Search This Blog

Monday, June 28, 2021

Atmosphere of Venus

From Wikipedia, the free encyclopedia
 
Atmosphere of Venus
Venus
Cloud structure in Venus's atmosphere in 1979,
revealed by ultraviolet observations from Pioneer Venus Orbiter
 
General information
Height250 km (160 mi)
Average surface pressure93 bar (1,350 psi)
Mass4.8 × 1020 kg
Composition
Carbon dioxide96.5 %
Nitrogen3.5 %
Sulfur dioxide150 ppm
Argon70 ppm
Water vapor20 ppm
Carbon monoxide17 ppm
Helium12 ppm
Neon7 ppm
Hydrogen chloride0.1–0.6 ppm
Hydrogen fluoride0.001–0.005 ppm

The atmosphere of Venus is the layer of gases surrounding Venus. It is composed primarily of carbon dioxide and is much denser and hotter than that of Earth. The temperature at the surface is 740 K (467 °C, 872 °F), and the pressure is 93 bar (1,350 psi), roughly the pressure found 900 m (3,000 ft) underwater on Earth. The Venusian atmosphere supports opaque clouds of sulfuric acid, making optical Earth-based and orbital observation of the surface impossible. Information about the topography has been obtained exclusively by radar imaging. Aside from carbon dioxide, the other main component is nitrogen. Other chemical compounds are present only in trace amounts.

Aside from the very surface layers, the atmosphere is in a state of vigorous circulation. The upper layer of troposphere exhibits a phenomenon of super-rotation, in which the atmosphere circles the planet in just four Earth days, much faster than the planet's sidereal day of 243 days. The winds supporting super-rotation blow at a speed of 100 m/s (≈360 km/h or 220 mph) or more. Winds move at up to 60 times the speed of the planet's rotation, while Earth's fastest winds are only 10% to 20% rotation speed. On the other hand, the wind speed becomes increasingly slower as the elevation from the surface decreases, with the breeze barely reaching the speed of 10 km/h (2.8 m/s) on the surface. Near the poles are anticyclonic structures called polar vortices. Each vortex is double-eyed and shows a characteristic S-shaped pattern of clouds. Above there is an intermediate layer of mesosphere which separates the troposphere from the thermosphere. The thermosphere is also characterized by strong circulation, but very different in its nature—the gases heated and partially ionized by sunlight in the sunlit hemisphere migrate to the dark hemisphere where they recombine and downwell.

Unlike Earth, Venus lacks a magnetic field. Its ionosphere separates the atmosphere from outer space and the solar wind. This ionized layer excludes the solar magnetic field, giving Venus a distinct magnetic environment. This is considered Venus's induced magnetosphere. Lighter gases, including water vapour, are continuously blown away by the solar wind through the induced magnetotail. It is speculated that the atmosphere of Venus up to around 4 billion years ago was more like that of the Earth with liquid water on the surface. A runaway greenhouse effect may have been caused by the evaporation of the surface water and subsequent rise of the levels of other greenhouse gases.

Despite the harsh conditions on the surface, the atmospheric pressure and temperature at about 50 km to 65 km above the surface of the planet is nearly the same as that of the Earth, making its upper atmosphere the most Earth-like area in the Solar System, even more so than the surface of Mars. Due to the similarity in pressure and temperature and the fact that breathable air (21% oxygen, 78% nitrogen) is a lifting gas on Venus in the same way that helium is a lifting gas on Earth, the upper atmosphere has been proposed as a location for both exploration and colonization.

In September 2020, it was announced that phosphine, a potential biomarker, had been detected in the atmosphere of Venus. There is no known abiotic source of phosphine on Venus that could explain the presence of the substance in the concentrations detected. However, the detection of phosphine was suggested to be a possible false positive in October 2020. In January 2021 further research attributed the spectroscopic signal to that of sulphur dioxide, although later research have refuted the sulphur dioxide claim and confirmed the existence of phosphine.

History

Mikhail Lomonosov was the first person to hypothesize the existence of an atmosphere on Venus, based on his observation of the transit of Venus of 1761 in a small observatory near his house in Saint Petersburg, Russia.

Structure and composition

Composition

Composition of the atmosphere of Venus. The chart on the right is an expanded view of the trace elements that all together do not even make up a tenth of a percent.

The atmosphere of Venus is composed of 96.5% carbon dioxide, 3.5% nitrogen, and traces of other gases, most notably sulfur dioxide. The amount of nitrogen in the atmosphere is relatively small compared to the amount of carbon dioxide, but because the atmosphere is so much thicker than that on Earth, its total nitrogen content is roughly four times higher than Earth's, even though on Earth nitrogen makes up about 78% of the atmosphere.

The atmosphere contains a range of compounds in small quantities, including some based on hydrogen, such as hydrogen chloride (HCl) and hydrogen fluoride (HF). There is carbon monoxide, water vapour and atomic oxygen as well. Hydrogen is in relatively short supply in the Venusian atmosphere. A large amount of the planet's hydrogen is theorised to have been lost to space, with the remainder being mostly bound up in sulfuric acid (H2SO4). The loss of significant amounts of hydrogen is proven by a very high D–H ratio measured in the Venusian atmosphere. The ratio is about 0.015–0.025, which is 100–150 times higher than the terrestrial value of 1.6×10−4. According to some measurements, in the upper atmosphere of Venus D/H ratio is 1.5 higher than in the bulk atmosphere.

In September 2020, it was announced that phosphine, a potential biomarker indicating the presence of life, had been detected in the atmosphere of Venus. No known abiotic source present on Venus could produce phosphine in the quantities detected.

The re-analysis of Pioneer Venus data in 2020 has found part of chlorine and all of hydrogen sulfide spectral features are instead phosphine-related, meaning lower than thought concentration of chlorine and non-detection of hydrogen sulfide.

In a preprint made available in October 2020, a re-analysis of archived infrared spectral measurements in 2015 did not reveal any phosphine in Venusian atmosphere, placing an upper limit for phosphine concentration at 5 parts per billion by volume—a quarter of the spectroscopic value reported in September).

In late October 2020, the review of data processing used in original publication of September 2020, has revealed an interpolation error resulting in multiple spurious lines, including the spectral feature of phosphine. Re-analysis of data with the fixed algorithm either do not result in the detection of the phosphine or detected it with much lower concentration of 1ppb.

Troposphere

Comparison of Atmosphere Compositions – Venus, Mars, Earth (past and present).

The atmosphere is divided into a number of sections depending on altitude. The densest part of the atmosphere, the troposphere, begins at the surface and extends upwards to 65 km. At the furnace-like surface the winds are slow, but at the top of the troposphere the temperature and pressure reaches Earth-like levels and clouds pick up speed to 100 m/s (360 km/h).

1761 drawing by Mikhail Lomonosov in his work on the discovery of atmosphere of Venus

The atmospheric pressure at the surface of Venus is about 92 times that of the Earth, similar to the pressure found 900 m (3,000 ft) below the surface of the ocean. The atmosphere has a mass of 4.8×1020 kg, about 93 times the mass of the Earth's total atmosphere. The density of the air at the surface is 67 kg/m3, which is 6.5% that of liquid water on Earth. The pressure found on Venus's surface is high enough that the carbon dioxide is technically no longer a gas, but a supercritical fluid. This supercritical carbon dioxide forms a kind of sea that covers the entire surface of Venus. This sea of supercritical carbon dioxide transfers heat very efficiently, buffering the temperature changes between night and day (which last 56 terrestrial days).

The large amount of CO2 in the atmosphere together with water vapour and sulfur dioxide create a strong greenhouse effect, trapping solar energy and raising the surface temperature to around 740 K (467 °C), hotter than any other planet in the Solar System, even that of Mercury despite being located farther out from the Sun and receiving only 25% of the solar energy (per unit area) Mercury does. The average temperature on the surface is above the melting points of lead (600 K, 327 °C), tin (505 K, 232 °C), and zinc (693 K, 420 °C). The thick troposphere also makes the difference in temperature between the day and night side small, even though the slow retrograde rotation of the planet causes a single solar day to last 116.5 Earth days. The surface of Venus spends 58.3 days in darkness before the sun rises again behind the clouds.

Atmosphere 
Venusatmosphere.svg
Height
(km)
Temp.
(°C)
Atmospheric
pressure
(atm)
0 462 92.10
5 424 66.65
10 385 47.39
15 348 33.04
20 306 22.52
25 264 14.93
30 222 9.851
35 180 5.917
40 143 3.501
45 110 1.979
50 75 1.066
55 27 0.5314
60 −10 0.2357
65 −30 0.09765
70 −43 0.03690
80 −76 0.004760
90 −104 0.0003736
100 −112 0.00002660

The troposphere on Venus contains 99% of the atmosphere by mass. Ninety percent of the atmosphere of Venus is within 28 km of the surface; by comparison, 90% of the atmosphere of Earth is within 10 km of the surface. At a height of 50 km the atmospheric pressure is approximately equal to that at the surface of Earth. On the night side of Venus clouds can still be found at 80 km above the surface.

