Search This Blog

Monday, May 27, 2019

Effects of stress on memory

From Wikipedia, the free encyclopedia

The effects of stress on memory include interference with a person's capacity to encode memory and the ability to retrieve information. During times of stress, the body reacts by secreting stress hormones into the bloodstream. Stress can cause acute and chronic changes in certain brain areas which can cause long-term damage. Over-secretion of stress hormones most frequently impairs long-term delayed recall memory, but can enhance short-term, immediate recall memory. This enhancement is particularly relative in emotional memory. In particular, the hippocampus, prefrontal cortex and the amygdala are affected. One class of stress hormone responsible for negatively affecting long-term, delayed recall memory is the glucocorticoids (GCs), the most notable of which is cortisol. Glucocorticoids facilitate and impair the actions of stress in the brain memory process. Cortisol is a known biomarker for stress. Under normal circumstances, the hippocampus regulates the production of cortisol through negative feedback because it has many receptors that are sensitive to these stress hormones. However, an excess of cortisol can impair the ability of the hippocampus to both encode and recall memories. These stress hormones are also hindering the hippocampus from receiving enough energy by diverting glucose levels to surrounding muscles.

Stress affects many memory functions and cognitive functioning of the brain. There are different levels of stress and the high levels can be intrinsic or extrinsic. Intrinsic stress level is triggered by a cognitive challenge whereas extrinsic can be triggered by a condition not related to a cognitive task. Intrinsic stress can be acutely and chronically experienced by a person. The varying effects of stress on performance or stress hormones are often compared to or known as "inverted-u" which induce areas in learning, memory and plasticity. Chronic stress can affect the brain structure and cognition.

Studies considered the effects of stress on both intrinsic and extrinsic memory functions, using for both of them Pavlovian conditioning and spatial learning. In regard to intrinsic memory functions, the study evaluated how stress affected memory functions that was triggered by a learning challenge. In regard to extrinsic stress, the study focused on stress that was not related to cognitive task but was elicited by other situations. The results determined that intrinsic stress was facilitated by memory consolidation process and extrinsic stress was determined to be heterogeneous in regard to memory consolidation. Researchers found that high stress conditions were a good representative of the effect that extrinsic stress can cause on memory functioning. It was also proven that extrinsic stress does affect spatial learning whereas acute extrinsic stress does not.

Physiology

When a stressful situation is encountered, stress hormones are released into the blood stream. Adrenaline is released by the adrenal glands to begin the response in the body. Adrenaline acts as a catalyst for the fight-or-flight response, which is a response of the sympathetic nervous system to encourage the body to react to the apparent stressor. This response causes an increase in heart-rate, blood pressure, and accelerated breathing. The kidneys release glucose, providing energy to combat or flee the stressor. Blood is redirected to the brain and major muscle groups, diverted away from energy consuming bodily functions unrelated to survival at the present time. There are three important axes, the adrenocorticotropic axis, the vasopressin axis and the thyroxine axis, which are responsible for the physiologic response to stress.

Cortisol

Adrenocorticotropic hormone axis

When a receptor within the body senses a stressor, a signal is sent to the anterior hypothalamus. At the reception of the signal, corticotrophin-releasing factor (CRF) acts on the anterior pituitary. The anterior pituitary in turn releases adrenocorticotropic hormone (ACTH). ACTH induces the release of corticosteriods and aldosterone from the adrenal gland. These substances are the main factors responsible for the stress response in humans. Cortisol for example stimulates the mobilization of free fatty acids and proteins and the breakdown of amino acids, and increases serum glucose level and blood pressure, among other effects. On the other hand, aldosterone is responsible for water retention associated with stress. As a result of cells retaining sodium and eliminating potassium, water is retained and blood pressure is increased by increasing the blood volume.

Vasopressin axis

A second physiological response in relation to stress occurs via the vasopressin axis. Vasopressin, also known as antidiuretic hormone (ADH), is synthesized and regulates fluid loss by manipulating the urinary tract. This pathway allows water reabsorption within the body and decreases the amount of water lost through perspiration. ADH has the greatest[greatest among what?] effect on blood pressure within the body. Under normal circumstances, ADH will regulate the blood pressure and increase or decrease the blood volume when needed. However, when stress becomes chronic, homeostatic regulation of blood pressure is lost. Vasopressin is released and causes a static increase in blood pressure. This increase in blood pressure under stressful conditions ensures that muscles receive the oxygen that they need to be active and respond accordingly. If these stressful conditions remain elevated, muscles will become fatigued, resulting in hypertension and in extreme cases can result in death.

Thyroxine axis

The third physiological response results in the release of thyrotropic hormone-release factor (TRF) which results in the release of thyrotropic hormone (TTH). TTH stimulates the release of thyroxine and triiodothyronine from the thyroid. This results in an increased basal metabolic rate (BMR). This effect is not as immediate as the other two, and can take days to weeks to become prevalent.

Chronic stress

Chronic stress is a stressor that is ongoing for a long period of time. When chronic stress is experienced, our body is in a state of continuous physiological arousal. Normally, our body activates our fight-or-flight-response, and when the perceived stress is over our body returns to a state of homeostasis. When chronic stress is perceived, however, the body is in a continuous state of fight-or-flight response and never reaches a state of homeostasis. The physiological effects of chronic stress can negatively affect memory and learning. One study used rats to show the effects of chronic stress on memory by exposing them to a cat for five weeks and being randomly assigned to a different group each day. Their stress was measured in a naturalistic setting by observing their open field behaviour, and the effect on memory was estimated using the radial arm water maze (RAWM). In the RAWM, rats are taught the place of a platform that is placed below the surface of the water. They must recall this later to discover the platform to exit the water. It was found that the rats exposed to chronic psychosocial stress could not learn to adapt to new situations and environments, and had impaired memory on the RAWM.

Chronic stress affects a person's cognitive functioning differently for normal subjects versus subjects with mild cognitive impairment. Chronic stress and elevated cortisol (a biomarker for stress) has been known to lead to dementia in elderly people. A longitudinal study was performed which included 61 cognitively normal people and 41 people who suffered from mild cognitive impairment. The participants were between 65 and 97 years old. 52 of the participants were followed for three years and repeatedly received stress and cognitive test assessments. Any patient that suffered from signs or conditions that would affect their cortisol level or cognitive functioning was exempt from participating.

In general, higher event based stress was associated with more rapid cognitive impairment. However, participants with greater cortisol levels showed signs of slower decline. Neither of these effects held for the non-cognitively-impaired group.

