Search This Blog

Tuesday, November 23, 2021

Knowledge representation and reasoning

From Wikipedia, the free encyclopedia

Knowledge representation and reasoning (KRR, KR&R, KR²) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build. Knowledge representation and reasoning also incorporates findings from logic to automate various kinds of reasoning, such as the application of rules or the relations of sets and subsets.

Examples of knowledge representation formalisms include semantic nets, systems architecture, frames, rules, and ontologies. Examples of automated reasoning engines include inference engines, theorem provers, and classifiers.

History

The earliest work in computerized knowledge representation was focused on general problem-solvers such as the General Problem Solver (GPS) system developed by Allen Newell and Herbert A. Simon in 1959. These systems featured data structures for planning and decomposition. The system would begin with a goal. It would then decompose that goal into sub-goals and then set out to construct strategies that could accomplish each subgoal.

In these early days of AI, general search algorithms such as A* were also developed. However, the amorphous problem definitions for systems such as GPS meant that they worked only for very constrained toy domains (e.g. the "blocks world"). In order to tackle non-toy problems, AI researchers such as Ed Feigenbaum and Frederick Hayes-Roth realized that it was necessary to focus systems on more constrained problems.

These efforts led to the cognitive revolution in psychology and to the phase of AI focused on knowledge representation that resulted in expert systems in the 1970s and 80s, production systems, frame languages, etc. Rather than general problem solvers, AI changed its focus to expert systems that could match human competence on a specific task, such as medical diagnosis.

Expert systems gave us the terminology still in use today where AI systems are divided into a knowledge base, with facts about the world and rules, and an inference engine, which applies the rules to the knowledge base in order to answer questions and solve problems. In these early systems the knowledge base tended to be a fairly flat structure, essentially assertions about the values of variables used by the rules.

In addition to expert systems, other researchers developed the concept of frame-based languages in the mid-1980s. A frame is similar to an object class: It is an abstract description of a category describing things in the world, problems, and potential solutions. Frames were originally used on systems geared toward human interaction, e.g. understanding natural language and the social settings in which various default expectations such as ordering food in a restaurant narrow the search space and allow the system to choose appropriate responses to dynamic situations.

It was not long before the frame communities and the rule-based researchers realized that there was a synergy between their approaches. Frames were good for representing the real world, described as classes, subclasses, slots (data values) with various constraints on possible values. Rules were good for representing and utilizing complex logic such as the process to make a medical diagnosis. Integrated systems were developed that combined frames and rules. One of the most powerful and well known was the 1983 Knowledge Engineering Environment (KEE) from Intellicorp. KEE had a complete rule engine with forward and backward chaining. It also had a complete frame-based knowledge base with triggers, slots (data values), inheritance, and message passing. Although message passing originated in the object-oriented community rather than AI it was quickly embraced by AI researchers as well in environments such as KEE and in the operating systems for Lisp machines from Symbolics, Xerox, and Texas Instruments.

The integration of frames, rules, and object-oriented programming was significantly driven by commercial ventures such as KEE and Symbolics spun off from various research projects. At the same time as this was occurring, there was another strain of research that was less commercially focused and was driven by mathematical logic and automated theorem proving. One of the most influential languages in this research was the KL-ONE language of the mid-'80s. KL-ONE was a frame language that had a rigorous semantics, formal definitions for concepts such as an Is-A relation. KL-ONE and languages that were influenced by it such as Loom had an automated reasoning engine that was based on formal logic rather than on IF-THEN rules. This reasoner is called the classifier. A classifier can analyze a set of declarations and infer new assertions, for example, redefine a class to be a subclass or superclass of some other class that wasn't formally specified. In this way the classifier can function as an inference engine, deducing new facts from an existing knowledge base. The classifier can also provide consistency checking on a knowledge base (which in the case of KL-ONE languages is also referred to as an Ontology).

Another area of knowledge representation research was the problem of common sense reasoning. One of the first realizations learned from trying to make software that can function with human natural language was that humans regularly draw on an extensive foundation of knowledge about the real world that we simply take for granted but that is not at all obvious to an artificial agent. Basic principles of common sense physics, causality, intentions, etc. An example is the frame problem, that in an event driven logic there need to be axioms that state things maintain position from one moment to the next unless they are moved by some external force. In order to make a true artificial intelligence agent that can converse with humans using natural language and can process basic statements and questions about the world, it is essential to represent this kind of knowledge. One of the most ambitious programs to tackle this problem was Doug Lenat's Cyc project. Cyc established its own Frame language and had large numbers of analysts document various areas of common sense reasoning in that language. The knowledge recorded in Cyc included common sense models of time, causality, physics, intentions, and many others.