The altitude of the troposphere most similar to Earth is near the tropopause—the boundary between troposphere and mesosphere. It is located slightly above 50 km. According to measurements by the Magellan and Venus Express probes, the altitude from 52.5 to 54 km has a temperature between 293 K (20 °C) and 310 K (37 °C), and the altitude at 49.5 km above the surface is where the pressure becomes the same as Earth at sea level. As manned ships sent to Venus would be able to compensate for differences in temperature to a certain extent, anywhere from about 50 to 54 km or so above the surface would be the easiest altitude in which to base an exploration or colony, where the temperature would be in the crucial "liquid water" range of 273 K (0 °C) to 323 K (50 °C) and the air pressure the same as habitable regions of Earth. As CO2 is heavier than air, the colony's air (nitrogen and oxygen) could keep the structure floating at that altitude like a dirigible.

Circulation

The circulation in Venus's troposphere follows the so-called cyclostrophic flow. Its windspeeds are roughly determined by the balance of the pressure gradient and centrifugal forces in almost purely zonal flow. In contrast, the circulation in the Earth's atmosphere is governed by the geostrophic balance. Venus's windspeeds can be directly measured only in the upper troposphere (tropopause), between 60–70 km, altitude, which corresponds to the upper cloud deck. The cloud motion is usually observed in the ultraviolet part of the spectrum, where the contrast between clouds is the highest. The linear wind speeds at this level are about 100 ± 10 m/s at lower than 50° latitude. They are retrograde in the sense that they blow in the direction of the retrograde rotation of the planet. The winds quickly decrease towards the higher latitudes, eventually reaching zero at the poles. Such strong cloud-top winds cause a phenomenon known as the super-rotation of the atmosphere. In other words, these high-speed winds circle the whole planet faster than the planet itself rotates. The super-rotation on Venus is differential, which means that the equatorial troposphere super-rotates more slowly than the troposphere at the midlatitudes. The winds also have a strong vertical gradient. They decline deep in the troposphere with the rate of 3 m/s per km. The winds near the surface of Venus are much slower than that on Earth. They actually move at only a few kilometres per hour (generally less than 2 m/s and with an average of 0.3 to 1.0 m/s), but due to the high density of the atmosphere at the surface, this is still enough to transport dust and small stones across the surface, much like a slow-moving current of water.

Meridional (north-south) component of the atmospheric circulation in the atmosphere of Venus. Note that the meridional circulation is much lower than the zonal circulation, which transports heat between the day and night sides of the planet

All winds on Venus are ultimately driven by convection. Hot air rises in the equatorial zone, where solar heating is concentrated and flows to the poles. Such an almost-planetwide overturning of the troposphere is called Hadley circulation. However, the meridional air motions are much slower than zonal winds. The poleward limit of the planet-wide Hadley cell on Venus is near ±60° latitudes. Here air starts to descend and returns to the equator below the clouds. This interpretation is supported by the distribution of the carbon monoxide, which is also concentrated in the vicinity of ±60° latitudes. Poleward of the Hadley cell a different pattern of circulation is observed. In the latitude range 60°–70° cold polar collars exist. They are characterized by temperatures about 30–40 K lower than in the upper troposphere at nearby latitudes. The lower temperature is probably caused by the upwelling of the air in them and by the resulting adiabatic cooling. Such an interpretation is supported by the denser and higher clouds in the collars. The clouds lie at 70–72 km altitude in the collars—about 5 km higher than at the poles and low latitudes. A connection may exist between the cold collars and high-speed midlatitude jets in which winds blow as fast as 140 m/s. Such jets are a natural consequence of the Hadley-type circulation and should exist on Venus between 55–60° latitude.

Odd structures known as polar vortices lie within the cold polar collars. They are giant hurricane-like storms four times larger than their terrestrial analogs. Each vortex has two "eyes"—the centres of rotation, which are connected by distinct S-shaped cloud structures. Such double eyed structures are also called polar dipoles. Vortices rotate with the period of about 3 days in the direction of general super-rotation of the atmosphere. The linear wind speeds are 35–50 m/s near their outer edges and zero at the poles. The temperature at the cloud-tops in each polar vortex is much higher than in the nearby polar collars, reaching 250 K (−23 °C). The conventional interpretation of the polar vortices is that they are anticyclones with downwelling in the centre and upwelling in the cold polar collars. This type of circulation resembles a winter polar anticyclonic vortex on Earth, especially the one found over Antarctica. The observations in the various infrared atmospheric windows indicate that the anticyclonic circulation observed near the poles penetrates as deep as to 50 km altitude, i.e. to the base of the clouds. The polar upper troposphere and mesosphere are extremely dynamic; large bright clouds may appear and disappear over the space of a few hours. One such event was observed by Venus Express between 9 and 13 January 2007, when the south polar region became brighter by 30%. This event was probably caused by an injection of sulfur dioxide into the mesosphere, which then condensed, forming a bright haze. The two eyes in the vortices have yet to be explained.

False colour near-infrared (2.3 μm) image of the deep atmosphere of Venus obtained by Galileo. The dark spots are clouds silhouetted against the very hot lower atmosphere emitting thermal infrared radiation.

The first vortex on Venus was discovered at the north pole by the Pioneer Venus mission in 1978. A discovery of the second large 'double-eyed' vortex at the south pole of Venus was made in the summer of 2006 by Venus Express, which came with no surprise.

Images from the Akatsuki orbiter revealed something similar to jet stream winds in the low and middle cloud region, which extends from 45 to 60 kilometers in altitude. The wind speed maximized near the equator. In September 2017 JAXA scientists named this phenomenon 'Venusian equatorial jet'.

Upper atmosphere and ionosphere

The mesosphere of Venus extends from 65 km to 120 km in height, and the thermosphere begins at approximately 120 km, eventually reaching the upper limit of the atmosphere (exosphere) at about 220 to 350 km. The exosphere begins when the atmosphere becomes so thin that the average number of collisions per air molecule is less than one.

The mesosphere of Venus can be divided into two layers: the lower one between 62–73 km and the upper one between 73–95 km. In the first layer the temperature is nearly constant at 230 K (−43 °C). This layer coincides with the upper cloud deck. In the second layer, the temperature starts to decrease again, reaching about 165 K (−108 °C) at the altitude of 95 km, where mesopause begins. It is the coldest part of the Venusian dayside atmosphere. In the dayside mesopause, which serves as a boundary between the mesosphere and thermosphere and is located between 95–120 km, temperature increases to a constant—about 300–400 K (27–127 °C)—value prevalent in the thermosphere. In contrast, the nightside Venusian thermosphere is the coldest place on Venus with temperature as low as 100 K (−173 °C). It is even called a cryosphere.

The circulation patterns in the upper mesosphere and thermosphere of Venus are completely different from those in the lower atmosphere. At altitudes 90–150 km the Venusian air moves from the dayside to nightside of the planet, with upwelling over sunlit hemisphere and downwelling over dark hemisphere. The downwelling over the nightside causes adiabatic heating of the air, which forms a warm layer in the nightside mesosphere at the altitudes 90–120 km. The temperature of this layer—230 K (−43 °C)—is far higher than the typical temperature found in the nightside thermosphere—100 K (−173 °C). The air circulated from the dayside also carries oxygen atoms, which after recombination form excited molecules of oxygen in the long-lived singlet state (1Δg), which then relax and emit infrared radiation at the wavelength 1.27 μm. This radiation from the altitude range 90–100 km is often observed from the ground and spacecraft. The nightside upper mesosphere and thermosphere of Venus is also the source of non-local thermodynamic equilibrium emissions of CO2 and nitric oxide molecules, which are responsible for the low temperature of the nightside thermosphere.

The Venus Express probe has shown through stellar occultation that the atmospheric haze extends much further up on the night side than the day side. On the day side the cloud deck has a thickness of 20 km and extends up to about 65 km, whereas on the night side the cloud deck in the form of a thick haze reaches up to 90 km in altitude—well into mesosphere, continuing even further to 105 km as a more transparent haze. In 2011, the spacecraft discovered that Venus has a thin ozone layer at an altitude of 100 km.

Venus has an extended ionosphere located at altitudes 120–300 km. The ionosphere almost coincides with the thermosphere. The high levels of the ionization are maintained only over the dayside of the planet. Over the nightside the concentration of the electrons is almost zero. The ionosphere of Venus consists of three layers: v1 between 120 and 130 km, v2 between 140 and 160 km and v3 between 200 and 250 km. There may be an additional layer near 180 km. The maximum electron volume density (number of electrons in a unit of volume) of 3×1011 m−3 is reached in the v2 layer near the subsolar point. The upper boundary of the ionosphere (the ionopause) is located at altitudes 220–375 km and separates the plasma of the planetary origin from that of the induced magnetosphere. The main ionic species in the v1 and v2 layers is O2+ ion, whereas the v3 layer consists of O+ ions. The ionospheric plasma is observed to be in motion; solar photoionization on the dayside and ion recombination on the nightside are the processes mainly responsible for accelerating the plasma to the observed velocities. The plasma flow appears to be sufficient to maintain the nightside ionosphere at or near the observed median level of ion densities.