Acute stress

Acute stress is a stressor that is an immediate perceived threat. Unlike chronic stress, acute stress is not ongoing and the physiological arousal associated with acute stress is not nearly as demanding. There are mixed findings on the effects of acute stress on memory. One view is that acute stress can impair memory, while others believe that acute stress can actually enhance memory. Several studies have shown that stress and glucocorticoids enhance memory formation while they impair memory retrieval. For acute stress to enhance memory certain circumstances must be met. First, the context in which the stress is being perceived must match the context of the information or material being encoded. Second, the brain regions involved in the retrieval of the memory must match the regions targeted by glucocorticoids. There are also differences in the type of information being remembered or being forgotten while being exposed to acute stress. In some cases neutral stimuli tend to be remembered, while emotionally charged (salient) stimuli tend to be forgotten. In other cases the opposite effect is obtained. What seems to be an important factor in determining what will be impaired and what will be enhanced is the timing of the perceived stressful exposure and the timing of the retrieval. For emotionally salient information to be remembered, the perceived stress must be induced before encoding, and retrieval must follow shortly afterwards. In contrast, for emotionally charged stimuli to be forgotten, the stressful exposure must be after encoding and retrieval must follow after a longer delay.

If stressful information is relatable to a person, the event more prone to be stored in permanent memory. When a person is under stress, the sympathetic system will shift to a constantly (tonically) active state. To further study how acute stress affect memory formation, a study would appropriate to add examine. Acute stress exposure induces the activation of different hormonal and neurotransmitters which effect the memory's working processes.

A study published in 2009 tested eighteen young healthy males between 19 and 31 years old. All participants were right-handed and had no history of a head injury, or of any medication that could affect a person central nervous system or endocrine system. All of the volunteers participated in two different sessions a month apart. The study consisted on the participants viewing movie clips and pictures that belonged to two different categories: neutral or negative. The participants had to memorize then rate each movie clip or picture by pressing a button with their right hand. They were also monitored in other areas such as their heart rate, pupil diameter, and stress measures by collection of saliva throughout the experiment. The participants mood was assessed by using the Positive and Negative Affect Schedule.

The results from the study confirmed that there were physiological measures in regard to stress induction. The participant's heart rate was elevated and pupil dilation was decreased when viewing the pictures. The study also showed psychological measures that proved that stress induction did cause an increase in subjective stress. In regard to memory enhancement, participants that were shown a stressful picture, often remembered them a day later, which is in accordance with the theory that negative incidents have lasting effects on our memory.

Acute stress can also affect a person's neural correlates which interfere with the memory formation. During a stressful time, a person's attention and emotional state may be affected, which could hinder the ability to focus while processing an image. Stress can also enhance the neural state of memory formation.

Short-term memory

Short-term memory (STM) is the ability to store small amounts of information for a limited amount of time. The Miller's Law that the capacity of an average person's STM is 7±2 objects, and lasts for a matter of seconds. This means that when given a series of items to remember, most people can remember 5-9 of those items, the average being 7. However, this limit can be increased by rehearsing the information. Information in STM can be transferred to long-term memory (LTM) by rehearsal and association with other information previously stored in LTM. Most of the research on stress and memory has been done on working memory (WM), as opposed to STM.

Working memory

Working memory (WM), similar to STM, is the ability to temporarily store information in order to manipulate it for performing complex tasks, such as reasoning. WM is affected to a greater extent by stress than LTM. Stress has been shown to both improve and impair WM. In a study by Duncko et al., the positive effect of stress manifested itself as a decreased reaction time in participants, while the negative effect of stress causes more false alarms and mistakes when compared to a normal condition. The researchers hypothesize that this could be representative of faster information processing, something helpful in a threatening situation. Anxiety has also been shown to adversely affect some of the components of WM, those being the phonological loop, the visuo-spatial sketchpad, and the central executive. The phonological loop is used for auditory STM, the visuo-spatial sketchpad is used for visual and spatial STM, and the central executive links and controls these systems. The disruption of these components impairs the transfer of information from WM to LTM, thus affecting learning. For instance, several studies have demonstrated that acute stress can impair working memory processing likely though reduced neural activity in the prefrontal cortex in both monkeys and humans.

Long-term memory

Long-term memory (LTM) is the ability to store an unlimited amount of information over long periods of time, ranging from a few days to many years. 

Less is known about the effect of stress on LTM than is known about the effect of stress on STM. This could be due to the fact that LTM is not affected as severely as STM and WM are, and is also influenced by the effect of stress on STM and WM.

The major effect of stress on LTM is that it improves consolidation of memory, while it impairs the retrieval of memory. That is, one will be able to remember information relating to a stressful situation after the fact, but while in a stressful situation it is hard to recall specific information. In a study by Park et al. done on rats, the researchers found that shock induced stress caused the rats to forget what they learned in the phase prior to the shock, but to have distinct memory for where the shock occurred. This negative effect on the retrieval of memories caused by stress can be attributed to cortisol, the stress hormone that is released in stressful situations. A study by Marin et al. demonstrated that stress enhances recall of information reviewed prior to the stressful situation, and that this effect is long lasting.

Explicit memory

The human hippocampus
 
Explicit memory, or declarative memory, is the intentional recall of past events or learned information and is a discipline of LTM. Explicit memory includes memory for remembering a specific event, such as dinner the week prior, or information about the world, such as the definition for explicit memory. When an anxious state is provoked, percentage recall on explicit memory tasks is enhanced. However, this effect is only present for emotionally associated words. Stress hormones influence the processes carried out in the hippocampus and amygdala which are also associated with emotional responses. Thus, emotional memories are enhanced when stress is induced, as they are both associated with the same areas of the brain, whereas neutral stimuli and stress are not. However, enhancement of explicit memory depends on the time of day. Explicit memory is enhanced by stress when assessed in the afternoon, but impaired when assessed in the morning. Basal cortisol levels are relatively low in the afternoon and much higher in the morning, which can alter the interaction and effects of stress hormones.

Implicit memory

Implicit memory, or more precisely procedural memory, is memory of information without conscious awareness or ability to verbalize the process, and is also a discipline of LTM. There are three types of implicit memory, which are: conditioning (emotional behavior), tasks and priming (verbal behavior). For example, the process of riding a bicycle cannot be verbalized, but the action can still be executed. When implicit memory is assessed in tandem with stressful cues there is no change in procedural recall.