The starting point for knowledge representation is the knowledge representation hypothesis first formalized by Brian C. Smith in 1985:

Any mechanically embodied intelligent process will be comprised of structural ingredients that a) we as external observers naturally take to represent a propositional account of the knowledge that the overall process exhibits, and b) independent of such external semantic attribution, play a formal but causal and essential role in engendering the behavior that manifests that knowledge.

Currently, one of the most active areas of knowledge representation research are projects associated with the Semantic Web. The Semantic Web seeks to add a layer of semantics (meaning) on top of the current Internet. Rather than indexing web sites and pages via keywords, the Semantic Web creates large ontologies of concepts. Searching for a concept will be more effective than traditional text only searches. Frame languages and automatic classification play a big part in the vision for the future Semantic Web. The automatic classification gives developers technology to provide order on a constantly evolving network of knowledge. Defining ontologies that are static and incapable of evolving on the fly would be very limiting for Internet-based systems. The classifier technology provides the ability to deal with the dynamic environment of the Internet.

Recent projects funded primarily by the Defense Advanced Research Projects Agency (DARPA) have integrated frame languages and classifiers with markup languages based on XML. The Resource Description Framework (RDF) provides the basic capability to define classes, subclasses, and properties of objects. The Web Ontology Language (OWL) provides additional levels of semantics and enables integration with classification engines.

Overview

Knowledge-representation is a field of artificial intelligence that focuses on designing computer representations that capture information about the world that can be used for solving complex problems.

The justification for knowledge representation is that conventional procedural code is not the best formalism to use to solve complex problems. Knowledge representation makes complex software easier to define and maintain than procedural code and can be used in expert systems.

For example, talking to experts in terms of business rules rather than code lessens the semantic gap between users and developers and makes development of complex systems more practical.

Knowledge representation goes hand in hand with automated reasoning because one of the main purposes of explicitly representing knowledge is to be able to reason about that knowledge, to make inferences, assert new knowledge, etc. Virtually all knowledge representation languages have a reasoning or inference engine as part of the system.

A key trade-off in the design of a knowledge representation formalism is that between expressivity and practicality. The ultimate knowledge representation formalism in terms of expressive power and compactness is First Order Logic (FOL). There is no more powerful formalism than that used by mathematicians to define general propositions about the world. However, FOL has two drawbacks as a knowledge representation formalism: ease of use and practicality of implementation. First order logic can be intimidating even for many software developers. Languages that do not have the complete formal power of FOL can still provide close to the same expressive power with a user interface that is more practical for the average developer to understand. The issue of practicality of implementation is that FOL in some ways is too expressive. With FOL it is possible to create statements (e.g. quantification over infinite sets) that would cause a system to never terminate if it attempted to verify them.

Thus, a subset of FOL can be both easier to use and more practical to implement. This was a driving motivation behind rule-based expert systems. IF-THEN rules provide a subset of FOL but a very useful one that is also very intuitive. The history of most of the early AI knowledge representation formalisms; from databases to semantic nets to theorem provers and production systems can be viewed as various design decisions on whether to emphasize expressive power or computability and efficiency.

In a key 1993 paper on the topic, Randall Davis of MIT outlined five distinct roles to analyze a knowledge representation framework:

  • A knowledge representation (KR) is most fundamentally a surrogate, a substitute for the thing itself, used to enable an entity to determine consequences by thinking rather than acting, i.e., by reasoning about the world rather than taking action in it.
  • It is a set of ontological commitments, i.e., an answer to the question: In what terms should I think about the world?
  • It is a fragmentary theory of intelligent reasoning, expressed in terms of three components: (i) the representation's fundamental conception of intelligent reasoning; (ii) the set of inferences the representation sanctions; and (iii) the set of inferences it recommends.
  • It is a medium for pragmatically efficient computation, i.e., the computational environment in which thinking is accomplished. One contribution to this pragmatic efficiency is supplied by the guidance a representation provides for organizing information so as to facilitate making the recommended inferences.
  • It is a medium of human expression, i.e., a language in which we say things about the world.

Knowledge representation and reasoning are a key enabling technology for the Semantic Web. Languages based on the Frame model with automatic classification provide a layer of semantics on top of the existing Internet. Rather than searching via text strings as is typical today, it will be possible to define logical queries and find pages that map to those queries. The automated reasoning component in these systems is an engine known as the classifier. Classifiers focus on the subsumption relations in a knowledge base rather than rules. A classifier can infer new classes and dynamically change the ontology as new information becomes available. This capability is ideal for the ever-changing and evolving information space of the Internet.

The Semantic Web integrates concepts from knowledge representation and reasoning with markup languages based on XML. The Resource Description Framework (RDF) provides the basic capabilities to define knowledge-based objects on the Internet with basic features such as Is-A relations and object properties. The Web Ontology Language (OWL) adds additional semantics and integrates with automatic classification reasoners.

