children. However, how strong this link is is unclear.
  • White blood cell count at diagnosis: Children with lower white blood cell counts tend to have a better prognosis.
  • Children with Down Syndrome and AML typically have a good prognosis.
  • Specific type of AML: APL generally is a good prognosis.
  • Specific chromosome changes affect prognosis.
  • AML that started because of treatment for a different cancer usually has poorer prognosis.
  • Response to treatment: As with ALL, patients whose disease responds faster to treatment tend to have a better prognosis.
  • Children who are a normal weight usually have a better prognosis than those who are overweight or underweight.

After effects

As treatments for childhood leukemias have gotten better, there are more children surviving and living into adulthood. These survivors are at risk for long term after effects of treatment. The specific risks depend on the type of therapy that was given and the type of cancer the child had.

The older aggressive treatment regimens with cranial irradiation and higher doses of anthracyclines (such as doxorubicin) caused increased risk of solid tumors, heart failure, growth retardation, and cognitive defects. In types of childhood leukemias with good cure rates (mainly ALL), efforts are continually made to decrease the amount of toxicity caused by chemotherapy and other treatments.
Secondary cancers
Survivors who received treatment for childhood leukemia are at risk for developing a secondary cancer later in life. The risk of acquiring a second cancer is weighed against the benefit of receiving therapy for life-threatening leukemia.
 
Neurological
Survivors of ALL are at risk for various neurocognitive and neuropsychological issues that effect their quality of life. These include issues with attention span, vision, processing speed, memory, growth failure, malnutrition, obesity, reduced fertility, psychiatric problems and early death. All of the latent effects listed impact patients and create a low quality of life. Lower quality of life is directly related to depression and other psychiatric problems.
 
Growth and development
Some childhood leukemia treatments, notably stem cell transplants, can stunt growth. Growth hormone is sometimes given to help with this.
 
Fertility
Fertility may be affected in both boys and girls who receive leukemia treatment.
 
Bone problems
Bone problems or damage may result from glucocorticoids.
 
Emotional
Childhood leukemia is a very taxing disease, on the caregiver and the child. Some emotional issues that survivors have reported include: depression, anxiety, post-traumatic stress disorder, difficulties with interpersonal relationships, poor body image, and schizophrenia among other issues. However, it is unclear if the rates of mental and emotional problems are higher in childhood leukemia survivors than the general population. Regardless, some children may have emotional or psychological issues that may be addressed by doctors, other care team members, parents, and friends.

Epidemiology

Leukemia is the most common cancer in children, accounting for 25-30% of all cancers in children and adolescents. It most commonly is diagnosed in children when they are 1–4 years old. The median age of diagnosis is 6 years old. Childhood leukemia is more common in boys than girls. It is also more frequently diagnosed in white and Hispanic children. The incidence of childhood leukemia has been increasing over time. However, this may be because of increased ability to detect, diagnose, and report the disease, rather than an actual increase in children who are affected.

ALL is the most common type of childhood leukemia, accounting for 75-80% of diagnoses. AML is most commonly is diagnosed in 3-5-year-old children. As with childhood leukemia in general, it is more common in boys than girls and more common in white and Hispanic children.

AML is the second most common type of childhood leukemia, making up most of the remaining diagnoses. It is most commonly diagnosed in children less than 1 year old. Unlike ALL, it occurs equally in boys and girls and occurs equally across racial/ethnic groups.

There are a number of risk factors that have been studied for childhood leukemia. Genetic risk factors include: Down's Syndrome, Fanconi Anemia, damilial monosomy 7, Shwachman–Diamond syndrome, Bloom Syndrome, as well as mutations in specific gene mutations. Besides genetic risk factors, exposure to ionizing radiation is a known risk factor for childhood leukemia. Other factors that may be linked to development of childhood leukemia include: family history of blood cancers, maternal alcohol abuse, parental cigarette use, prior loss of pregnancy in the mother, older age of the mother, high birth weight, low birth weight, exposure to benzene, exposure to pesticides, and infections. However, whether or how much these factors actually contribute to the development of leukemia has yet to be determined and is unclear.

Pharmacoepigenetics

From Wikipedia, the free encyclopedia

Pharmacoepigenetics is an emerging field that studies the underlying epigenetic marking patterns that lead to variation in an individual's response to medical treatment.