Autobiographical memory

Autobiographical memory is personal episodic memory of self-related information and specific events. Stress tends to impair the accuracy of autobiographical memories, but does not impair the frequency or confidence in them. After exposure to an emotional and stressful negative event, flashback memories can be evident. However, the more flashback memories present, the less accurate the autobiographical memory. Both aspects of autobiographical memory, episodic memory, the memory system regarding specific events, and semantic memory, the memory system regarding general information about the world, are impaired by an event that induces a stressful response. This causes the recall of an experience of a specific event and the information about the event to be recalled less accurately.

Autobiographical memory, however, is not impaired on a continual decline from the first recall of the information when anxiety is induced. At first recall attempt, the memory is fairly accurate. The impairment begins when reconsolidation is present, such that the more times the memory is brought to conscious awareness, the less accurate it will become. When stress is induced the memory will be susceptible to other influences, such as suggestions from other people, or emotions unrelated to the event but present during recall. Therefore, stress at the encoding of an event positively influences memory, but stress at the time of recollection impairs memory.

Attention

Attention is the process by which a concentration is focused on a point of interest, such as an event or physical stimulus. It is theorized that attention toward a stimulus will increase ability to recall information, therefore enhancing memory. When threatening information or a stimulus that provokes anxiety are present, it is difficult to release attention from the negative cue. When in a state of high anxiety, a conceptual memory bias is produced toward the negative stimulus. Therefore, it is difficult to redirect the attention focus away from the negative, anxiety provoking cue. This increases the activation of the pathways associated with the threatening cues, and thus increases the ability to recall the information present while in a high anxious state. However, when in a high anxious state and presented with positive information, there is no memory bias produced. This occurs because it is not as difficult to redirect attention from the positive stimulus as it is from the negative stimulus. This is due to the fact that the negative cue is perceived as a factor in the induced stress, whereas the positive cue is not.

Learning

Learning is the modification of behaviour by experience. For example, learning to avoid certain stimuli such as a tornadoes, thunderstorms, large animals, and toxic chemicals, because they can be harmful. This is classified as aversion conditioning, and is related to fear responses.

Fear response

An anxious state at the time of learning can create a stronger aversion to the stimuli. A stronger aversion can lead to stronger associations in memory between the stimulus and response, therefore enhancing the memory of the response to the stimulus. When extinction is attempted in male and female humans, compared to a neutral control without anxiety, extinction does not occur. This suggests that memory is enhanced for learning, specifically fear learning, when anxiety is present.

Reversal learning

Conversely, reversal learning is inhibited by the presence of anxiety. Reversal learning is assessed through the reversal learning task; a stimulus and response relationship is learned through the trial and error method and then without notice, the relationship is reversed, examining the role of cognitive flexibility. Inhibited reversal learning can be associated with the idea that subjects experiencing symptoms of anxiety frustrate easily and are unable to successfully adapt to a changing environment. Thus, anxiety can negatively affect learning when the stimulus and response relationship are reversed or altered.

Stress, memory and animals

Simple radial arm maze
 
Much of the research relating to stress and memory has been conducted on animals and can be generalized to humans. One type of stress that is not easily translatable to humans is predator stress: the anxiety an animal experiences when in the presence of a predator. In studies, stress is induced by introducing a predator to a subject either before the learning phase or between the learning phase and the testing phase. Memory is measured by various tests, such as the radial arm water maze (RAWM). In the RAWM, rats are taught the location of a hidden platform and must recall this information later on to find the platform and get out of the water.

Short-term memory

Predator Stress has been shown to impair STM. It has been determined that this effect on STM is not due to the fact that a predator is a novel and arousing stimulus, but rather because of the fear that is provoked in the test subjects by the predator.

Long-term memory

Predator stress has been shown to increase LTM. In a study done by Sundata et al. on snails, it was shown that when trained in the presence of a predator, snails' memory persisted for at least 24 hours in adults, while it usually lasts only 3 hours. Juvenile snails, who usually do not have any LTM showed signs of LTM after exposure to a predator.

Classical conditioning

Predator stress has been shown to improve classical conditioning in males and hinder it in females. A study done by Maeng et al. demonstrated that stress allowed faster classical conditioning of male rats while disrupting the same type of learning in female rats. These gender differences were shown to be caused by the medial prefrontal cortex (mPFC). When the researchers inactivated that brain region by administering muscimol to the females, no gender differences in classical conditioning were observed 24 hours later. Inactivating the mPFC in the male rats did not prevent the enhanced conditioning that the males previously exhibited. This discrepancy between genders has also been shown to be present in humans. In a 2005 study, Jackson et al. reported that stress enhanced classical conditioning in human males and impaired classical condition in human females.

Anxiety disorders

Post-traumatic stress disorder

Post-traumatic stress disorder (PTSD) is an anxiety disorder that can occur after exposure to horrific events, or after a terrifying ordeal where there is immense physical harm that directly or indirectly affects a person. When the memories of these traumas do not subside, a person may begin to avoid anything that would cause them to relive these events. When this persists over an extended period of time, one may be said to be suffering from PTSD. Examples of events that could lead to the onset of PTSD are war, rape, assault, and childhood neglect. It is estimated that approximately 8% of American may suffer from this disease which can lead to long-term problems.

Shell shocked soldiers
 
Symptoms include persistent frightened thoughts and memories of the trauma or ordeal and emotional numbness. The individual may experience sleeping problems, be easily startled, or experience feelings of detachment or numbness. Sufferers may experience depression and/or display self-destructive behaviours. 

There are three categories of symptoms associated with PTSD:
  • Re-living the event: Through recurring nightmares or images that bring back memories of the events. When people re-live the event they become panicked, and they may have physical and emotional chills or heart palpitations.
  • Avoiding reminders: Avoiding reminders of the events, including places, people, thoughts or other activities relating to the specific event. Withdrawal from family and friends and loss of interest in activities may occur from PTSD
  • Being on guard: Symptoms also include an inability to relax, feelings of irritability or sudden anger, sleeping problems, and being easily startled.
The most effective treatments for PTSD are psychotherapy, medication, and in some circumstance both. Effective psychotherapy involves helping the individual with managing the symptoms, coping with the traumatic event, and working through the traumatic experiences. Medications such as antidepressants has proven to be an effective way to block the effects of stress and to also promote neurogenesis. The medication phenytoin can also block stress caused to the hippocampus with the help of modulation of excitatory amino acids. Preliminary findings indicate that cortisol may be helpful to reduce traumatic memory in PTSD.