Induced magnetosphere

Venus interacts with the solar wind. Components of the induced magnetosphere are shown.

Venus is known not to have a magnetic field. The reason for its absence is not at all clear, but it may be related to a reduced intensity of convection in the Venusian mantle. Venus only has an induced magnetosphere formed by the Sun's magnetic field carried by the solar wind. This process can be understood as the field lines wrapping around an obstacle—Venus in this case. The induced magnetosphere of Venus has a bow shock, magnetosheath, magnetopause and magnetotail with the current sheet.

At the subsolar point the bow shock stands 1900 km (0.3 Rv, where Rv is the radius of Venus) above the surface of Venus. This distance was measured in 2007 near the solar activity minimum. Near the solar activity maximum it can be several times further from the planet. The magnetopause is located at the altitude of 300 km. The upper boundary of the ionosphere (ionopause) is near 250 km. Between the magnetopause and ionopause there exists a magnetic barrier—a local enhancement of the magnetic field, which prevents the solar plasma from penetrating deeper into the Venusian atmosphere, at least near solar activity minimum. The magnetic field in the barrier reaches up to 40 nT. The magnetotail continues up to ten radii from the planet. It is the most active part of the Venusian magnetosphere. There are reconnection events and particle acceleration in the tail. The energies of electrons and ions in the magnetotail are around 100 eV and 1000 eV respectively.

Due to the lack of the intrinsic magnetic field on Venus, the solar wind penetrates relatively deep into the planetary exosphere and causes substantial atmosphere loss. The loss happens mainly via the magnetotail. Currently the main ion types being lost are O+, H+ and He+. The ratio of hydrogen to oxygen losses is around 2 (i.e. almost stoichiometric) indicating the ongoing loss of water.

Clouds

Venusian clouds are thick and are composed mainly (75–96%) of sulfuric acid droplets. These clouds obscure the surface of Venus from optical imaging, and reflect about 75% of the sunlight that falls on them. The geometric albedo, a common measure of reflectivity, is the highest of any planet in the Solar System. This high reflectivity potentially enables any probe exploring the cloud tops sufficient solar energy such that solar cells can be fitted anywhere on the craft. The density of the clouds is highly variable with the densest layer at about 48.5 km, reaching 0.1 g/m3 similar to the lower range of cumulonimbus storm clouds on Earth.

The cloud cover is such that typical surface light levels are similar to a partly cloudy day on Earth, around 5000–10000 lux. The equivalent visibility is about three kilometers, but this will likely vary with the wind conditions. Little to no solar energy could conceivably be collected by solar panels on a surface probe. In fact, due to the thick, highly reflective cloud cover, the total solar energy received by the surface of the planet is less than that of the Earth, despite its proximity to the Sun.

Photograph taken by the unmanned Galileo space probe en route to Jupiter in 1990 during a Venus flyby. Smaller-scale cloud features have been emphasized and a bluish hue has been applied to show that it was taken through a violet filter.

Sulfuric acid is produced in the upper atmosphere by the Sun's photochemical action on carbon dioxide, sulfur dioxide, and water vapour. Ultraviolet photons of wavelengths less than 169 nm can photodissociate carbon dioxide into carbon monoxide and monatomic oxygen. Monatomic oxygen is highly reactive; when it reacts with sulfur dioxide, a trace component of the Venusian atmosphere, the result is sulfur trioxide, which can combine with water vapour, another trace component of Venus's atmosphere, to yield sulfuric acid.

CO2CO + O
SO2 + OSO3
2SO3 + 4H2O → 2H2SO4·H2O

Surface level humidity is less than 0.1%. Venus's sulfuric acid rain never reaches the ground, but is evaporated by the heat before reaching the surface in a phenomenon known as virga. It is theorized that early volcanic activity released sulfur into the atmosphere and the high temperatures prevented it from being trapped into solid compounds on the surface as it was on the Earth. Besides sulfuric acid, cloud droplets can contain a wide array of sulfate salts, raising pH of droplet to 1.0 in one of scenarios explaining the sulfur dioxide measurements.

In 2009 a prominent bright spot in the atmosphere was noted by an amateur astronomer and photographed by Venus Express. Its cause is currently unknown, with surface volcanism advanced as a possible explanation.

Lightning

The clouds of Venus may be capable of producing lightning, but the debate is ongoing, with volcanic lightning and sprites also under discussion. The Soviet Venera 9 and 10 orbiters obtained ambiguous optical and electromagnetic evidence of lightning. The European Space Agency's Venus Express in 2007 detected whistler waves which could be attributed to lightning. Their intermittent appearance indicates a pattern associated with weather activity. According to the whistler observations, the lightning rate is at least half of that on Earth, but this is incompatible with data from the JAXA Akatsuki spacecraft which indicate a very low flash rate.

The mechanism generating lightning on Venus, if present, remains unknown. Whilst the sulfuric acid cloud droplets can become charged, the atmosphere may be too electrically conductive for the charge to be sustained, preventing lightning.

Throughout the 1980s, it was thought that the cause of the night-side glow ("ashen glow") on Venus was lightning.

Possibility of life

Due to the harsh conditions on the surface, little of the planet has been explored; in addition to the fact that life as currently understood may not necessarily be the same in other parts of the universe, the extent of the tenacity of life on Earth itself has not yet been shown. Creatures known as extremophiles exist on Earth, preferring extreme habitats. Thermophiles and hyperthermophiles thrive at temperatures reaching above the boiling point of water, acidophiles thrive at a pH level of 3 or below, polyextremophiles can survive a varied number of extreme conditions, and many other types of extremophiles exist on Earth.

The surface temperature of Venus (over 450 °C) is far beyond the extremophile range, which extends only tens of degrees beyond 100 °C. However, the lower temperature of the cloud tops means that life could plausibly exist there, the same way that bacteria have been found living and reproducing in clouds on Earth. Any such bacteria living in the cloud tops, however, would have to be hyper-acidophilic, due to the concentrated sulfuric acid environment. Microbes in the thick, cloudy atmosphere could be protected from solar radiation by the sulfur compounds in the air.

The Venusian atmosphere has been found to be sufficiently out of equilibrium as to require further investigation. Analysis of data from the Venera, Pioneer, and Magellan missions has found hydrogen sulfide (later disputed) and sulfur dioxide (SO2) together in the upper atmosphere, as well as carbonyl sulfide (OCS). The first two gases react with each other, implying that something must produce them. Carbonyl sulfide is difficult to produce inorganically, but it is present in the Venusian atmosphere. However, the planet's volcanism could explain the presence of carbonyl sulfide. In addition, one of the early Venera probes detected large amounts of toxic chlorine just below the Venusian cloud deck.

It has been proposed that microbes at this level could be soaking up ultraviolet light from the Sun as a source of energy, which could be a possible explanation for the "unknown UV absorber" seen as dark patches on UV images of the planet. The existence of this "unknown UV absorber" prompted Carl Sagan to publish an article in 1963 proposing the hypothesis of microorganisms in the upper atmosphere as the agent absorbing the UV light. In 2012, the abundance and vertical distribution of these unknown ultraviolet absorbers in the Venusian atmosphere have been investigated from analysis of Venus Monitoring Camera images, but their composition is still unknown. In 2016, disulfur dioxide was identified as a possible candidate for causing the so far unknown UV absorption of the Venusian atmosphere. The dark patches of "unknown UV absorbers" are prominent enough to influence the weather on Venus.

In September 2020, research studies led by Cardiff University using the James Clerk Maxwell and ALMA radio telescopes noted the detection of phosphine in Venus's atmosphere that was not linked to any known abiotic method of production present, or possible under Venusian conditions. It is extremely hard to make, and the chemistry in the Venusian clouds should destroy the molecules before they could accumulate to the observed amounts. The phosphine was detected at heights of at least 48 km above the surface of Venus, and was detected primarily at mid-latitudes with none detected at the poles of Venus. Scientists note that the detection itself could be further verified beyond the use of multiple telescopes detecting the same signal, as the phosphine fingerprint described in the study could theoretically be a false signal introduced by the telescopes or by data processing. The detection was later suggested to be a false positive or true signal with much over-estimated amplitude, compatible with 1ppb concentration of phosphine. The re-analysis of ALMA dataset in April 2021 have recovered the 20ppb phosphine signal, with signal-to-noise ratio of 5.4.

Evolution

Through studies of the present cloud structure and geology of the surface, combined with the fact that the luminosity of the Sun has increased by 25% since around 3.8 billion years ago, it is thought that the early environment of Venus was more like that of Earth with liquid water on the surface. At some point in the evolution of Venus, a runaway greenhouse effect occurred, leading to the current greenhouse-dominated atmosphere. The timing of this transition away from Earthlike is not known, but is estimated to have occurred around 4 billion years ago. The runaway greenhouse effect may have been caused by the evaporation of the surface water and the rise of the levels of greenhouse gases that followed. Venus's atmosphere has therefore received a great deal of attention from those studying climate change on Earth.