Background

Due to genetic heterogeneity, environmental factors, and pathophysiological causes, individuals that exhibit similar disease expression may respond differently to identical drug treatments. Selecting treatments based on factors such as age, body-surface area, weight, gender, or disease stage has been shown to incompletely address this problem, so medical professionals are shifting toward using patient genomic data to select optimal treatments. Now, an increasing amount of evidence shows that epigenetics also plays an important role in determining the safety and efficacy of drug treatment in patients. Epigenetics is a bridge that connects individual genetics and environmental factors to explain some aspects of gene expression. Specifically, environmental factors have the potential to alter one’s epigenetic mechanisms in order to influence the expression of genes. For example, smoking cigarettes can alter the DNA methylation state of genes and thereby expression of genes through different mechanisms.

Epigenetic changes in genes caused by factors such as environment can result in abnormal gene expression and the initiation of diseases. The progression of diseases further alters the epigenetic patterns of the whole genome. While epigenetic changes are generally long lasting, and in some cases permanent, there is still the potential to change the epigenetic state of a gene. Thus, drugs have been developed to target aberrant epigenetic patterns in cells to either activate or suppress the epigenetically modified gene expression gene expression. This is known as epigenetic therapy. Besides being drug targets, epigenetic changes are also used as diagnostic and prognostic indicators to predict disease risk and progression, and this could be beneficial for the improvement of personalized medicine.

The development of the Human Epigenome Project and advances in epigenomics has given rise to a burgeoning field known as pharmacoepigenetics. Pharmacoepigenetics was initially developed to study how epigenetic patterns of drug transporters, drug-metabolizing enzymes, and nuclear receptors affect individuals’ response to the drug. Now, pharmacoepigenetics has an additional focus: the development of therapeutic epidrugs that can make changes to the epigenome in order to lessen the cause or symptoms of a disease in an individual. Even though a large gap still remains between the knowledge of epigenetic modifications on drug metabolism mechanisms and clinical applications, pharmacoepigenetics has become a rapidly growing field that has the potential to play an important role in personalized medicine. 

In order to develop effective epigenetic therapies, it is important to understand the underlying epigenetic mechanisms and the proteins that are involved. Various mechanisms and modifications play a role in epigenetic remodeling and signaling, including DNA methylation, histone modification, covalent modifications, RNA transcripts, microRNAs, mRNA, siRNA, and nucleosome positioning. In particular, scientists have extensively studied the associations of DNA methylation, histone modifications, regulatory microRNA with the development of diseases.

DNA methylation is the most widely studied epigenetic mechanism. Most of them occur at CpG sites. DNA methyltransferase is recruited to the site and adds methyl groups to the cytosine of the CpG dinucleotides. This allows the methyl-CpG binding proteins to bind to the methylated site and cause downregulation of genes. Histone modification is mainly achieved by modifying the N-terminal tails of histones. The mechanisms include acetylation, methylation, phosphorylation, unbiquitination, etc. They affect the compaction of chromatin structure, the accessibility of the DNA, and therefore the transcriptional level of specific genes. 

Additionally, microRNA is a type of noncoding RNA that is responsible for altering gene expression by targeting and marking mRNA transcripts for degradation. Since this process is a posttranscriptional modification, it does not involve changes in DNA sequence. The expression of microRNA is also regulated by other epigenetic mechanisms. Aberrant expression of microRNA facilitates disease development, making them good targets for epigenetic therapies. Epigenetic proteins involved in the regulation of gene transcription fall into three categories-writers, erasers, and readers. Both writers and erasers have enzymatic activity that allows them to covalently modify DNA or histone proteins. Readers have the ability to recognize and bind to specific sites on chromatin to alter epigenetic signatures.

Once the underlying epigenetic mechanisms are understood, it becomes possible to develop new ways to alter epigenetic marks such as "epidrugs", or epigenome editing, which is the overwriting of epigenetic patterns using man-made signals to direct epigenetic proteins to target loci. Furthermore, based on patients' unique epigenetic patterns, medical professionals can more accurately assign a safe and effective treatment including appropriate epigenetic drugs tailored to the patient.

Drug response and metabolism

Individual differences in drug metabolism and response can be partially explained by epigenetic changes. Epigenetic changes in genes that encode drug targets, enzymes, or transport proteins that affect the body's ability to absorb, metabolize, distribute and excrete substances that are foreign to the body (Xenobiotics) can result in changes in one's toxicity levels and drug response. One of the main effects of drug exposure early in life is altered ADME (Absorption, Distribution, Metabolism, and Excretion) gene expression. There is evidence that these genes are controlled by DNA methylation, histone acetylation, and miRNAs.