PTSD affects memory recall and accuracy. The more the traumatic event is brought to conscious awareness and recalled, the less accurate the memory. PTSD affects the verbal memory of the traumatic event, but does not affect the memory in general. One of the ways traumatic stress affects individuals is that the traumatic event tends to disrupt the stream of memories people obtain through life, creating memories that do not blend in with the rest. This has the effect of creating a split in identity as the person now has good memories they can attribute to one personality and bad memories the can attribute to the "other" personality. For example, a victim of childhood abuse can group their good and happy experiences under the "pleasant" personality and their abuse experiences under one "bad or wicked" personality. This then creates a split personality disorder. Individuals suffering from post traumatic stress disorder often have difficulty remembering facts, appointments and autobiographical details. The traumatic event can result in psychogenic amnesia and in the occurrence of intrusive recollections of the event. Children with PTSD have deficits in cognitive processes essential for learning; their memory systems also under-performs those of normal children. A study using the Rivermead Behavioural Memory Test showed that individuals with PTSD scored lower than controls on the memory test, indicating a poorer general knowledge. The study revealed that 78% of PTSD patients under-performed, and where in the categories labelled "poor memory" or "impaired memory". PTSD patients were specifically worse at the prospective and orientation items on the Rivermead Behavioural Memory Test.

A few studies done in the past proved that PTSD can cause cognition and brain structure changes that involve verbal declarative memory deficits. Children that have experienced child abuse may according to neuropsychological testing experience a deficit in verbal declarative memory functioning.

Studies have been conducted on people that were involved in the Vietnam War or the Holocaust, returning Iraq soldiers and people that also suffered from rape and childhood abuse. Different tests were administered such as the Selective Reminding Test, Verbal Learning Test, Paired Associate Recall, the California Verbal New Learning Test, and the Rivermead Behavioral Memory Test. The test results showed that the returning Iraq soldiers did have less verbal memory performance as compared to pre-deployment.

The studies performed on the Vietnam veterans that suffer from PTSD show that there are hippocampal changes in the brain associated with this disorder. The veterans with PTSD showed an 8% reduction in their right hippocampal volume. The patients that suffered from child abuse showed a 12% reduction in their mean left hippocampal volume. Several of the studies has also shown that people with PTSD have deficits while performing verbal declarative memory task in their hippicampal.

PTSD can affect several parts of the brain such as the amygdala, hippocampus, and the prefrontal cortex. The amygdala controls our memory and emotional processing; the hippocampus helps with organizing, storing and memory forming. Hippocampus is the most sensitive area to stress. The prefrontal cortex helps with our expression and personality and helps regulate complex cognitive and our behavior functions.

Social anxiety disorder

Social anxiety disorder is an anxiety disorder consisting of overwhelming anxiety and excessive self-consciousness in everyday social situations. It is an extreme fear of being scrutinized and judged by others in social and/or performance situations. This fear about a situation can become so severe that it affects work, school, and other typical activities. Social anxiety can be related to one situation (such as talking to people) or it can be much more broad, where a person experiences anxiety around everyone except family members. 

People with social anxiety disorder have a constant, chronic fear of being watched and judged by peers and strangers, and of doing something that will embarrass them. People that suffer from this may physically feel sick from the situation, even when the situation is non-threatening. Physical symptoms of the disorder include blushing, profuse sweating, trembling, nausea or abdominal distress, rapid heartbeat, shortness of breath, dizziness or lightheadedness, headaches, and feelings of detachment. Development of low self-esteem, poor social skills, and trouble being assertive are also common signs of social anxiety disorder.

Social anxiety disorder can be treated with many different types of therapy and medication. Exposure therapy is an effective method of treating social anxiety. In exposure therapy a patient is presented with situations that they are afraid of, gradually building up to facing the situation that the patient fears most. This type of therapy helps the patient learn new techniques to cope with different situations that they fear. Role-playing has proven effective for the treatment or social anxiety. Role-playing therapy helps to boost individuals' confidence relating to other people and helps increase social skills. Medication is another effective method for treating social anxiety. Antidepressants, beta blockers, and anti-anxiety medications are the most commonly prescribed types of medication to treat social anxiety. Moreover, there are new approaches to treat phobias and enhance exposure therapy with glucocorticoids.

Social phobics display a tendency to recall negative emotions about a situation when asked to recall the event. Their emotions typically revolve around themselves, with no recollection of other people's environments. Social anxiety results in negative aspects of the event to be remembered, leading to a biased opinion of the situation from the perspective of the social phobic compared to the non-social phobic. Social phobics typically displayed better recall than control participants. However, individuals with social anxiety recalled angry faces rather than happy or neutral faces better than control participants.

Obsessive-compulsive disorder

Obsessive-compulsive disorder (OCD) involves both obsessions and compulsions that disrupt daily routines and activities. The obsessions include recurrent unwanted thoughts that cause compulsions, including repetitive behaviors. Individuals that suffer from OCD may realize that their obsessions are not normal and try to stop their actions, but this only increases the person's anxiety towards the situation, and has an adverse effect. OCD often revolves around themes in one's life; for example, fear of coming in contact with germs (obsession). To deal with the fear of germs one may compulsively wash their hands until they are chapped. OCD is a constituent of many other disorders including autism, Tourette's syndrome, and frontal lobe lesions.

A person that shows a constant need to complete a certain "ritual", or is constantly plagued with unwelcome thoughts, may suffer from OCD. Themes of obsessions include fear of germs or dirt, having things orderly and symmetrical, and sexual thoughts and images. Signs of obsessions:
  • fear of shaking hands with others, or touching items others have touched;
  • skin conditions due to excessive washing of one's hands;
  • stress when items are not orderly or neat;
  • replaying pornographic images in one's head.
Compulsions follow the theme of the obsessions, and are repetitive behaviors that individuals suffering from OCD feel will diminish the effect of the obsession. Compulsions also follow the theme, including hand washing, cleaning, performing actions repeatedly, or extreme orderliness.

Signs of compulsions:
  • washing hands until skin is damaged;
  • arranging food items so that everything faces the same way;
  • checking locks repeatedly to make sure everything is locked;
Behavior therapy has proven to be an effective method for treating OCD. Patients are exposed to the theme that is typically avoided, while being restricted from performing their usual anxiety reducing rituals. Behavior therapy rarely eliminates OCD, but it helps to reduce the signs and symptoms. With medication, this reduction of the disorder is even more evident. Antidepressants are usually the first prescribed medication to a patient with OCD. Medications that treat OCD typically inhibit the reuptake of serotonin.