Characteristics

In 1985, Ron Brachman categorized the core issues for knowledge representation as follows:

  • Primitives. What is the underlying framework used to represent knowledge? Semantic networks were one of the first knowledge representation primitives. Also, data structures and algorithms for general fast search. In this area, there is a strong overlap with research in data structures and algorithms in computer science. In early systems, the Lisp programming language, which was modeled after the lambda calculus, was often used as a form of functional knowledge representation. Frames and Rules were the next kind of primitive. Frame languages had various mechanisms for expressing and enforcing constraints on frame data. All data in frames are stored in slots. Slots are analogous to relations in entity-relation modeling and to object properties in object-oriented modeling. Another technique for primitives is to define languages that are modeled after First Order Logic (FOL). The most well known example is Prolog, but there are also many special purpose theorem proving environments. These environments can validate logical models and can deduce new theories from existing models. Essentially they automate the process a logician would go through in analyzing a model. Theorem proving technology had some specific practical applications in the areas of software engineering. For example, it is possible to prove that a software program rigidly adheres to a formal logical specification.
  • Meta-representation. This is also known as the issue of reflection in computer science. It refers to the capability of a formalism to have access to information about its own state. An example would be the meta-object protocol in Smalltalk and CLOS that gives developers run time access to the class objects and enables them to dynamically redefine the structure of the knowledge base even at run time. Meta-representation means the knowledge representation language is itself expressed in that language. For example, in most Frame based environments all frames would be instances of a frame class. That class object can be inspected at run time, so that the object can understand and even change its internal structure or the structure of other parts of the model. In rule-based environments, the rules were also usually instances of rule classes. Part of the meta protocol for rules were the meta rules that prioritized rule firing.
  • Incompleteness. Traditional logic requires additional axioms and constraints to deal with the real world as opposed to the world of mathematics. Also, it is often useful to associate degrees of confidence with a statement. I.e., not simply say "Socrates is Human" but rather "Socrates is Human with confidence 50%". This was one of the early innovations from expert systems research which migrated to some commercial tools, the ability to associate certainty factors with rules and conclusions. Later research in this area is known as fuzzy logic.
  • Definitions and universals vs. facts and defaults. Universals are general statements about the world such as "All humans are mortal". Facts are specific examples of universals such as "Socrates is a human and therefore mortal". In logical terms definitions and universals are about universal quantification while facts and defaults are about existential quantifications. All forms of knowledge representation must deal with this aspect and most do so with some variant of set theory, modeling universals as sets and subsets and definitions as elements in those sets.
  • Non-monotonic reasoning. Non-monotonic reasoning allows various kinds of hypothetical reasoning. The system associates facts asserted with the rules and facts used to justify them and as those facts change updates the dependent knowledge as well. In rule based systems this capability is known as a truth maintenance system.
  • Expressive adequacy. The standard that Brachman and most AI researchers use to measure expressive adequacy is usually First Order Logic (FOL). Theoretical limitations mean that a full implementation of FOL is not practical. Researchers should be clear about how expressive (how much of full FOL expressive power) they intend their representation to be.
  • Reasoning efficiency. This refers to the run time efficiency of the system. The ability of the knowledge base to be updated and the reasoner to develop new inferences in a reasonable period of time. In some ways, this is the flip side of expressive adequacy. In general, the more powerful a representation, the more it has expressive adequacy, the less efficient its automated reasoning engine will be. Efficiency was often an issue, especially for early applications of knowledge representation technology. They were usually implemented in interpreted environments such as Lisp, which were slow compared to more traditional platforms of the time.

Ontology engineering

In the early years of knowledge-based systems the knowledge-bases were fairly small. The knowledge-bases that were meant to actually solve real problems rather than do proof of concept demonstrations needed to focus on well defined problems. So for example, not just medical diagnosis as a whole topic, but medical diagnosis of certain kinds of diseases.

As knowledge-based technology scaled up, the need for larger knowledge bases and for modular knowledge bases that could communicate and integrate with each other became apparent. This gave rise to the discipline of ontology engineering, designing and building large knowledge bases that could be used by multiple projects. One of the leading research projects in this area was the Cyc project. Cyc was an attempt to build a huge encyclopedic knowledge base that would contain not just expert knowledge but common sense knowledge. In designing an artificial intelligence agent, it was soon realized that representing common sense knowledge, knowledge that humans simply take for granted, was essential to make an AI that could interact with humans using natural language. Cyc was meant to address this problem. The language they defined was known as CycL.

After CycL, a number of ontology languages have been developed. Most are declarative languages, and are either frame languages, or are based on first-order logic. Modularity—the ability to define boundaries around specific domains and problem spaces—is essential for these languages because as stated by Tom Gruber, "Every ontology is a treaty- a social agreement among people with common motive in sharing." There are always many competing and differing views that make any general purpose ontology impossible. A general purpose ontology would have to be applicable in any domain and different areas of knowledge need to be unified.