There are no geologic forms on the planet to suggest the presence of water over the past billion years. However, there is no reason to suppose that Venus was an exception to the processes that formed Earth and gave it its water during its early history, possibly from the original rocks that formed the planet or later on from comets. The common view among research scientists is that water would have existed for about 600 million years on the surface before evaporating, though some such as David Grinspoon believe that up to 2 billion years could also be plausible. This longer timescale for the persistence of oceans is also supported by General Circulation Model simulations incorporating the thermal effects of clouds on an evolving Venusian hydrosphere. 

The early Earth during the Hadean eon is believed by most scientists to have had a Venus-like atmosphere, with roughly 100 bar of CO2 and a surface temperature of 230 °C, and possibly even sulfuric acid clouds, until about 4.0 billion years ago, by which time plate tectonics were in full force and together with the early water oceans, removed the CO2 and sulfur from the atmosphere. Early Venus would thus most likely have had water oceans like the Earth, but any plate tectonics would have ended when Venus lost its oceans. Its surface is estimated to be about 500 million years old, so it would not be expected to show evidence of plate tectonics.

Observations and measurement from Earth

Venus transits the face of the Sun on June 8, 2004, providing valuable information on the upper atmosphere through spectroscopic measurements from Earth

In 1761, Russian polymath Mikhail Lomonosov observed an arc of light surrounding the part of Venus off the Sun's disc at the beginning of the egress phase of the transit and concluded that Venus has an atmosphere. In 1940, Rupert Wildt calculated that the amount of CO2 in the Venusian atmosphere would raise surface temperature above the boiling point for water. This was confirmed when Mariner 2 made radiometer measurements of the temperature in 1962. In 1967, Venera 4 confirmed that the atmosphere consisted primarily of carbon dioxide.

The upper atmosphere of Venus can be measured from Earth when the planet crosses the sun in a rare event known as a solar transit. The last solar transit of Venus occurred in 2012. Using quantitative astronomical spectroscopy, scientists were able to analyze sunlight that passed through the planet's atmosphere to reveal chemicals within it. As the technique to analyse light to discover information about a planet's atmosphere only first showed results in 2001, this was the first opportunity to gain conclusive results in this way on the atmosphere of Venus since observation of solar transits began. This solar transit was a rare opportunity considering the lack of information on the atmosphere between 65 and 85 km. The solar transit in 2004 enabled astronomers to gather a large amount of data useful not only in determining the composition of the upper atmosphere of Venus, but also in refining techniques used in searching for extrasolar planets. The atmosphere of mostly CO2, absorbs near-infrared radiation, making it easy to observe. During the 2004 transit, the absorption in the atmosphere as a function of wavelength revealed the properties of the gases at that altitude. The Doppler shift of the gases also enabled wind patterns to be measured.

A solar transit of Venus is an extremely rare event, and the last solar transit of the planet before 2004 was in 1882. The most recent solar transit was in 2012; the next one will not occur until 2117.

Space missions

Recent and current spaceprobes

This image shows Venus in ultraviolet, seen by the Akatsuki mission.

The Venus Express spacecraft formerly in orbit around the planet probed deeper into the atmosphere using infrared imaging spectroscopy in the 1–5 µm spectral range.

The JAXA probe Akatsuki (Venus Climate Orbiter), launched in May 2010, is studying the planet for a period of two years, including the structure and activity of the atmosphere, but it failed to enter Venus orbit in December 2010. A second attempt to achieve orbit succeeded 7 December 2015. Designed specifically to study the planet's climate, Akatsuki is the first meteorology satellite to orbit Venus (the first for a planet other than Earth). One of its five cameras known as the "IR2" will be able to probe the atmosphere of the planet underneath its thick clouds, in addition to its movement and distribution of trace components. With a highly eccentric orbit (periapsis altitude of 400 km and apoapsis of 310,000 km), it will be able to take close-up photographs of the planet, and should also confirm the presence of both active volcanoes as well as lightning.

Venus In-Situ Explorer proposed by NASA's New Frontiers program

Proposed missions

The Venus In-Situ Explorer, proposed by NASA's New Frontiers program is a proposed probe which would aid in understanding the processes on the planet that led to climate change, as well as paving the way towards a later sample return mission.

A craft called the Venus Mobile Explorer has been proposed by the Venus Exploration Analysis Group (VEXAG) to study the composition and isotopic measurements of the surface and the atmosphere, for about 90 days. The mission has not been selected for launch.

After missions discovered the reality of the harsh nature of the planet's surface, attention shifted towards other targets such as Mars. There have been a number of proposed missions afterward, however, and many of these involve the little-known upper atmosphere. The Soviet Vega program in 1985 dropped two balloons into the atmosphere, but these were battery-powered and lasted for only about two Earth days each before running out of power. Since then, there has been no exploration of the upper atmosphere. In 2002, the NASA contractor Global Aerospace proposed a balloon that would be capable of staying in the upper atmosphere for hundreds of Earth days as opposed to two.

A solar flyer has also been proposed by Geoffrey A. Landis in place of a balloon, and the idea has been featured from time to time since the early 2000s. Venus has a high albedo, and reflects most of the sunlight that shines on it making the surface quite dark, the upper atmosphere at 60 km has an upward solar intensity of 90%, meaning that solar panels on both the top and the bottom of a craft could be used with nearly equal efficiency. In addition to this, the slightly lower gravity, high air pressure and slow rotation allowing for perpetual solar power make this part of the planet ideal for exploration. The proposed flyer would operate best at an altitude where sunlight, air pressure, and wind speed would enable it to remain in the air perpetually, with slight dips down to lower altitudes for a few hours at a time before returning to higher altitudes. As sulfuric acid in the clouds at this height is not a threat for a properly shielded craft, this so-called "solar flyer" would be able to measure the area in between 45 km and 60 km indefinitely, for however long it takes for mechanical error or unforeseen problems to cause it to fail. Landis also proposed that rovers similar to Spirit and Opportunity could possibly explore the surface, with the difference being that Venus surface rovers would be "dumb" rovers controlled by radio signals from computers located in the flyer above, only requiring parts such as motors and transistors to withstand the surface conditions, but not weaker parts involved in microelectronics that could not be made resistant to the heat, pressure and acidic conditions.

Russian space science plans include the launch of the Venera-D (Venus-D) probe in 2029. The main scientific goals of the Venera-D mission are investigation of the structure and chemical composition of the atmosphere and investigation of the upper atmosphere, ionosphere, electrical activity, magnetosphere, and escape rate. It has been proposed to fly together with Venera-D an inflatable aircraft designed by Northrop Grumman, called Venus Atmospheric Maneuverable Platform (VAMP).

The High Altitude Venus Operational Concept (HAVOC) is a NASA concept for a manned exploration of Venus. Rather than traditional landings, it would send crews into the upper atmosphere, using dirigibles. Other proposals from the late 2010s include VERITAS, Venus Origins Explorer, VISAGE, and VICI. In June 2018, NASA also awarded a contract to Black Swift Technologies for a concept study of a Venus glider that would exploit wind shear for lift and speed.

Artist's concept of the planned DAVINCI+ probe's descent stages through Venus' atomosphere

In June 2021, NASA selected the DAVINCI+ mission to send an atmospheric probe to Venus in the late 2020s. DAVINCI+ will measure the composition of Venus’ atmosphere to understand how it formed and evolved, as well as determine whether the planet ever had an ocean. The mission consists of a descent sphere that will plunge through the planet’s thick atmosphere, making measurements of noble gases and other elements to understand Venus’ climate change. This will be the first U.S.-led mission to Venus’ atmosphere since 1978.

Runaway greenhouse effect

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Runaway_greenhouse_effect

A runaway greenhouse effect occurs when a planet's atmosphere contains greenhouse gas in an amount sufficient to block thermal radiation from leaving the planet, preventing the planet from cooling and from having liquid water on its surface. A runaway version of the greenhouse effect can be defined by a limit on a planet's outgoing longwave radiation which is asymptotically reached due to higher surface temperatures evaporating a condensable species (often water vapor) into the atmosphere, increasing its optical depth. This positive feedback means the planet cannot cool down through longwave radiation (via the Stefan–Boltzmann law) and continues to heat up until it can radiate outside of the absorption bands of the condensable species.

The runaway greenhouse effect is often formulated with water vapor as the condensable species. In this case the water vapor reaches the stratosphere and escapes into space via hydrodynamic escape, resulting in a desiccated planet. This may have happened in the early history of Venus.

History

While the term was coined by Caltech scientist Andrew Ingersoll in a paper that described a model of the atmosphere of Venus, the initial idea of a limit on terrestrial outgoing infrared radiation was published by George Simpson (meteorologist) in 1927. The physics relevant to the, later-termed, runaway greenhouse effect was explored by Makoto Komabayashi at Nagoya university. Assuming a water vapor-saturated stratosphere, Komabayashi and Ingersoll independently calculated the limit on outgoing infrared radiation that defines the runaway greenhouse state. The limit is now known as the Komabayashi–Ingersoll limit to recognize their contributions.