Obsessive-compulsive individuals have difficulty forgetting unwanted thoughts. When they encode this information into memory they encode it as a neutral or positive thought. This is inconsistent with what a person without OCD would think about this thought, leading the individual with OCD to continue displaying their specific "ritual" to help deal with their anxiety. When asked to forget information they have encoded, OCD patients have difficulty forgetting what they are told to forget only when the subject is negative. Individuals not affected by OCD do not show this tendency. Researchers have proposed a general deficit hypothesis for memory related problems in OCD. There are limited studies investigating this hypothesis. These studies propose that memory is enhanced for menacing events that have occurred during the individuals life. For example, a study demonstrated that individuals with OCD exhibit exceptional recall for previously encountered events, but only when the event promoted anxiety in the individual.

Stress (biology)

From Wikipedia, the free encyclopedia

Stress, either physiological or biological, is an organism's response to a stressor such as an environmental condition. Stress is the body's method of reacting to a condition such as a threat, challenge or physical and psychological barrier. Stimuli that alter an organism's environment are responded to by multiple systems in the body. The autonomic nervous system and hypothalamic-pituitary-adrenal (HPA) axis are two major systems that respond to stress.

The sympathoadrenal medullary (SAM) axis may activate the fight-or-flight response through the sympathetic nervous system, which dedicates energy to more relevant bodily systems to acute adaptation to stress, while the parasympathetic nervous system returns the body to homeostasis. The second major physiological stress, the HPA axis regulates the release of cortisol, which influences many bodily functions such as metabolic, psychological and immunological functions. The SAM and HPA axes are regulated by several brain regions, including the limbic system, prefrontal cortex, amygdala, hypothalamus, and stria terminalis.

Through these mechanisms, stress can alter memory functions, reward, immune function, metabolism and susceptibility to diseases. Definitions of stress differ. One system suggests there are five types of stress labeled "acute time-limited stressors", "brief naturalistic stressors", "stressful event sequences", "chronic stressors", and "distant stressors". An acute time-limited stressor involves a short-term challenge, while a brief natural stressor involves an event that is normal but nevertheless challenging. A stressful event sequence is a stressor that occurs, and then continues to yield stress into the immediate future. A chronic stressor involves exposure to a long-term stressor, and a distant stressor is a stressor that is not immediate.

Overview

Stress and illness may have intersecting components. Several studies indicate such a link, while theories of the stress–illness link suggest that both acute and chronic stress can cause illness, and lead to changes in behavior and in physiology. Behavioral changes can include smoking, and changes in eating habits and physical activity. Physiological changes can include changes in sympathetic activation or HPA activity, and immunological function. However, there is much variability in the link between stress and illness.

The HPA axis regulates many bodily functions, both behavioral and physiological, through the release of glucocorticoid hormones. The HPA axis activity varies according to the circadian rhythm, with a spike in the morning. The axis involves the release of corticotropin releasing hormone and vasopressin from the hypothalamus which stimulates the pituitary to secrete ACTH. ACTH may then stimulate the adrenal glands to secrete cortisol. The HPA axis is subject to negative feedback regulation as well.

The release of CRH and VP are regulated by descending glutaminergic and GABAergic pathways from the amygdala, as well as noradrenergic projections. Increased cortisol usually acts to increase blood glucose, blood pressure, and surpasses lysosomal, and immunological activity. Under other circumstances the activity may differ. Increased cortisol also favors habit based learning, by favoring memory consolidation of emotional memories.

Selye demonstrated that stress decreases adaptability of an organism and proposed to describe the adaptability as a special resource, adaptation energy. One study considered adaptation energy as an internal coordinate on the "dominant path" in the model of adaptation. Stress can make the individual more susceptible to physical illnesses like the common cold. Stressful events, such as job changes, may result in insomnia, impaired sleeping, and physical and psychological health complaints.

Research indicates the type of stressor (whether it is acute or chronic) and individual characteristics such as age and physical well-being before the onset of the stressor can combine to determine the effect of stress on an individual. An individual's personality characteristics (such as level of neuroticism), genetics, and childhood experiences with major stressors and traumas may also dictate their response to stressors.

Psychology

Chronic stress and a lack of coping resources available or used by an individual can often lead to the development of psychological issues such as delusions, depression and anxiety (see below for further information). This is particularly true regarding chronic stressors. These are stressors that may not be as intense as an acute stressor like a natural disaster or a major accident, but they persist over longer periods of time. These types of stressors tend to have a more negative effect on health because they are sustained and thus require the body's physiological response to occur daily.

This depletes the body's energy more quickly and usually occurs over long periods of time, especially when these microstressors cannot be avoided (i.e. stress of living in a dangerous neighborhood). See allostatic load for further discussion of the biological process by which chronic stress may affect the body. For example, studies have found that caregivers, particularly those of dementia patients, have higher levels of depression and slightly worse physical health than non-caregivers.

When humans are under chronic stress, permanent changes in their physiological, emotional, and behavioral responses may occur. Chronic stress can include events such as caring for a spouse with dementia, or may result from brief focal events that have long term effects, such as experiencing a sexual assault. Studies have also shown that psychological stress may directly contribute to the disproportionately high rates of coronary heart disease morbidity and mortality and its etiologic risk factors. Specifically, acute and chronic stress have been shown to raise serum lipids and are associated with clinical coronary events.

However, it is possible for individuals to exhibit hardiness—a term referring to the ability to be both chronically stressed and healthy. Even though psychological stress is often connected with illness or disease, most healthy individuals can still remain disease-free after being confronted with chronic stressful events. This suggests that there are individual differences in vulnerability to the potential pathogenic effects of stress; individual differences in vulnerability arise due to both genetic and psychological factors. In addition, the age at which the stress is experienced can dictate its effect on health. Research suggests chronic stress at a young age can have lifelong effects on the biological, psychological, and behavioral responses to stress later in life.

Etymology and historical usage

The term "stress" had none of its contemporary connotations before the 1920s. It is a form of the Middle English destresse, derived via Old French from the Latin stringere, "to draw tight". The word had long been in use in physics to refer to the internal distribution of a force exerted on a material body, resulting in strain. In the 1920s and '30s, biological and psychological circles occasionally used the term to refer to a mental strain or to a harmful environmental agent that could cause illness.

Walter Cannon used it in 1926 to refer to external factors that disrupted what he called homeostasis. But "...stress as an explanation of lived experience is absent from both lay and expert life narratives before the 1930s". Physiological stress represents a wide range of physical responses that occur as a direct effect of a stressor causing an upset in the homeostasis of the body. Upon immediate disruption of either psychological or physical equilibrium the body responds by stimulating the nervous, endocrine, and immune systems. The reaction of these systems causes a number of physical changes that have both short- and long-term effects on the body.

The Holmes and Rahe stress scale was developed as a method of assessing the risk of disease from life changes. The scale lists both positive and negative changes that elicit stress. These include things such as a major holiday or marriage, or death of a spouse and firing from a job.