There is a long history of work attempting to build ontologies for a variety of task domains, e.g., an ontology for liquids, the lumped element model widely used in representing electronic circuits (e.g.,), as well as ontologies for time, belief, and even programming itself. Each of these offers a way to see some part of the world.

The lumped element model, for instance, suggests that we think of circuits in terms of components with connections between them, with signals flowing instantaneously along the connections. This is a useful view, but not the only possible one. A different ontology arises if we need to attend to the electrodynamics in the device: Here signals propagate at finite speed and an object (like a resistor) that was previously viewed as a single component with an I/O behavior may now have to be thought of as an extended medium through which an electromagnetic wave flows.

Ontologies can of course be written down in a wide variety of languages and notations (e.g., logic, LISP, etc.); the essential information is not the form of that language but the content, i.e., the set of concepts offered as a way of thinking about the world. Simply put, the important part is notions like connections and components, not the choice between writing them as predicates or LISP constructs.

The commitment made selecting one or another ontology can produce a sharply different view of the task at hand. Consider the difference that arises in selecting the lumped element view of a circuit rather than the electrodynamic view of the same device. As a second example, medical diagnosis viewed in terms of rules (e.g., MYCIN) looks substantially different from the same task viewed in terms of frames (e.g., INTERNIST). Where MYCIN sees the medical world as made up of empirical associations connecting symptom to disease, INTERNIST sees a set of prototypes, in particular prototypical diseases, to be matched against the case at hand.

Mathematical logic

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Mathematical_logic

Mathematical logic is the study of logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.

Since its inception, mathematical logic has both contributed to, and has been motivated by, the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and analysis. In the early 20th century it was shaped by David Hilbert's program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to the program, and clarified the issues involved in proving consistency. Work in set theory showed that almost all ordinary mathematics can be formalized in terms of sets, although there are some theorems that cannot be proven in common axiom systems for set theory. Contemporary work in the foundations of mathematics often focuses on establishing which parts of mathematics can be formalized in particular formal systems (as in reverse mathematics) rather than trying to find theories in which all of mathematics can be developed.

Subfields and scope

The Handbook of Mathematical Logic in 1977 makes a rough division of contemporary mathematical logic into four areas:

  1. set theory
  2. model theory
  3. recursion theory, and
  4. proof theory and constructive mathematics (considered as parts of a single area).

Each area has a distinct focus, although many techniques and results are shared among multiple areas. The borderlines amongst these fields, and the lines separating mathematical logic and other fields of mathematics, are not always sharp. Gödel's incompleteness theorem marks not only a milestone in recursion theory and proof theory, but has also led to Löb's theorem in modal logic. The method of forcing is employed in set theory, model theory, and recursion theory, as well as in the study of intuitionistic mathematics.

The mathematical field of category theory uses many formal axiomatic methods, and includes the study of categorical logic, but category theory is not ordinarily considered a subfield of mathematical logic. Because of its applicability in diverse fields of mathematics, mathematicians including Saunders Mac Lane have proposed category theory as a foundational system for mathematics, independent of set theory. These foundations use toposes, which resemble generalized models of set theory that may employ classical or nonclassical logic.

History

Mathematical logic emerged in the mid-19th century as a subfield of mathematics, reflecting the confluence of two traditions: formal philosophical logic and mathematics. "Mathematical logic, also called 'logistic', 'symbolic logic', the 'algebra of logic', and, more recently, simply 'formal logic', is the set of logical theories elaborated in the course of the last [nineteenth] century with the aid of an artificial notation and a rigorously deductive method." Before this emergence, logic was studied with rhetoric, with calculationes, through the syllogism, and with philosophy. The first half of the 20th century saw an explosion of fundamental results, accompanied by vigorous debate over the foundations of mathematics.

Early history

Theories of logic were developed in many cultures in history, including China, India, Greece and the Islamic world. Greek methods, particularly Aristotelian logic (or term logic) as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic. In 18th-century Europe, attempts to treat the operations of formal logic in a symbolic or algebraic way had been made by philosophical mathematicians including Leibniz and Lambert, but their labors remained isolated and little known.

19th century

In the middle of the nineteenth century, George Boole and then Augustus De Morgan presented systematic mathematical treatments of logic. Their work, building on work by algebraists such as George Peacock, extended the traditional Aristotelian doctrine of logic into a sufficient framework for the study of foundations of mathematics. Charles Sanders Peirce later built upon the work of Boole to develop a logical system for relations and quantifiers, which he published in several papers from 1870 to 1885.

Gottlob Frege presented an independent development of logic with quantifiers in his Begriffsschrift, published in 1879, a work generally considered as marking a turning point in the history of logic. Frege's work remained obscure, however, until Bertrand Russell began to promote it near the turn of the century. The two-dimensional notation Frege developed was never widely adopted and is unused in contemporary texts.