Physics of the runaway greenhouse

Graph of tropopause optical depth by tropopause temperature, illustrating the Komabayashi–Ingersoll limit of 385 W/m² using equations and values from Nakajima et al. (1992) "A Study on the Runaway Greenhouse Effect with a One-Dimensional Radiative–Convective Equilibrium Model". The Komabayashi–Ingersoll limit is the value of outgoing longwave radiation (FIRtop) beyond which the lines do not intersect.

The runaway greenhouse effect is often formulated in terms of how the surface temperature of a planet changes with differing amounts of received starlight. If the planet is assumed to be in radiative equilibrium, then the runaway greenhouse state is calculated as the equilibrium state at which water cannot exist in liquid form. The water vapor is then lost to space through hydrodynamic escape. In radiative equilibrium, a planet's outgoing longwave radiation (OLR) must balance the incoming stellar flux.

The Stefan–Boltzmann law is an example of a negative feedback that stabilizes a planet's climate system. If the Earth received more sunlight it would result in a temporary disequilibrium (more energy in than out) and result in warming. However, because the Stefan–Boltzmann response mandates that this hotter planet emits more energy, eventually a new radiation balance can be reached and the temperature will be maintained at its new, higher value. Positive climate change feedbacks amplify changes in the climate system, and can lead to destabilizing effects for the climate. An increase in temperature from greenhouse gases leading to increased water vapor (which is itself a greenhouse gas) causing further warming is a positive feedback, but not a runaway effect, on Earth. Positive feedback effects are common (e.g. ice–albedo feedback) but runaway effects do not necessarily emerge from their presence. Though water plays a major role in the process, the runaway greenhouse effect is not a result of water vapor feedback.

The runaway greenhouse effect can be seen as a limit on a planet's outgoing longwave radiation that, when surpassed, results in a state where water cannot exist in its liquid form (hence, the oceans have all "boiled away"). A planet's outgoing longwave radiation is limited by this evaporated water, which is an effective greenhouse gas and blocks additional infrared radiation as it accumulates in the atmosphere. Assuming radiative equilibrium, runaway greenhouse limits on outgoing longwave radiation correspond to limits on the increase in stellar flux received by a planet to trigger the runaway greenhouse effect. Two limits on a planet's outgoing longwave radiation have been calculated that correspond with the onset of the runaway greenhouse effect: the Komabayashi–Ingersoll limit and the Simpson–Nakajima limit. At these values the runaway greenhouse effect overcomes the Stefan–Boltzmann feedback so an increase in a planet's surface temperature will not increase the outgoing longwave radiation.

The Komabayashi–Ingersoll limit was the first to be analytically derived and only considers a grey stratosphere in radiative equilibrium. A grey stratosphere (or atmosphere) is an approach to modeling radiative transfer that does not take into account the frequency-dependence of absorption by a gas. In the case of a grey stratosphere or atmosphere, the Eddington approximation can be used to calculate radiative fluxes. This approach focuses on the balance between the outgoing longwave radiation at the tropopause,, and the optical depth of water vapor, , in the tropopause, which is determined by the temperature and pressure at the tropopause according to the saturation vapor pressure. This balance is represented by the following equations

Where the first equation represents the requirement for radiative equilibrium at the tropopause and the second equation represents how much water vapor is present at the tropopause. Taking the outgoing longwave radiation as a free parameter, these equations will intersect only once for a single value of the outgoing longwave radiation, this value is taken as the Komabayashi–Ingersoll limit. At that value the Stefan–Boltzmann feedback breaks down because the tropospheric temperature required to maintain the Komabayashi–Ingersoll OLR value results in a water vapor optical depth that blocks the OLR needed to cool the tropopause.

The Simpson–Nakajima limit is lower than the Komabayashi–Ingersoll limit, and is thus typically more realistic for the value at which a planet enters a runaway greenhouse state. For example, given the parameters used to determine a Komabayashi–Ingersoll limit of 385 W/m2, the corresponding Simpson–Nakajima limit is only about 293 W/m2. The Simpson–Nakajima limit builds off of the derivation of the Komabayashi–Ingersoll limit by assuming a convective troposphere with a surface temperature and surface pressure that determines the optical depth and outgoing longwave radiation at the tropopause.

The moist greenhouse limit

Because the model used to derive the Simpson–Nakajima limit (a grey stratosphere in radiative equilibrium and a convecting troposphere) can determine the water concentration as a function of altitude, the model can also be used to determine the surface temperature (or conversely, amount of stellar flux) that results in a high water mixing ratio in the stratosphere. While this critical value of outgoing longwave radiation is less than the Simpson–Nakajima limit, it still has dramatic effects on a planet's climate. A high water mixing ratio in the stratosphere would overcome the effects of a cold trap and result in a "moist" stratosphere, which would result in the photolysis of water in the stratosphere that in turn would destroy the ozone layer and eventually lead to a dramatic loss of water through hydrodynamic escape. This climate state has been dubbed the moist greenhouse effect, as the end-state is a planet without water, though liquid water may exist on the planet's surface during this process.

Connection to habitability

The concept of a habitable zone has been used by planetary scientists and astrobiologists to define an orbital region around a star in which a planet (or moon) can sustain liquid water. Under this definition, the inner edge of the habitable zone (i.e., the closest point to a star that a planet can be until it can no longer sustain liquid water) is determined by the outgoing longwave radiation limit beyond which the runaway greenhouse process occurs (e.g., the Simpson–Nakajima limit). This is because a planet's distance from its host star determines the amount of stellar flux the planet receives, which in turn determines the amount of outgoing longwave radiation the planet radiates back to space. While the inner habitable zone is typically determined by using the Simpson–Nakajima limit, it can also be determined with respect to the moist greenhouse limit, though the difference between the two is often small.

Calculating the inner edge of the habitable zone is strongly dependent on the model used to calculate the Simpson–Nakajima or moist greenhouse limit. The climate models used to calculate these limits have evolved over time, with some models assuming a simple one-dimensional, grey atmosphere, and others using a full radiative transfer solution to model the absorption bands of water and carbon dioxide. These earlier models that used radiative transfer derived the absorption coefficients for water from the HITRAN database, while newer models use the more current and accurate HITEMP database, which has led to different calculated values of thermal radiation limits. More accurate calculations have been done using three-dimensional climate models that take into account effects such as planetary rotation and local water mixing ratios as well as cloud feedbacks. The effect of clouds on calculating thermal radiation limits is still in debate (specifically, whether or not water clouds present a positive or negative feedback effect).

In the solar system

Venus

Venus' oceans may have boiled away in a runaway greenhouse effect.

A runaway greenhouse effect involving carbon dioxide and water vapor may have occurred on Venus. In this scenario, early Venus may have had a global ocean if the outgoing thermal radiation was below the Simpson–Nakajima limit but above the moist greenhouse limit. As the brightness of the early Sun increased, the amount of water vapor in the atmosphere increased, increasing the temperature and consequently increasing the evaporation of the ocean, leading eventually to the situation in which the oceans boiled, and all of the water vapor entered the atmosphere. This scenario helps to explain why there is little water vapor in the atmosphere of Venus today. If Venus initially formed with water, the runaway greenhouse effect would have hydrated Venus' stratosphere, and the water would have escaped to space. Some evidence for this scenario comes from the extremely high deuterium to hydrogen ratio in Venus' atmosphere, roughly 150 times that of Earth, since light hydrogen would escape from the atmosphere more readily than its heavier isotope, deuterium. Venus is sufficiently strongly heated by the Sun that water vapor can rise much higher in the atmosphere and be split into hydrogen and oxygen by ultraviolet light. The hydrogen can then escape from the atmosphere while the oxygen recombines or bonds to iron on the planet's surface. The deficit of water on Venus due to the runaway greenhouse effect is thought to explain why Venus does not exhibit surface features consistent with plate tectonics, meaning it would be a stagnant lid planet. Carbon dioxide, the dominant greenhouse gas in the current Venusian atmosphere, owes its larger concentration to the weakness of carbon recycling as compared to Earth, where the carbon dioxide emitted from volcanoes is efficiently subducted into the Earth by plate tectonics on geologic time scales through the carbonate–silicate cycle, which requires precipitation to function.

Earth

Early investigations on the effect of atmospheric carbon dioxide levels on the runaway greenhouse limit found that it would take orders of magnitude higher amounts of carbon dioxide to take the Earth to a runaway greenhouse state. This is because carbon dioxide is not anywhere near as effective at blocking outgoing longwave radiation as water is. Within current models of the runaway greenhouse effect, carbon dioxide (especially anthropogenic carbon dioxide) does not seem capable of providing the necessary insulation for Earth to reach the Simpson–Nakajima limit.