More needs to be understood about these mechanisms, but the hope is that it can lead to proper drug selection and dosage. Additionally, drug resistance can be acquired through epigenetic mechanisms. This is particularly common in chemotherapy, where cells that develop resistance to treatment continue to divide and survive. Pharmacoepigenetic treatment plans can consist of a single epidrug class or combine several in a unique therapy. The following are the examples of how drug response or metabolism related proteins are regulated by epigenetic mechanisms.

CXCR4 and DNA methylation

CXCR4 is a protein that acts as a coreceptor for the entry of HIV. It has been developed as a drug target for anti-HIV therapy. A study has shown that its expression is dysregulated by abnormal methylation patterns in some cancers. Thus, this could affect the efficiency and drug response to the anti-HIV therapy.

CYP1A1 methylation and histone modification

CYP1A1 is a protein that is well known for its role in chemical compounds and drug metabolism. A study in prostate cancer demonstrated that the protein's regulatory region was under the control of the histone modification H3K4me3, which typically indicates active gene expression in non-cancerous cells. This abnormal methylation typically causes histone modification and changes in chromatin structure at a local level, thus effecting gene expression.

ABCG2 and miRNA

ABCG2 is a protein that is responsible for multidrug resistance in cancer chemotherapy. Increased expression of ABCG2 is found in different drug resistant cancer cell lines and tumor tissues. One of the microRNA modifications changes its gene and protein expression by destabilizing its mRNA.

Epigenetics and human diseases

Epigenetics in cancer

While there is still a lot of work that needs to be done regarding the epigenetic modifications of specific cancers at various steps in tumor development, there is a general understanding of epigenetic modifications in genes that lead to abnormal expression and various types of cancer. These epigenetic biomarkers are being considered in clinical use as a tool to detect disease, classify tumors, and understand drug response to treatments such as target compounds, traditional chemotherapy agents, and epigenetic drugs. Human cancer is generally characterized by hypermethylation of specific promoters, which typically prevents the expression of DNA repair and tumor-suppressing genes, and the loss of DNA methylation on a global scale, which can allow for expression of oncogenes or result in a loss of imprinting. Histone modifications play an important role in the regulation of cellular processes, thus epigenetic changes resulting in changed structure can lead to abnormal transcription, DNA repair and replication. Below are some examples and then an overview of the ways these epigenetic modifications are being targeted.

Targeting epigenetic modifications in cancer

Epigenetic changes are highly present in cancer, therefore it is a good model to assess different ways in which epigenetic drugs can be used to make changes that turn up and turn down gene expression.

Targeting gain-of-function epigenetic mutations

DNA methyltransferase inhibitors are being pursued due to the hypermethylation of tumor suppressor genes and increased DNMTs that have been observed in cancer cells. Introduction of these inhibitors can result in reduced promoter methylation and expression of previously silenced tumor suppressor genes. Azacitidine and decitabine, which incorporate into the DNA and covalently trap the methyltransferases, have been approved by the FDA for myelodysplastic syndrome (a group of cancers where blood cells from the bone marrow do not mature properly into healthy blood cells) treatment and are currently being investigated for other cancers like leukemia. Other types of drugs are being developed like non-nucleoside analogues, which can covalently bind to DNMTs.

Some examples include procaine, hydralazine, and procainimide, but they lack specificity and potency making it hard to test them in clinical trials. DNA methyltranferase inhibitors are usually used at a low level due to their lack of specificity and toxic effects on normal cells. HDAC inhibitors are also being used, due to the changes in histone acetylation and the increased HDACs observed. While the mechanism is still under investigation, it is believed that adding the HDAC inhibitors results in increased histone acetylation and therefore the reactivation of transcription of tumor suppressor genes.

More so, HDACs can also remove acetyl groups from proteins that are not the histone, so it is thought that adding HDAC inhibitors may result in changes in transcription factor activity. There are around 14 different HDAC inhibitors being investigated in clinical trials for haematological and solid tumors, but more research needs to be done on the specificity and mechanisms by which they are inhibiting. Another way to alter epigenetic modifications is through the use of histone methyltransferase inhibitors.

Targeting loss-of-Function epigenetic mutations

Loss of function in genes encoding DNA demethylases or the overexpression of DNA methyltransferases can result in the hypermethylation of DNA promoters. Loss of function of DNA methyltransferases can lead to hypomethylation. Loss of function in chromosome remodeling, DNA repair, and cell cycle regulation genes can lead to uncontrolled growth of cells giving rise to cancer. Histone modification patterns can also lead to changes in genomes that can negatively affect these and other systems, making cancer more likely.