Biological need for equilibrium

Homeostasis is a concept central to the idea of stress. In biology, most biochemical processes strive to maintain equilibrium (homeostasis), a steady state that exists more as an ideal and less as an achievable condition. Environmental factors, internal or external stimuli, continually disrupt homeostasis; an organism's present condition is a state of constant flux moving about a homeostatic point that is that organism's optimal condition for living. Factors causing an organism's condition to diverge too far from homeostasis can be experienced as stress. A life-threatening situation such as a major physical trauma or prolonged starvation can greatly disrupt homeostasis. On the other hand, an organism's attempt at restoring conditions back to or near homeostasis, often consuming energy and natural resources, can also be interpreted as stress.

The ambiguity in defining this phenomenon was first recognized by Hans Selye (1907–1982) in 1926. In 1951 a commentator loosely summarized Selye's view of stress as something that "...in addition to being itself, was also the cause of itself, and the result of itself".

First to use the term in a biological context, Selye continued to define stress as "the non-specific response of the body to any demand placed upon it". As of 2011 neuroscientists such as Bruce McEwen and Jaap Koolhaas believe that stress, based on years of empirical research, "should be restricted to conditions where an environmental demand exceeds the natural regulatory capacity of an organism".

Biological background

Stress can have many profound effects on the human biological systems. Biology primarily attempts to explain major concepts of stress using a stimulus-response paradigm, broadly comparable to how a psychobiological sensory system operates. The central nervous system (brain and spinal cord) plays a crucial role in the body's stress-related mechanisms. Whether one should interpret these mechanisms as the body's response to a stressor or embody the act of stress itself is part of the ambiguity in defining what exactly stress is.

The central nervous system works closely with the body's endocrine system to regulate these mechanisms. The sympathetic nervous system becomes primarily active during a stress response, regulating many of the body's physiological functions in ways that ought to make an organism more adaptive to its environment. Below there follows a brief biological background of neuroanatomy and neurochemistry and how they relate to stress.

Stress, either severe, acute stress or chronic low-grade stress may induce abnormalities in three principal regulatory systems in the body: serotonin systems, catecholamine systems, and the hypothalamic-pituitary-adrenocortical axis. Aggressive behavior has also been associated with abnormalities in these systems.

Biology of stress

rotating human brain with various parts highlighted in different colors
Human brain:
hypothalamus =     
amygdala =     
hippocampus/fornix =     
pons=     
pituitary gland=     

The brain endocrine interactions are relevant in the translation of stress into physiological and psychological changes. The autonomic nervous system (ANS), as mentioned above, plays an important role in translating stress into a response. The ANS responds reflexively to both physical stressors (for example baroreception), and to higher level inputs from the brain.

The ANS is composed of the parasympathetic nervous system and sympathetic nervous system, two branches that are both tonically active with opposing activities. The ANS directly innervates tissue through the postganglionic nerves, which is controlled by preganglionic neurons originating in the intermediolateral cell column. The ANS receives inputs from the medulla, hypothalamus, limbic system, prefrontal cortex, midbrain and monoamine nuclei.

The activity of the sympathetic nervous system drives what is called the "fight or flight" response. The fight or flight response to emergency or stress involves mydriasis, increased heart rate and force contraction, vasoconstriction, bronchodilation, glycogenolysis, gluconeogenesis, lipolysis, sweating, decreased motility of the digestive system, secretion of the epinephrine and cortisol from the adrenal medulla, and relaxation of the bladder wall. The parasympathetic nervous response, "rest and digest", involves return to maintaining homeostasis, and involves miosis, bronchoconstriction, increased activity of the digestive system, and contraction of the bladder walls. Complex relationships between protective and vulnerability factors on the effect of childhood home stress on psychological illness, cardiovascular illness and adaption have been observed. ANS related mechanisms are thought to contribute to increased risk of cardiovascular disease after major stressful events.

The HPA axis is a neuroendocrine system that mediates a stress response. Neurons in the hypothalamus, particularly the paraventricular nucleus, release vasopressin and corticotropin releasing hormone, which travel through the hypophysial portal vessel where they travel to and bind to the corticotropin-releasing hormone receptor on the anterior pituitary gland. Multiple CRH peptides have been identified, and receptors have been identified on multiple areas of the brain, including the amygdala. CRH is the main regulatory molecule of the release of ACTH.

The secretion of ACTH into systemic circulation allows it to bind to and activate Melanocortin receptor, where it stimulates the release of steroid hormones. Steroid hormones bind to glucocorticoid receptors in the brain, providing negative feedback by reducing ACTH release. Some evidence supports a second long term feedback that is non-sensitive to cortisol secretion. The PVN of the hypothalamus receives inputs from the nucleus of the solitary tract, and lamina terminalis. Through these inputs, it receives and can respond to changes in blood.

The PVN innervation from the brain stem nuclei, particularly the noradrenergic nuclei stimulate CRH release. Other regions of the hypothalamus both directly and indirectly inhibit HPA axis activity. Hypothalamic neurons involved in regulating energy balance also influence HPA axis activity through the release of neurotransmitters such as neuropeptide Y, which stimulates HPA axis activity. Generally, the amygdala stimulates, and the prefrontal cortex and hippocampus attenuate, HPA axis activity; however, complex relationships do exist between the regions.

The immune system may be heavily influenced by stress. The sympathetic nervous system innervates various immunological structures, such as bone marrow and the spleen, allowing for it to regulate immune function. The adrenergic substances released by the sympathetic nervous system can also bind to and influence various immunological cells, further providing a connection between the systems. The HPA axis ultimately results in the release of cortisol, which generally has immunosuppressive effects. However, the effect of stress on the immune system is disputed, and various models have been proposed in an attempt to account for both the supposedly "immunodeficiency" linked diseases and diseases involving hyper activation of the immune system. One model proposed to account for this suggests a push towards an imbalance of cellular immunity(Th1) and humoral immunity(Th2). The proposed imbalance involved hyperactivity of the Th2 system leading to some forms of immune hypersensitivity, while also increasing risk of some illnesses associated with decreased immune system function, such as infection and cancer.

Effects of chronic stress

Chronic stress is a term sometimes used to differentiate it from acute stress. Definitions differ, and may be along the lines of continual activation of the stress response, stress that causes an allostatic shift in bodily functions, or just as "prolonged stress". For example, results of one study demonstrated that individuals who reported relationship conflict lasting one month or longer have a greater risk of developing illness and show slower wound healing. Similarly, the effects that acute stressors have on the immune system may be increased when there is perceived stress and/or anxiety due to other events. For example, students who are taking exams show weaker immune responses if they also report stress due to daily hassles. While responses to acute stressors typically do not impose a health burden on young, healthy individuals, chronic stress in older or unhealthy individuals may have long-term effects that are detrimental to health.