From 1890 to 1905, Ernst Schröder published Vorlesungen über die Algebra der Logik in three volumes. This work summarized and extended the work of Boole, De Morgan, and Peirce, and was a comprehensive reference to symbolic logic as it was understood at the end of the 19th century.

Foundational theories

Concerns that mathematics had not been built on a proper foundation led to the development of axiomatic systems for fundamental areas of mathematics such as arithmetic, analysis, and geometry.

In logic, the term arithmetic refers to the theory of the natural numbers. Giuseppe Peano published a set of axioms for arithmetic that came to bear his name (Peano axioms), using a variation of the logical system of Boole and Schröder but adding quantifiers. Peano was unaware of Frege's work at the time. Around the same time Richard Dedekind showed that the natural numbers are uniquely characterized by their induction properties. Dedekind proposed a different characterization, which lacked the formal logical character of Peano's axioms. Dedekind's work, however, proved theorems inaccessible in Peano's system, including the uniqueness of the set of natural numbers (up to isomorphism) and the recursive definitions of addition and multiplication from the successor function and mathematical induction.

In the mid-19th century, flaws in Euclid's axioms for geometry became known. In addition to the independence of the parallel postulate, established by Nikolai Lobachevsky in 1826, mathematicians discovered that certain theorems taken for granted by Euclid were not in fact provable from his axioms. Among these is the theorem that a line contains at least two points, or that circles of the same radius whose centers are separated by that radius must intersect. Hilbert developed a complete set of axioms for geometry, building on previous work by Pasch. The success in axiomatizing geometry motivated Hilbert to seek complete axiomatizations of other areas of mathematics, such as the natural numbers and the real line. This would prove to be a major area of research in the first half of the 20th century.

The 19th century saw great advances in the theory of real analysis, including theories of convergence of functions and Fourier series. Mathematicians such as Karl Weierstrass began to construct functions that stretched intuition, such as nowhere-differentiable continuous functions. Previous conceptions of a function as a rule for computation, or a smooth graph, were no longer adequate. Weierstrass began to advocate the arithmetization of analysis, which sought to axiomatize analysis using properties of the natural numbers. The modern (ε, δ)-definition of limit and continuous functions was already developed by Bolzano in 1817, but remained relatively unknown. Cauchy in 1821 defined continuity in terms of infinitesimals (see Cours d'Analyse, page 34). In 1858, Dedekind proposed a definition of the real numbers in terms of Dedekind cuts of rational numbers, a definition still employed in contemporary texts.

Georg Cantor developed the fundamental concepts of infinite set theory. His early results developed the theory of cardinality and proved that the reals and the natural numbers have different cardinalities. Over the next twenty years, Cantor developed a theory of transfinite numbers in a series of publications. In 1891, he published a new proof of the uncountability of the real numbers that introduced the diagonal argument, and used this method to prove Cantor's theorem that no set can have the same cardinality as its powerset. Cantor believed that every set could be well-ordered, but was unable to produce a proof for this result, leaving it as an open problem in 1895.

20th century

In the early decades of the 20th century, the main areas of study were set theory and formal logic. The discovery of paradoxes in informal set theory caused some to wonder whether mathematics itself is inconsistent, and to look for proofs of consistency.

In 1900, Hilbert posed a famous list of 23 problems for the next century. The first two of these were to resolve the continuum hypothesis and prove the consistency of elementary arithmetic, respectively; the tenth was to produce a method that could decide whether a multivariate polynomial equation over the integers has a solution. Subsequent work to resolve these problems shaped the direction of mathematical logic, as did the effort to resolve Hilbert's Entscheidungsproblem, posed in 1928. This problem asked for a procedure that would decide, given a formalized mathematical statement, whether the statement is true or false.

Set theory and paradoxes

Ernst Zermelo gave a proof that every set could be well-ordered, a result Georg Cantor had been unable to obtain. To achieve the proof, Zermelo introduced the axiom of choice, which drew heated debate and research among mathematicians and the pioneers of set theory. The immediate criticism of the method led Zermelo to publish a second exposition of his result, directly addressing criticisms of his proof. This paper led to the general acceptance of the axiom of choice in the mathematics community.

Skepticism about the axiom of choice was reinforced by recently discovered paradoxes in naive set theory. Cesare Burali-Forti was the first to state a paradox: the Burali-Forti paradox shows that the collection of all ordinal numbers cannot form a set. Very soon thereafter, Bertrand Russell discovered Russell's paradox in 1901, and Jules Richard discovered Richard's paradox.

Zermelo provided the first set of axioms for set theory. These axioms, together with the additional axiom of replacement proposed by Abraham Fraenkel, are now called Zermelo–Fraenkel set theory (ZF). Zermelo's axioms incorporated the principle of limitation of size to avoid Russell's paradox.