Debate remains, however, on whether carbon dioxide can push surface temperatures towards the moist greenhouse limit. Climate scientist John Houghton has written that "[there] is no possibility of [Venus's] runaway greenhouse conditions occurring on the Earth". The IPCC (Intergovernmental Panel on Climate Change) has also stated that "a 'runaway greenhouse effect'—analogous to [that of] Venus—appears to have virtually no chance of being induced by anthropogenic activities." However, climatologist James Hansen disagrees. In his Storms of My Grandchildren he says that burning coal and mining oil sands will result in runaway greenhouse on Earth. A re-evaluation in 2013 of the effect of water vapor in the climate models showed that James Hansen's outcome would require ten times the amount of CO2 we could release from burning all the oil, coal, and natural gas in Earth's crust. As with the uncertainties in calculating the inner edge of the habitable zone, the uncertainty in whether CO2 can drive a moist greenhouse effect is due to differences in modeling choices and the uncertainties therein. The switch from using HITRAN to the more current HITEMP absorption line lists in radiative transfer calculations has shown that previous runaway greenhouse limits were too high, but the necessary amount of carbon dioxide would make an anthropogenic moist greenhouse state unlikely. Full three-dimensional models have shown that the moist greenhouse limit on surface temperature is higher than that found in one-dimensional models and thus would require a higher amount of carbon dioxide to initiate a moist greenhouse than in one-dimensional models. Other complications include whether the atmosphere is saturated or sub-saturated at some humidity, higher CO2 levels in the atmosphere resulting in a less hot Earth than expected due to Rayleigh scattering, and whether cloud feedbacks stabilize or destabilize the climate system.

Complicating the matter, research on Earth's climate history has often used the term "runaway greenhouse effect" to describe large-scale climate changes when it is not an appropriate description as it does not depend on Earth's outgoing longwave radiation. Though the Earth has experienced a diversity of climate extremes, these are not end-states of climate evolution and have instead represented climate equilibria different from that seen on Earth today. For example, it has been hypothesized that large releases of greenhouse gases may have occurred concurrently with the Permian–Triassic extinction event or Paleocene–Eocene Thermal Maximum. Additionally, during 80% of the latest 500 million years, the Earth is believed to have been in a greenhouse state due to the greenhouse effect, when there were no continental glaciers on the planet, the levels of carbon dioxide and other greenhouse gases (such as water vapor and methane) were high, and sea surface temperatures (SSTs) ranged from 28 °C (82.4 °F) in the tropics to 0 °C (32 °F) in the polar regions.

Distant future

Most scientists believe that a runaway greenhouse effect is actually inevitable in the long term, as the Sun gradually gets bigger and hotter as it ages. Such will potentially spell the end of all life on Earth. As the Sun becomes 10% brighter about one billion years from now, the surface temperature of Earth will reach 47 °C (117 °F), causing the temperature of Earth to rise rapidly and its oceans to boil away until it becomes a greenhouse planet, similar to Venus today.

According to the astrobiologists Peter Ward and Donald Brownlee in their book The Life and Death of Planet Earth, the current loss rate is approximately one millimeter of ocean per million years, but the rate is gradually accelerating, as the sun gets warmer, to perhaps as fast as one millimeter every 1000 years. Ward and Brownlee predict that there will be two variations of the future warming feedback: the "moist greenhouse" in which water vapor dominates the troposphere and starts to accumulate in the stratosphere and the "runaway greenhouse" in which water vapor becomes a dominant component of the atmosphere such that the Earth starts to undergo rapid warming, which could send its surface temperature to over 900 °C (1,650 °F), causing its entire surface to melt and killing all life, perhaps about three billion years from now. In both cases, the moist and runaway greenhouse states the loss of oceans will turn the Earth into a primarily-desert world. The only water left on the planet would be in a few evaporating ponds scattered near the poles as well as huge salt flats around what was once the ocean floor, much like the Atacama Desert in Chile or Badwater Basin in Death Valley. The small reservoirs of water may allow life to remain for a few billion more years.

As the Sun brightens, CO2 levels should decrease due to an increase of activity in the carbon-silicate cycle corresponding to the increase of temperature. That would mitigate some of the heating Earth would experience because of the Sun's increase in brightness. Eventually, however, as the water escapes, the carbon cycle will cease as plate tectonics come to a halt because of the need for water as a lubricant for tectonic activity.

 

Tipping points in the climate system

Possible tipping elements in the climate system.
 
Interactions of climate tipping points (bottom) with associated tipping points in the socioeconomic system (top) on different time scales. 

A tipping point in the climate system is a threshold that, when exceeded, can lead to large changes in the state of the system. Potential tipping points have been identified in the physical climate system, in impacted ecosystems, and sometimes in both. For instance, feedback from the global carbon cycle is a driver for the transition between glacial and interglacial periods, with orbital forcing providing the initial trigger. Earth's geologic temperature record includes many more examples of geologically rapid transitions between different climate states.

Climate tipping points are of particular interest in reference to concerns about global warming in the modern era. Possible tipping point behaviour has been identified for the global mean surface temperature by studying self-reinforcing feedbacks and the past behavior of Earth's climate system. Self-reinforcing feedbacks in the carbon cycle and planetary reflectivity could trigger a cascading set of tipping points that lead the world into a hothouse climate state.

Large-scale components of the Earth system that may pass a tipping point have been referred to as tipping elements. Tipping elements are found in the Greenland and Antarctic ice sheets, possibly causing tens of meters of sea level rise. These tipping points are not always abrupt. For example, at some level of temperature rise the melt of a large part of the Greenland ice sheet and/or West Antarctic Ice Sheet will become inevitable; but the ice sheet itself may persist for many centuries. Some tipping elements, like the collapse of ecosystems, are irreversible.

Definition

The IPCC AR5 defines a tipping point as an irreversible change in the climate system. It states that the precise levels of climate change sufficient to trigger a tipping point remain uncertain, but that the risk associated with crossing multiple tipping points increases with rising temperature. A broader definition of tipping points is sometimes used as well, which includes abrupt but reversible tipping points.

In the context of climate change, an "adaptation tipping point" has been defined as "the threshold value or specific boundary condition where ecological, technical, economic, spatial or socially acceptable limits are exceeded."

Tipping point behaviour in the climate can also be described in mathematical terms. Tipping points are then seen as any type of bifurcation with hysteresis. Hysteresis is the dependence of the state of a system on its history. For instance, depending on how warm and cold it was in the past, there can be differing amounts of ice present on the poles at the same concentration of greenhouse gases or temperature.

In a study inspired by "mathematical and statistical approaches to climate modelling and prediction", the authors identify three types of tipping points in open systems such as the climate system—bifurcation, noise-induced and rate-dependent. The idea of tipping points in climate science, as indicated by palaeoclimate data and global climate models, suggest that the "climate system may abruptly 'tip' from one regime to another in a comparatively short time."

Bifurcation-induced tipping refers to changes in dynamical systems that occur when a small smooth change made to bifurcation parameters of the system causes an abrupt or sudden topological change in the behavior of the system. In the Atlantic Meridional Overturning Circulation (AMOC), slow passage to the bifurcation parameters—the salinity, temperature and density of water—could cause the AMOC to abruptly collapse when it reaches a critical tipping point. Currents of warm, seawater in the upper layers of the Atlantic flow north, while currents of colder, deep waters from the North Atlantic flow south, like a conveyor belt known as thermohaline circulation. Downwelling occurs when the warmer, higher-density seawater accumulates and sinks beneath the colder, lower density less saline water from glacier melt. An AMOC collapse would occur if downwelling was inhibited. [critical slowing down] (CSD) "occurs because a restoring feedback is weakening as a bifurcation-type tipping point is approached."

Noise-induced tipping refers to transitions due to random fluctuations or internal variability of the system, as in the Dansgaard-Oeschger events during the last glacial period, with 25 occurrences of rapid climate fluctuations.

Rate-induced tipping occurs in an "excitable system"—such as peatlands—when one of the systems parameters is "ramped" through a "steady, slow and monotonic change" eliciting a "large excitable response". In the case of peatlands, the rate-induced tipping point results in an "explosive release of soil carbon from peatlands into the atmosphere"—"compost bomb instability".

Tipping points for global temperature

There are many positive and negative feedbacks to global temperatures and the carbon cycle that have been identified. The IPCC reports that feedbacks to increased temperatures are net positive for the remainder of this century, with the impact of cloud cover the largest uncertainty. IPCC carbon cycle models show higher ocean uptake of carbon corresponding to higher concentration pathways, but land carbon uptake is uncertain due to the combined effect of climate change and land use changes.

The geologic record of temperature and greenhouse gas concentration allows climate scientists to gather information on climate feedbacks that lead to different climate states, such as the Late Quaternary (past 1.2 million years), the Pliocene period five million years ago and the Cretaceous period, 100 million years ago. Combining this information with the understanding of current climate change resulted in the finding that "A 2 °C warming could activate important tipping elements, raising the temperature further to activate other tipping elements in a domino-like cascade that could take the Earth System to even higher temperatures".

The speed of tipping point feedbacks is a critical concern and the geologic record often fails to provide clarity as to whether past temperature changes have taken only a few decades or many millennia of time. For instance, a tipping point that was once feared to be abrupt and overwhelming is the release of clathrate compounds buried in seabeds and seabed permafrost, but that feedback is now thought to be chronic and long term.