Immunological

Acute time-limited stressors, or stressors that lasted less than two hours, results in an up regulation of natural immunity and down regulation of specific immunity. This type of stress saw in increase in granulocytes, natural killer cells, IgA, Interleukin 6, and an increase in cell cytotoxicity. Brief naturalistic stressors elicit a shift from Th1(cellular) to Th2(humoral) immunity, while decreased T-cell proliferation, and natural killer cell cytotoxicity. Stressful event sequences did not elicit a consistent immune response; however, some observations such as decreased T-Cell proliferation and cytotoxicity, increase or decrease in natural killer cell cytotoxicity, and an increase in mitogen PHA. Chronic stress elicited a shift toward Th2 immunity, as well as decreased interleukin 2, T cell proliferation, and antibody response to the influenza vaccine. Distant stressors did not consistently elicit a change in immune function.

Infectious

Some studies have observed increased risk of upper respiratory tract infection during chronic life stress. In patients with HIV, increased life stress and cortisol was associated with poorer progression of HIV.

Chronic disease

A link has been suggested between chronic stress and cardiovascular disease. Stress appears to play a role in hypertension, and may further predispose people to other conditions associated with hypertension. Stress may also precipitate a more serious, or relapse into abuse of alcohol. Stress may also contribute to aging and chronic diseases in aging, such as depression and metabolic disorders.

The immune system also plays a role in stress and the early stages of wound healing. It is responsible for preparing the tissue for repair and promoting recruitment of certain cells to the wound area. Consistent with the fact that stress alters the production of cytokines, Graham et al. found that chronic stress associated with care giving for a person with Alzheimer's disease leads to delayed wound healing. Results indicated that biopsy wounds healed 25% more slowly in the chronically stressed group, or those caring for a person with Alzheimer's disease.

Development

Chronic stress has also been shown to impair developmental growth in children by lowering the pituitary gland's production of growth hormone, as in children associated with a home environment involving serious marital discord, alcoholism, or child abuse.

More generally, prenatal life, infancy, childhood, and adolescence are critical periods in which the vulnerability to stressors is particularly high.

Psychopathology

Chronic stress is seen to affect the parts of the brain where memories are processed through and stored. When people feel stressed, stress hormones get over-secreted, which affects the brain. This secretion is made up of glucocorticoids, including cortisol, which are steroid hormones that the adrenal gland releases, although this can increase storage of flashbulb memories it decreases long-term potentiation (LTP). The hippocampus is important in the brain for storing certain kinds of memories and damage to the hippocampus can cause trouble in storing new memories but old memories, memories stored before the damage, are not lost. Also high cortisol levels can be tied to the deterioration of the hippocampus and decline of memory that many older adults start to experience with age.

Chronic stress also shifts learning, forming a preference for habit based learning, and decreased task flexibility and spatial working memory, probably through alterations of the dopaminergic systems. Stress may also increase reward associated with food, leading to weight gain and further changes in eating habits. Stress may contribute to various psychosomatic disorders, such as fibromyalgia,[51] chronic fatigue syndrome, depression, and functional somatic syndromes.

Psychological concepts

Eustress

Selye published in year 1975 a model dividing stress into eustress and distress. Where stress enhances function (physical or mental, such as through strength training or challenging work), it may be considered eustress. Persistent stress that is not resolved through coping or adaptation, deemed distress, may lead to anxiety or withdrawal (depression) behavior. 

The difference between experiences that result in eustress and those that result in distress is determined by the disparity between an experience (real or imagined) and personal expectations, and resources to cope with the stress. Alarming experiences, either real or imagined, can trigger a stress response.

Coping

Responses to stress include adaptation, psychological coping such as stress management, anxiety, and depression. Over the long term, distress can lead to diminished health and/or increased propensity to illness; to avoid this, stress must be managed. 

Stress management encompasses techniques intended to equip a person with effective coping mechanisms for dealing with psychological stress, with stress defined as a person's physiological response to an internal or external stimulus that triggers the fight-or-flight response. Stress management is effective when a person uses strategies to cope with or alter stressful situations.

There are several ways of coping with stress, such as controlling the source of stress or learning to set limits and to say "no" to some of the demands that bosses or family members may make. 

A person's capacity to tolerate the source of stress may be increased by thinking about another topic such as a hobby, listening to music, or spending time in a wilderness

A way to control stress is first dealing with what is causing the stress if it is something the individual has control over. Other methods to control stress and reduce it can be: to not procrastinate and leave tasks for last minute, do things you like, exercise, do breathing routines, go out with friends, and take a break. Having support from a loved one also helps a lot in reducing stress.

One study showed that the power of having support from a loved one, or just having social support, lowered stress in individual subjects. Painful shocks were applied to married women's ankles. In some trials women were able to hold their husband's hand, in other trials they held a stranger's hand, and then held no one's hand. When the women were holding their husband's hand, the response was reduced in many brain areas. When holding the stranger's hand the response was reduced a little, but not as much as when they were holding their husband's hand. Social support helps reduce stress and even more so if the support is from a loved one.

Cognitive appraisal

Lazarus argued that, in order for a psychosocial situation to be stressful, it must be appraised as such. He argued that cognitive processes of appraisal are central in determining whether a situation is potentially threatening, constitutes a harm/loss or a challenge, or is benign. 

Both personal and environmental factors influence this primary appraisal, which then triggers the selection of coping processes. Problem-focused coping is directed at managing the problem, whereas emotion-focused coping processes are directed at managing the negative emotions. Secondary appraisal refers to the evaluation of the resources available to cope with the problem, and may alter the primary appraisal. 

In other words, primary appraisal includes the perception of how stressful the problem is and the secondary appraisal of estimating whether one has more than or less than adequate resources to deal with the problem that affects the overall appraisal of stressfulness. Further, coping is flexible in that, in general, the individual examines the effectiveness of the coping on the situation; if it is not having the desired effect, s/he will, in general, try different strategies.

Assessment

Measuring Stress

A renewed interest in salivary alpha amylase as a marker for stress has surfaced. Yamaguchi M, Yoshida H (2005) have analyzed a newly introduced hand-held device called the Cocorometer developed by Nipro Corporation of Japan. They state that this can be reliably used to analyze the amylase levels and is definitely a cheaper alternative as compared to the more expensive ELISA kits. The working consists of a meter and a saliva collecting chip, which can be inserted into the meter to give the readings. The levels of amylase obtained have been calibrated according to standard population, and can be categorized into four levels of severity.