Cells that carry loss-of-function mutations can be targeted by drugs that induce synthetic lethality, a genetic/protein interaction where the loss of one component induces little change, but the loss of both components results in cell death. In cancer cells where one part of the interaction experiences a loss-of-function mutation, the other part can be interrupted by drug treatment to induce cell death in cancerous cells. Synthetic lethality is an attractive treatment option in patients with cancer since it there should be minimal / no effect on healthy cells. 

For example, with SWI/SNF loss of function mutations, DNA replication and repair is negatively affected and can give rise to tumors if cell growth goes unchecked. Mutations of these genes are common causes of cancers. These mutations are not directly targetable, but several synthetic lethal interactions can be exploited by cancer drugs to kill early cancer growth.

Additionally, loss-of-function mutations can be targeted by using the dynamic states of histone modifications. Loss of function mutations in demethylases, such as KDMK6A are common in cancer. By inducing upregulation of methyltransferase inhibitors, the effects of the loss-of-function mutation can be mitigated.

Development of drugs that target or modify epigenetic signatures of target genes is growing, especially as bioinformatic analysis increases our knowledge of the human genome and speeds up the search for synthetic lethal interactions. Most widely used to assess potential synthetic lethal interactions is using siRNA and CRISPR-Cas9 to modify target genes. CRISPRi and CRISPRa technology allows researchers to activate or inactivate target genes.

Lung cancer

In lung cancer the activation of both dominant and recessive oncogenes and inactivation of tumor suppressor genes has been observed. Frequently observed in lung cancer is the methylation of gene promoters that are involved in critical functions like cell-cycle control, repairing DNA, cell adhesion, proliferation, apoptosis, and motility. A few of the common genes frequently observed are APC, CDH1, CDKN2A, MGMT, and RASSF1A (a tumor suppressor). In the cases of CDKN2A and RASSF1A DNA these genes are methylated, resulting in the loss of tumor suppressor genes.

Various strategies such as using drugs like entinostat and azacitidine have been observed in clinical trials of non-small-cell lung carcinoma. The idea being that etinostat, a histone deacetylase inhibitor, can prevent the silencing of genes by allowing them to be accessible to transcription machinery. Azacitidine can be metabolized and incorporated into DNA and then recognized as a substrate for DNA methyltransferases, but since the enzyme is bound the methyltransferase cannot add methylation marks and thus silence crucial genes.

Heart failure

Histone modifications, DNA methylation, and microRNAs have been found to play an important role in heart disease. Previously, histone tail acetylation has been linked to cardiac hypertrophy or abnormal heart muscle thickening that is usually due to an increase in cardiomyocyte size or other cardiac muscle changes. The hypertrophic changes that occur in cardiac muscles cells result from the required acetylation of histone tails via acetyltransferases. In addition to acetyltransferases, histone deacetylases (HDACs) also aid in the regulation of muscle cells. Class II HDACs 5 and 9 inhibit the activity of a factor known as myocyte enhancer factor 2 (MEF2), which unable to bind prevents the expression of genes that produce hypertrophic effects.

Additionally, loci such as PECAM1, AMOTL2 and ARHGAP24 have been seen with different methylation patterns that are correlated with altered gene expression in cardiac tissue.

There are an increasing number of scientific publications that are finding that miRNA plays a key role in various aspects of heart failure. Examples of functions for miRNA include the regulation of the cardiomyocyte cell cycle and regulation of cardiomyocyte cell growth. Knowing the epigenetic modifications allows for the potential use of drugs to modify the epigenetic status of a target sequence. One could possibly target the miRNAs using antagomirs. Antagomirs are single strand RNAs that are complementary, which have been chemically engineered oligonucleotides that silence miRNAs so that they cannot degrade the mRNA that is needed for normal levels of expression. 

DNA methylation of CpGs can lead to a reduction of gene expression, and in some cases this decrease in gene product can contribute to disease. Therefore, in those instances it is important to have potential drugs that can alter the methylation status of the gene and increase expression levels. To increase gene expression, one may try to decrease CpG methylation by using a drug that works as DNA methytransferase inhibitor such as decitabine or 5-aza-2'-deoxycytidine.