Some individual feedbacks may be strong enough to trigger tipping points on their own. A 2019 study predicts that if greenhouse gases reach three times the current level of atmospheric carbon dioxide that stratocumulus clouds could abruptly disperse, contributing an additional 8 degrees Celsius of warming.

Runaway greenhouse effect

The runaway greenhouse effect is used in astronomical circles to refer to a greenhouse effect that is so extreme that oceans boil away and render a planet uninhabitable, an irreversible climate state that happened on Venus. The IPCC Fifth Assessment Report states that "a 'runaway greenhouse effect' —analogous to Venus— appears to have virtually no chance of being induced by anthropogenic activities." Venus-like conditions on the Earth require a large long-term forcing that is unlikely to occur until the sun brightens by a few tens of percents, which will take a few billion years.

While a runaway greenhouse effect on Earth is virtually impossible, there are indications that Earth could enter a moist greenhouse state that renders large parts of Earth uninhabitable if the climate forcing is large enough to make water vapour (H2O) a major atmospheric constituent. Conceivable levels of human-made climate forcing would increase water vapour to about 1% of the atmosphere's mass, thus increasing the rate of hydrogen escape to space. If such a forcing were entirely due to CO2, the weathering process would remove the excess atmospheric CO2 well before the ocean was significantly depleted.

Tipping elements

Large scale tipping elements

A smooth or abrupt change in temperature can trigger global-scale tipping points. In the cryosphere these include the irreversible melting of Greenland and Antarctic ice sheets. In Greenland, a positive feedback cycle exists between melting and surface elevation. At lower elevations, temperatures are higher, leading to additional melting. This feedback loop can become so strong that irreversible melting occurs. Marine ice sheet instability could trigger a tipping point in West Antarctica. Crossing either of these tipping points leads to accelerated global sea level rise.

When fresh water gets released as a consequence of Greenland melting, a threshold may be crossed which leads to disruption of the thermohaline circulation. The thermohaline circulation transports heat northward which is important for temperature regulation in the Atlantic region. Risks for a complete shutdown are low to moderate under the Paris agreement levels of warming.

Other examples of possible large scale tipping elements are a shift in El Niño–Southern Oscillation. After crossing a tipping point, the warm phase (El Niño) would start to occur more often. Lastly, the southern ocean, which now absorbs a lot of carbon, might switch to a state where it does not do this anymore.

Regional tipping elements

Climate change can trigger regional tipping points as well. Examples are the disappearance of Arctic sea ice, the establishment of woody species in tundra, permafrost loss, the collapse of the monsoon of South Asia and a strengthening of the West African monsoon which would lead to greening of the Sahara and Sahel. Deforestation may trigger a tipping point in rainforests (i.e. Savannization in the Amazon rainforest, ...). As rain forests recycle a large part of their rainfall, when a portion of the forest is destroyed local droughts may threaten the remainder. Finally, boreal forests are considered a tipping element as well. Local warming causes trees to die at a higher rate than before, in proportion to the rise in temperature. As more trees die, the woodland becomes more open, leading to further warming and making forests more susceptible to fire. The tipping point is difficult to predict, but is estimated to be between 3–4 °C of global temperature rise.

Cascading tipping points

Crossing a threshold in one part of the climate system may trigger another tipping element to tip into a new state. These are so-called cascading tipping points. Ice loss in West Antarctica and Greenland will significantly alter ocean circulation. Sustained warming of the northern high latitudes as a result of this process could activate tipping elements in that region, such as permafrost degradation, loss of Arctic sea ice, and Boreal forest dieback. This illustrates that even at relatively low levels of global warming, relatively stable tipping elements may be activated.

Timothy Lenton at Exeter University, England and his team of researchers, had first warned in their landmark 7 February 2008 PNAS paper, about the "risks of climate tipping points." In 2008, Lenton and his team "thought the dangers would only arise when global warming exceeded 5 degrees Celsius (9 degrees Fahrenheit) above pre-industrial levels." A new study published in Nature on 27 November 2019 by Lenton and 6 co-authors, warned in language that is "much starker" than the Intergovernmental Panel on Climate Change's forecasts, that risks are "much more likely and much more imminent" and that some "may already have been breached."

Early warning signals

For some of the tipping points described above, it may be possible to detect whether that part of the climate system is getting closer to a tipping point; however, detection can note only that abrupt changes are likely, while predicting when and where they will occur remains difficult. A premier mode of detection for these warning signals is through natural archives like sediments, ice caps, and tree rings, where past changes in climate can be observed. All parts of the climate system are sometimes disturbed by weather events. After the disruption, the system moves back to its equilibrium. A storm may damage sea ice, which grows back after the storm has passed. If a system is getting closer to tipping, this restoration to its normal state might take increasingly longer, which can be used as a warning sign of tipping.

Changes in the Arctic

A 2019 UNEP study indicates that now at least for the Arctic and the Greenland ice sheet a tipping point has already been reached. Because of dewing of permafrost soil, more methane (in addition to other short-lived climate pollutant) could enter the atmosphere earlier than previously predicted and the loss of reflecting ice shields has started a powerful positive feedback loop leading to ever higher temperatures. The resulting accelerating climate instability in the polar region has potential to affect the global climate, outdating previous predictions about the point in the future when global tipping will occur.

A more regional tipping point may have already been reached in the form of a mass recession of Arctic sea ice. According to scientist Ron Lindsay at the University of Washington Applied Physics Laboratory, a tipping point in the Arctic materializes as a positive feedback loop, where "increased summer melt means decreased winter growth and then even more melting the next summer, and so on." The loss of Arctic sea ice, while detrimental to the region, also holds severe consequences for the rest of the globe. Critically important is the role of sea ice in increasing the Earth's albedo, or reflectivity. Sea ice has an albedo level of 0.5 to 0.7, reflecting fifty to seventy percent of incoming energy, while the ocean beneath has an albedo of only .06, reflecting only six percent of incoming energy. As sea ice decreases and exposes the less reflective ocean, albedo decreases across the region. Summer sea ice is of particular importance, reflecting approximately fifty percent of incoming radiation back into space at a time when there is already an increase in daylight in the Arctic. NOAA (National Oceanic and Atmospheric Administration) notes that in September 2019, "the sea ice cover reached its annual summer minimum, tying with 2007 and 2016 for second-smallest on record."

In June 2019, satellite images from around the Arctic showed burning fires that are farther north and of greater magnitude than at any time in the 16-year satellite record, and some of the fires appear to have ignited peat soils. Peat is an accumulation of partially decayed vegetation and is an efficient carbon sink. Scientists are concerned because the long-lasting peat fires release their stored carbon back to the atmosphere, contributing to further warming. The fires in June 2019, for example, released as much carbon dioxide as Sweden's annual greenhouse gas emissions.

Tipping point effects

If the climate tips into a hothouse Earth scenario, some scientists warn of food and water shortages, hundreds of millions of people being displaced by rising sea levels, unhealthy and unlivable conditions, and coastal storms having larger impacts. Runaway climate change of 4–5 °C can make swathes of the planet around the equator uninhabitable, with sea levels up to 60 metres (197 ft) higher than they are today. Humans cannot survive if the air is too moist and hot, which would happen for the majority of human populations if global temperatures rise by 11–12 °C, as land masses warm faster than the global average. Effects like these have been popularized in books like The Uninhabitable Earth and The End of Nature.

Greenhouse effect

From Wikipedia, the free encyclopedia
 

Greenhouse gases allow sunlight to pass through the atmosphere, but then absorb and reflect the infrared radiation (heat) the planet emits
 
Quantitative analysis: Energy flows between space, the atmosphere, and Earth's surface, with greenhouse gases in the atmosphere capturing a substantial portion of the heat reflected from the earth's surface.

The greenhouse effect is the process by which radiation from a planet's atmosphere warms the planet's surface to a temperature above what it would be without this atmosphere.

Radiatively active gases (i.e., greenhouse gases) in a planet's atmosphere radiate energy in all directions. Part of this radiation is directed towards the surface, thus warming it. The intensity of downward radiation – that is, the strength of the greenhouse effect – depends on the amount of greenhouse gases that the atmosphere contains. The temperature rises until the intensity of upward radiation from the surface, thus cooling it, balances the downward flow of energy.

Earth's natural greenhouse effect is critical to supporting life and initially was a precursor to life moving out of the ocean onto land. Human activities, mainly the burning of fossil fuels and clearcutting of forests, have increased the greenhouse effect and caused global warming.

The planet Venus experienced a runaway greenhouse effect, resulting in an atmosphere which is 96% carbon dioxide, and a surface atmospheric pressure roughly the same as found 900 m (3,000 ft) underwater on Earth. Venus may have had water oceans, but they would have boiled off as the mean surface temperature rose to the current 735 K (462 °C; 863 °F).

The term greenhouse effect is a slight misnomer, in the sense that physical greenhouses warm via a different mechanism. The greenhouse effect as an atmospheric mechanism functions through radiative heat loss while a traditional greenhouse as a built structure blocks convective heat loss.[2] The result, however, is an increase in temperature in both cases.