Measuring stress levels independent of differences in people's personalities has been inherently difficult: some people are able to process many stressors simultaneously, while others can barely address a few. Such tests as the Trier Social Stress Test attempted to isolate the effects of personalities on ability to handle stress in a laboratory environment. Other psychologists, however, proposed measuring stress indirectly, through self-tests: stressors in a person's life often (although not always) correlates with the amount of stress that person experiences. 

Researchers can combine the results of stress and burnout self-tests. Stress tests help determine the number of stressors in a person's life, while burnout tests determine the degree to which the person is close to the state of burnout. Combining both helps researchers gauge how likely additional stressors will make him or her experience mental exhaustion.

Health risk factors

Both negative and positive stressors can lead to stress. The intensity and duration of stress changes depending on the circumstances and emotional condition of the person suffering from it (Arnold. E and Boggs. K. 2007). Some common categories and examples of stressors include:

General adaptation syndrome

A diagram of the General Adaptation Syndrome model.
 
Physiologists define stress as how the body reacts to a stressor - a stimulus, real or imagined, that causes stress. Acute stressors affect an organism in the short term; chronic stressors over the longer term. The general adaptation syndrome (GAS), developed by Hans Selye, is a profile of how organisms respond to stress; GAS is characterized by three phases: a nonspecific mobilization phase, which promotes sympathetic nervous system activity; a resistance phase, during which the organism makes efforts to cope with the threat; and an exhaustion phase, which occurs if the organism fails to overcome the threat and depletes its physiological resources.

Stage 1

Alarm is the first stage, which is divided into two phases: the shock phase and the antishock phase.

Stage 2

Resistance is the second stage. During this stage, increased secretion of glucocorticoids intensify the body's systemic response. Glucocorticoids can increase the concentration of glucose, fat, and amino acid in blood. In high doses, one glucocorticoid, cortisol, begins to act similarly to a mineralocorticoid (aldosterone) and brings the body to a state similar to hyperaldosteronism. If the stressor persists, it becomes necessary to attempt some means of coping with the stress. The body attempts to respond to stressful stimuli, but after prolonged activation, the body's chemical resources will be gradually depleted, leading to the final stage.

Stage 3

The third stage could be either exhaustion or recovery:
  • Recovery stage follows when the system's compensation mechanisms have successfully overcome the stressor effect (or have completely eliminated the factor which caused the stress). The high glucose, fat and amino acid levels in blood prove useful for anabolic reactions, restoration of homeostasis and regeneration of cells.
  • Exhaustion is the alternative third stage in the GAS model. At this point, all of the body's resources are eventually depleted and the body is unable to maintain normal function. The initial autonomic nervous system symptoms may reappear (sweating, raised heart rate, etc.). If stage three is extended, long-term damage may result (prolonged vasoconstriction results in ischemia which in turn leads to cell necrosis), as the body's immune system becomes exhausted, and bodily functions become impaired, resulting in decompensation.
The result can manifest itself in obvious illnesses, such as general trouble with the digestive system (e.g. occult bleeding, melena, constipation/obstipation), diabetes, or even cardiovascular problems (angina pectoris), along with clinical depression and other mental illnesses.

History in research

The current usage of the word stress arose out of Hans Selye's 1930s experiments. He started to use the term to refer not just to the agent but to the state of the organism as it responded and adapted to the environment. His theories of a universal non-specific stress response attracted great interest and contention in academic physiology and he undertook extensive research programs and publication efforts.

While the work attracted continued support from advocates of psychosomatic medicine, many in experimental physiology concluded that his concepts were too vague and unmeasurable. During the 1950s, Selye turned away from the laboratory to promote his concept through popular books and lecture tours. He wrote for both non-academic physicians and, in an international bestseller entitled Stress of Life, for the general public.

A broad biopsychosocial concept of stress and adaptation offered the promise of helping everyone achieve health and happiness by successfully responding to changing global challenges and the problems of modern civilization. Selye coined the term "eustress" for positive stress, by contrast to distress. He argued that all people have a natural urge and need to work for their own benefit, a message that found favor with industrialists and governments. He also coined the term stressor to refer to the causative event or stimulus, as opposed to the resulting state of stress.

Selye was in contact with the tobacco industry from 1958 and they were undeclared allies in litigation and the promotion of the concept of stress, clouding the link between smoking and cancer, and portraying smoking as a "diversion", or in Selye's concept a "deviation", from environmental stress.

From the late 1960s, academic psychologists started to adopt Selye's concept; they sought to quantify "life stress" by scoring "significant life events", and a large amount of research was undertaken to examine links between stress and disease of all kinds. By the late 1970s, stress had become the medical area of greatest concern to the general population, and more basic research was called for to better address the issue. There was also renewed laboratory research into the neuroendocrine, molecular, and immunological bases of stress, conceived as a useful heuristic not necessarily tied to Selye's original hypotheses. The US military became a key center of stress research, attempting to understand and reduce combat neurosis and psychiatric casualties.

The psychiatric diagnosis post-traumatic stress disorder (PTSD) was coined in the mid-1970s, in part through the efforts of anti-Vietnam War activists and the Vietnam Veterans Against the War, and Chaim F. Shatan. The condition was added to the Diagnostic and Statistical Manual of Mental Disorders as posttraumatic stress disorder in 1980. PTSD was considered a severe and ongoing emotional reaction to an extreme psychological trauma, and as such often associated with soldiers, police officers, and other emergency personnel. The stressor may involve threat to life (or viewing the actual death of someone else), serious physical injury, or threat to physical or psychological integrity. In some cases, it can also be from profound psychological and emotional trauma, apart from any actual physical harm or threat. Often, however, the two are combined. 

By the 1990s, "stress" had become an integral part of modern scientific understanding in all areas of physiology and human functioning, and one of the great metaphors of Western life. Focus grew on stress in certain settings, such as workplace stress, and stress management techniques were developed. The term also became a euphemism, a way of referring to problems and eliciting sympathy without being explicitly confessional, just "stressed out". It came to cover a huge range of phenomena from mild irritation to the kind of severe problems that might result in a real breakdown of health. In popular usage, almost any event or situation between these extremes could be described as stressful.

The American Psychological Association's 2015 Stress In America Study found that nationwide stress is on the rise and that the three leading sources of stress were "money", "family responsibility", and "work".

Entropy (information theory)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Entropy_(information_theory) In info...