On the other hand, some diseases result from a decrease in acetylase activity, which results in a decrease in gene expression. Some studies have shown that inhibiting HDAC activity can attenuate cardiac hypertrophy. trichostatin A and sodium butyrate are two HDAC inhinitors. Trichostatin A is known for its ability to inhibit class I and II HDACs from removing acetylases and decreasing gene expression. Sodium butyrate is another chemical that inhibits class I HDACs, thus resulting in the ability for transcription factors to easily access and express the gene.

Challenges in development of epigenetic therapies

There are a number of challenges with the developing epigenetic therapies for widespread medical use. While laboratory results indicate relationships between genes and potential drug interactions that could mitigate the effects of mutations, the complexity of the human genome and epigenome makes it difficult to develop therapies that are safe, efficient, and consistent. Epigenetic alteration may affect more systems than the target genes, which gives potential for deleterious effects to rise out of treatment. Additionally, epigenetic mutations can be a result of lineage.

As tissue gene expression is largely regulated by epigenetic interactions, certain tissue-specific cancers are difficult to target with epigenetic therapies. Additionally, genes that encode for elements that prevent one type of cancer in a cell, may have altered function in another and lead to another type of cancer. Trying to modify these proteins, such as EZH2, may give rise to other types of cancer. Selectivity is another hurdle in the development of therapies. Since many proteins are structurally similar, especially within the same protein family, Broad-spectrum inhibitors can't always be used since modifying the regulation of one protein may do the same to others in the family.

Based on the differences in these epigenetic patterns, scientists and physicians can further predict the drug response of each patient. One of the most compelling examples is methylation of the tumor suppressor gene at promoter sequence that codes for MGMT. MGMT is a DNA repair protein responsible for transferring methyl groups from O(6)-alkylguanine in DNA to itself to fight against mutagenesis and the buildup of toxic compounds that result from alkylating agents.

Therefore, MGMT is responsible for the repair of areas that have been damaged by toxins. This MGMT promoter region has been found to be highly methylated, and thereby repressed, in patients with various types of cancer. Several drugs such as procarbazine, streptozotocin, BCNU (carmustine), and temozolamide are designed to remodel DNA to reverse this abnormal methylation modification so that MGMT may be normally expressed and repair DNA. The methylation status of the promoter become the best predictor of responses to BCNU and temozolamide in patients with brain cancer.

Epigenetic inhibitors and therapies

Bromodomain and inhibitors (BET inhibitor)

Proteins containing bromodomains recognize and bind acetylated lysine residues in histones, causing chromatin structure modification and a subsequent shift in levels of gene expression. Bromodomain and extra-terminal (BET) proteins bind acetyl groups and work with RNAPII to help with transcription and elongation of chromatin. BET inhibitors have been able to prevent successful interaction between BET proteins and acetylated histones. Using a BET inhibitor can reduce the over expression of bromodomain proteins, which can cause aberrant chromatin remodeling, transcription regulation, and histone acetylation.

Histone acetylase inhibitors

Several studies have shown that histone acetyltransferase (HAT) inhibitors are useful in re-inducing expression of tumor suppression genes by stopping histone acetyltransferase activity to prevent chromatin condensation.

Protein methyltransferase (PMT) inhibitors: PMT's play a key role in methylating lysine and arginine residues to affect transcription levels of genes. It has been suggested that their enzymatic activity plays a role in cancer, as well as neurodegenerative and inflammatory diseases.

Histone deacetylase inhibitors

Using Histone deacetylase (HDAC) inhibitors allows for genes to remain transcriptionally active. HDACi's have been used in various Autoimmune Disorders, such as systemic lupus erythematosus, rheumatoid arthritis, and systemic onset juvenile idiopathic arthritis. They have also proven useful for treating cancer, since they are structurally diverse and only effect 2-10% of expressed genes. Using HDAC Inhibitors for the treatment of psychiatric and neurodegenerative diseases has shown promising results in early studies. Additionally, studies have demonstrated that HDACi are useful in minimizing damage after a stroke, and encouraging angiogenesis and myogenesis in embryonic cells.

DNA methyltransferase inhibitors

One of the common characteristics of various types of cancer is hypermethylation of a tumor suppressing gene. Repression of this methyltransferase action at targeted loci can prevent recurring transfer of methyl groups to these sites and keep them open to transcriptional machinery, allowing more tumor-suppression genes to be made. These drugs are typically cytidine derivatives. These drugs tether DNMT to the DNA and prevent their continued action. Treatments that inhibit DNMT function without attachment to DNA (which can cause toxic effects) show they could be effective treatment options but they are not developed enough to see widespread use.

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...