History

The existence of the greenhouse effect, while not named as such, was proposed by Joseph Fourier in 1824. The argument and the evidence were further strengthened by Claude Pouillet in 1827 and 1838. John Tyndall was the first to measure the infrared absorption and emission of various gases and vapors. From 1859 onwards, he showed that the effect was due to a very small proportion of the atmosphere, with the main gases having no effect, and was largely due to water vapor, though small percentages of hydrocarbons and carbon dioxide had a significant effect. The effect was more fully quantified by Svante Arrhenius in 1896, who made the first quantitative prediction of global warming due to a hypothetical doubling of atmospheric carbon dioxide. However, the term "greenhouse" was not used to refer to this effect by any of these scientists; the term was first used in this way by Nils Gustaf Ekholm in 1901.

Description

The solar radiation spectrum for direct light at both the top of Earth's atmosphere and at sea level

Earth receives energy from the Sun in the form of ultraviolet, visible, and near-infrared radiation. About 26% of the incoming solar energy is reflected back to space by the atmosphere and clouds, and 19% is absorbed by the atmosphere and clouds. Most of the remaining energy is absorbed at the surface of Earth. Because the Earth's surface is colder than the Sun, it radiates at wavelengths that are much longer than the wavelengths that were absorbed. Most of this thermal radiation is absorbed by the atmosphere and warms it. The atmosphere also gains heat by sensible and latent heat fluxes from the surface. The atmosphere radiates energy both upwards and downwards; the part radiated downwards is absorbed by the surface of Earth. This leads to a higher equilibrium temperature than if the atmosphere did not radiate.

An ideal thermally conductive blackbody at the same distance from the Sun as Earth would have a temperature of about 5.3 °C (41.5 °F). However, because Earth reflects about 30% of the incoming sunlight, this idealized planet's effective temperature (the temperature of a blackbody that would emit the same amount of radiation) would be about −18 °C (0 °F). The surface temperature of this hypothetical planet is 33 °C (59 °F) below Earth's actual surface temperature of approximately 14 °C (57 °F). The greenhouse effect is the contribution of greenhouse gases to this difference.

Details

The idealized greenhouse model is a simplification. In reality, the atmosphere near the Earth's surface is largely opaque to thermal radiation and most heat loss from the surface is by convection. However radiative energy losses become increasingly important higher in the atmosphere, largely because of the decreasing concentration of water vapor, an important greenhouse gas. Rather than the surface itself, it is more realistic to think of the greenhouse effect as applying to a layer in the mid-troposphere, which is effectively coupled to the surface by a lapse rate. A simple picture also assumes a steady state, but in the real world, the diurnal cycle, as well as the seasonal cycle and weather disturbances, complicate matters. Solar heating applies only during daytime. During the night, the atmosphere cools somewhat, but not greatly, because its emissivity is low. Diurnal temperature changes decrease with height in the atmosphere.

Within the region where radiative effects are important, the description given by the idealized greenhouse model becomes realistic. Earth's surface, warmed to an "effective temperature" around −18 °C (0 °F), radiates long-wavelength, infrared heat in the range of 4–100 μm. At these wavelengths, greenhouse gases that were largely transparent to incoming solar radiation are more absorbent. Each layer of the atmosphere with greenhouse gases absorbs some of the heat being radiated upwards from lower layers. It reradiates in all directions, both upwards and downwards; in equilibrium (by definition) the same amount as it has absorbed. This results in more warmth below. Increasing the concentration of the gases increases the amount of absorption and re-radiation, and thereby further warms the layers and ultimately the surface below.

Greenhouse gases—including most diatomic gases with two different atoms (such as carbon monoxide, CO) and all gases with three or more atoms—are able to absorb and emit infrared radiation. Though more than 99% of the dry atmosphere is IR transparent (because the main constituents—N
2
, O
2
, and Ar—are not able to directly absorb or emit infrared radiation), intermolecular collisions cause the energy absorbed and emitted by the greenhouse gases to be shared with the other, non-IR-active, gases.

Greenhouse gases

By their percentage contribution to the greenhouse effect on Earth the four major gases are:

Atmospheric gases only absorb some wavelengths of energy but are transparent to others. The absorption patterns of water vapor (blue peaks) and carbon dioxide (pink peaks) overlap in some wavelengths. Carbon dioxide is not as strong a greenhouse gas as water vapor, but it absorbs energy in longer wavelengths (12–15 micrometers) that water vapor does not, partially closing the "window" through which heat radiated by the surface would normally escape to space. (Illustration NASA, Robert Rohde)

It is not possible to assign a specific percentage to each gas because the absorption and emission bands of the gases overlap (hence the ranges given above). Clouds also absorb and emit infrared radiation and thus affect the radiative properties of the atmosphere.

Role in climate change


The Keeling Curve of atmospheric CO2 concentrations measured at Mauna Loa Observatory.

Strengthening of the greenhouse effect through human activities is known as the enhanced (or anthropogenic) greenhouse effect. This increase in radiative forcing from human activity has been observed directly and is attributable mainly to increased atmospheric carbon dioxide levels. According to the 2014 Assessment Report from the Intergovernmental Panel on Climate Change, "atmospheric concentrations of carbon dioxide, methane and nitrous oxide are unprecedented in at least the last 800,000 years. Their effects, together with those of other anthropogenic drivers, have been detected throughout the climate system and are extremely likely to have been the dominant cause of the observed warming since the mid-20th century'".

CO
2
is produced by fossil fuel burning and other activities such as cement production and tropical deforestation. Measurements of CO
2
from the Mauna Loa observatory show that concentrations have increased from about 313 parts per million (ppm) in 1960, passing the 400 ppm milestone on May 9, 2013. The current observed amount of CO
2
exceeds the geological record maxima (~300 ppm) from ice core data. The effect of combustion-produced carbon dioxide on the global climate, a special case of the greenhouse effect first described in 1896 by Svante Arrhenius, has also been called the Callendar effect.

Over the past 800,000 years, ice core data shows that carbon dioxide has varied from values as low as 180 ppm to the pre-industrial level of 270 ppm. Paleoclimatologists consider variations in carbon dioxide concentration to be a fundamental factor influencing climate variations over this time scale.

Real greenhouses

The "greenhouse effect" of the atmosphere is named by analogy to greenhouses which become warmer in sunlight. However, a greenhouse is not primarily warmed by the "greenhouse effect". "Greenhouse effect" is actually a misnomer since heating in the usual greenhouse is due to the reduction of convection, while the "greenhouse effect" works by preventing absorbed heat from leaving the structure through radiative transfer.

A greenhouse is built of any material that passes sunlight: usually glass or plastic. The sun warms the ground and contents inside just like the outside, and these then warm the air. Outside, the warm air near the surface rises and mixes with cooler air aloft, keeping the temperature lower than inside, where the air continues to heat up because it is confined within the greenhouse. This can be demonstrated by opening a small window near the roof of a greenhouse: the temperature will drop considerably. It was demonstrated experimentally (R. W. Wood, 1909) that a (not heated) "greenhouse" with a cover of rock salt (which is transparent to infrared) heats up an enclosure similarly to one with a glass cover. Thus greenhouses work primarily by preventing convective cooling.

Heated greenhouses are yet another matter: as they have an internal source of heating, it is desirable to minimize the amount of heat leaking out by radiative cooling. This can be done through the use of adequate glazing.

It is possible in theory to build a greenhouse that lowers its thermal emissivity during dark hours; such a greenhouse would trap heat by two different physical mechanisms, combining multiple greenhouse effects, one of which more closely resembles the atmospheric mechanism, rendering the misnomer debate moot.

Related effects

Anti-greenhouse effect

The anti-greenhouse effect is a mechanism similar and symmetrical to the greenhouse effect: in the greenhouse effect, the atmosphere lets radiation in while not letting thermal radiation out, thus warming the body surface; in the anti-greenhouse effect, the atmosphere keeps radiation out while letting thermal radiation out, which lowers the equilibrium surface temperature. Such an effect has been proposed for Saturn's moon Titan.

Runaway greenhouse effect

A runaway greenhouse effect occurs if positive feedbacks lead to the evaporation of all greenhouse gases into the atmosphere. A runaway greenhouse effect involving carbon dioxide and water vapor has long ago been hypothesized to have occurred on Venus, this idea is still largely accepted.

Bodies other than Earth

The 'greenhouse effect' on Venus is particularly large for several reasons:

  1. It is nearer to the Sun than Earth by about 30%.
  2. Its very dense atmosphere consists mainly of carbon dioxide.

"Venus experienced a runaway greenhouse in the past, and we expect that Earth will in about 2 billion years as solar luminosity increases".

Titan is a body with both a greenhouse effect and an anti-greenhouse effect. The presence of N2, CH4, and H2 in the atmosphere contribute to a greenhouse effect, increasing the surface temperature by 21K over the expected temperature of the body with no atmosphere. The existence of a high-altitude haze, which absorbs wavelengths of solar radiation but is transparent to infrared, contribute to an anti-greenhouse effect of approximately 9K. The net effect of these two phenomena result is a net warming of 21K- 9K= 12K, so Titan is 12 K warmer than it would be if there were no atmosphere.

 

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...