In 1910, the first volume of Principia Mathematica by Russell and Alfred North Whitehead was published. This seminal work developed the theory of functions and cardinality in a completely formal framework of type theory, which Russell and Whitehead developed in an effort to avoid the paradoxes. Principia Mathematica is considered one of the most influential works of the 20th century, although the framework of type theory did not prove popular as a foundational theory for mathematics.

Fraenkel proved that the axiom of choice cannot be proved from the axioms of Zermelo's set theory with urelements. Later work by Paul Cohen showed that the addition of urelements is not needed, and the axiom of choice is unprovable in ZF. Cohen's proof developed the method of forcing, which is now an important tool for establishing independence results in set theory.

Symbolic logic

Leopold Löwenheim and Thoralf Skolem obtained the Löwenheim–Skolem theorem, which says that first-order logic cannot control the cardinalities of infinite structures. Skolem realized that this theorem would apply to first-order formalizations of set theory, and that it implies any such formalization has a countable model. This counterintuitive fact became known as Skolem's paradox.

In his doctoral thesis, Kurt Gödel proved the completeness theorem, which establishes a correspondence between syntax and semantics in first-order logic. Gödel used the completeness theorem to prove the compactness theorem, demonstrating the finitary nature of first-order logical consequence. These results helped establish first-order logic as the dominant logic used by mathematicians.

In 1931, Gödel published On Formally Undecidable Propositions of Principia Mathematica and Related Systems, which proved the incompleteness (in a different meaning of the word) of all sufficiently strong, effective first-order theories. This result, known as Gödel's incompleteness theorem, establishes severe limitations on axiomatic foundations for mathematics, striking a strong blow to Hilbert's program. It showed the impossibility of providing a consistency proof of arithmetic within any formal theory of arithmetic. Hilbert, however, did not acknowledge the importance of the incompleteness theorem for some time.

Gödel's theorem shows that a consistency proof of any sufficiently strong, effective axiom system cannot be obtained in the system itself, if the system is consistent, nor in any weaker system. This leaves open the possibility of consistency proofs that cannot be formalized within the system they consider. Gentzen proved the consistency of arithmetic using a finitistic system together with a principle of transfinite induction. Gentzen's result introduced the ideas of cut elimination and proof-theoretic ordinals, which became key tools in proof theory. Gödel gave a different consistency proof, which reduces the consistency of classical arithmetic to that of intuitionistic arithmetic in higher types.

The first textbook on symbolic logic for the layman was written by Lewis Carroll, author of Alice in Wonderland, in 1896.

Beginnings of the other branches

Alfred Tarski developed the basics of model theory.

Beginning in 1935, a group of prominent mathematicians collaborated under the pseudonym Nicolas Bourbaki to publish Éléments de mathématique, a series of encyclopedic mathematics texts. These texts, written in an austere and axiomatic style, emphasized rigorous presentation and set-theoretic foundations. Terminology coined by these texts, such as the words bijection, injection, and surjection, and the set-theoretic foundations the texts employed, were widely adopted throughout mathematics.

The study of computability came to be known as recursion theory or computability theory, because early formalizations by Gödel and Kleene relied on recursive definitions of functions. When these definitions were shown equivalent to Turing's formalization involving Turing machines, it became clear that a new concept – the computable function – had been discovered, and that this definition was robust enough to admit numerous independent characterizations. In his work on the incompleteness theorems in 1931, Gödel lacked a rigorous concept of an effective formal system; he immediately realized that the new definitions of computability could be used for this purpose, allowing him to state the incompleteness theorems in generality that could only be implied in the original paper.

Numerous results in recursion theory were obtained in the 1940s by Stephen Cole Kleene and Emil Leon Post. Kleene introduced the concepts of relative computability, foreshadowed by Turing, and the arithmetical hierarchy. Kleene later generalized recursion theory to higher-order functionals. Kleene and Georg Kreisel studied formal versions of intuitionistic mathematics, particularly in the context of proof theory.

Formal logical systems

At its core, mathematical logic deals with mathematical concepts expressed using formal logical systems. These systems, though they differ in many details, share the common property of considering only expressions in a fixed formal language. The systems of propositional logic and first-order logic are the most widely studied today, because of their applicability to foundations of mathematics and because of their desirable proof-theoretic properties. Stronger classical logics such as second-order logic or infinitary logic are also studied, along with Non-classical logics such as intuitionistic logic.

First-order logic

First-order logic is a particular formal system of logic. Its syntax involves only finite expressions as well-formed formulas, while its semantics are characterized by the limitation of all quantifiers to a fixed domain of discourse.

Early results from formal logic established limitations of first-order logic. The Löwenheim–Skolem theorem (1919) showed that if a set of sentences in a countable first-order language has an infinite model then it has at least one model of each infinite cardinality. This shows that it is impossible for a set of first-order axioms to characterize the natural numbers, the real numbers, or any other infinite structure up to isomorphism. As the goal of early foundational studies was to produce axiomatic theories for all parts of mathematics, this limitation was particularly stark.

Gödel's completeness theorem established the equivalence between semantic and syntactic definitions of logical consequence in first-order logic. It shows that if a particular sentence is true in every model that satisfies a particular set of axioms, then there must be a finite deduction of the sentence from the axioms. The compactness theorem first appeared as a lemma in Gödel's proof of the completeness theorem, and it took many years before logicians grasped its significance and began to apply it routinely. It says that a set of sentences has a model if and only if every finite subset has a model, or in other words that an inconsistent set of formulas must have a finite inconsistent subset. The completeness and compactness theorems allow for sophisticated analysis of logical consequence in first-order logic and the development of model theory, and they are a key reason for the prominence of first-order logic in mathematics.

Gödel's incompleteness theorems establish additional limits on first-order axiomatizations. The first incompleteness theorem states that for any consistent, effectively given (defined below) logical system that is capable of interpreting arithmetic, there exists a statement that is true (in the sense that it holds for the natural numbers) but not provable within that logical system (and which indeed may fail in some non-standard models of arithmetic which may be consistent with the logical system). For example, in every logical system capable of expressing the Peano axioms, the Gödel sentence holds for the natural numbers but cannot be proved.

Here a logical system is said to be effectively given if it is possible to decide, given any formula in the language of the system, whether the formula is an axiom, and one which can express the Peano axioms is called "sufficiently strong." When applied to first-order logic, the first incompleteness theorem implies that any sufficiently strong, consistent, effective first-order theory has models that are not elementarily equivalent, a stronger limitation than the one established by the Löwenheim–Skolem theorem. The second incompleteness theorem states that no sufficiently strong, consistent, effective axiom system for arithmetic can prove its own consistency, which has been interpreted to show that Hilbert's program cannot be reached.

Other classical logics

Many logics besides first-order logic are studied. These include infinitary logics, which allow for formulas to provide an infinite amount of information, and higher-order logics, which include a portion of set theory directly in their semantics.

The most well studied infinitary logic is . In this logic, quantifiers may only be nested to finite depths, as in first-order logic, but formulas may have finite or countably infinite conjunctions and disjunctions within them. Thus, for example, it is possible to say that an object is a whole number using a formula of such as

Higher-order logics allow for quantification not only of elements of the domain of discourse, but subsets of the domain of discourse, sets of such subsets, and other objects of higher type. The semantics are defined so that, rather than having a separate domain for each higher-type quantifier to range over, the quantifiers instead range over all objects of the appropriate type. The logics studied before the development of first-order logic, for example Frege's logic, had similar set-theoretic aspects. Although higher-order logics are more expressive, allowing complete axiomatizations of structures such as the natural numbers, they do not satisfy analogues of the completeness and compactness theorems from first-order logic, and are thus less amenable to proof-theoretic analysis.

Another type of logics are fixed-point logics that allow inductive definitions, like one writes for primitive recursive functions.

One can formally define an extension of first-order logic — a notion which encompasses all logics in this section because they behave like first-order logic in certain fundamental ways, but does not encompass all logics in general, e.g. it does not encompass intuitionistic, modal or fuzzy logic.

Lindström's theorem implies that the only extension of first-order logic satisfying both the compactness theorem and the downward Löwenheim–Skolem theorem is first-order logic.

Nonclassical and modal logic

Modal logics include additional modal operators, such as an operator which states that a particular formula is not only true, but necessarily true. Although modal logic is not often used to axiomatize mathematics, it has been used to study the properties of first-order provability and set-theoretic forcing.

Intuitionistic logic was developed by Heyting to study Brouwer's program of intuitionism, in which Brouwer himself avoided formalization. Intuitionistic logic specifically does not include the law of the excluded middle, which states that each sentence is either true or its negation is true. Kleene's work with the proof theory of intuitionistic logic showed that constructive information can be recovered from intuitionistic proofs. For example, any provably total function in intuitionistic arithmetic is computable; this is not true in classical theories of arithmetic such as Peano arithmetic.

Algebraic logic

Algebraic logic uses the methods of abstract algebra to study the semantics of formal logics. A fundamental example is the use of Boolean algebras to represent truth values in classical propositional logic, and the use of Heyting algebras to represent truth values in intuitionistic propositional logic. Stronger logics, such as first-order logic and higher-order logic, are studied using more complicated algebraic structures such as cylindric algebras.

Set theory

Set theory is the study of sets, which are abstract collections of objects. Many of the basic notions, such as ordinal and cardinal numbers, were developed informally by Cantor before formal axiomatizations of set theory were developed. The first such axiomatization, due to Zermelo, was extended slightly to become Zermelo–Fraenkel set theory (ZF), which is now the most widely used foundational theory for mathematics.

Other formalizations of set theory have been proposed, including von Neumann–Bernays–Gödel set theory (NBG), Morse–Kelley set theory (MK), and New Foundations (NF). Of these, ZF, NBG, and MK are similar in describing a cumulative hierarchy of sets. New Foundations takes a different approach; it allows objects such as the set of all sets at the cost of restrictions on its set-existence axioms. The system of Kripke–Platek set theory is closely related to generalized recursion theory.

Two famous statements in set theory are the axiom of choice and the continuum hypothesis. The axiom of choice, first stated by Zermelo, was proved independent of ZF by Fraenkel, but has come to be widely accepted by mathematicians. It states that given a collection of nonempty sets there is a single set C that contains exactly one element from each set in the collection. The set C is said to "choose" one element from each set in the collection. While the ability to make such a choice is considered obvious by some, since each set in the collection is nonempty, the lack of a general, concrete rule by which the choice can be made renders the axiom nonconstructive. Stefan Banach and Alfred Tarski showed that the axiom of choice can be used to decompose a solid ball into a finite number of pieces which can then be rearranged, with no scaling, to make two solid balls of the original size. This theorem, known as the Banach–Tarski paradox, is one of many counterintuitive results of the axiom of choice.

The continuum hypothesis, first proposed as a conjecture by Cantor, was listed by David Hilbert as one of his 23 problems in 1900. Gödel showed that the continuum hypothesis cannot be disproven from the axioms of Zermelo–Fraenkel set theory (with or without the axiom of choice), by developing the constructible universe of set theory in which the continuum hypothesis must hold. In 1963, Paul Cohen showed that the continuum hypothesis cannot be proven from the axioms of Zermelo–Fraenkel set theory. This independence result did not completely settle Hilbert's question, however, as it is possible that new axioms for set theory could resolve the hypothesis. Recent work along these lines has been conducted by W. Hugh Woodin, although its importance is not yet clear.

Contemporary research in set theory includes the study of large cardinals and determinacy. Large cardinals are cardinal numbers with particular properties so strong that the existence of such cardinals cannot be proved in ZFC. The existence of the smallest large cardinal typically studied, an inaccessible cardinal, already implies the consistency of ZFC. Despite the fact that large cardinals have extremely high cardinality, their existence has many ramifications for the structure of the real line. Determinacy refers to the possible existence of winning strategies for certain two-player games (the games are said to be determined). The existence of these strategies implies structural properties of the real line and other Polish spaces.

Model theory

Model theory studies the models of various formal theories. Here a theory is a set of formulas in a particular formal logic and signature, while a model is a structure that gives a concrete interpretation of the theory. Model theory is closely related to universal algebra and algebraic geometry, although the methods of model theory focus more on logical considerations than those fields.

The set of all models of a particular theory is called an elementary class; classical model theory seeks to determine the properties of models in a particular elementary class, or determine whether certain classes of structures form elementary classes.

The method of quantifier elimination can be used to show that definable sets in particular theories cannot be too complicated. Tarski established quantifier elimination for real-closed fields, a result which also shows the theory of the field of real numbers is decidable. He also noted that his methods were equally applicable to algebraically closed fields of arbitrary characteristic. A modern subfield developing from this is concerned with o-minimal structures.

Morley's categoricity theorem, proved by Michael D. Morley, states that if a first-order theory in a countable language is categorical in some uncountable cardinality, i.e. all models of this cardinality are isomorphic, then it is categorical in all uncountable cardinalities.

A trivial consequence of the continuum hypothesis is that a complete theory with less than continuum many nonisomorphic countable models can have only countably many. Vaught's conjecture, named after Robert Lawson Vaught, says that this is true even independently of the continuum hypothesis. Many special cases of this conjecture have been established.

Recursion theory

Recursion theory, also called computability theory, studies the properties of computable functions and the Turing degrees, which divide the uncomputable functions into sets that have the same level of uncomputability. Recursion theory also includes the study of generalized computability and definability. Recursion theory grew from the work of Rózsa Péter, Alonzo Church and Alan Turing in the 1930s, which was greatly extended by Kleene and Post in the 1940s.

Classical recursion theory focuses on the computability of functions from the natural numbers to the natural numbers. The fundamental results establish a robust, canonical class of computable functions with numerous independent, equivalent characterizations using Turing machines, λ calculus, and other systems. More advanced results concern the structure of the Turing degrees and the lattice of recursively enumerable sets.

Generalized recursion theory extends the ideas of recursion theory to computations that are no longer necessarily finite. It includes the study of computability in higher types as well as areas such as hyperarithmetical theory and α-recursion theory.

Contemporary research in recursion theory includes the study of applications such as algorithmic randomness, computable model theory, and reverse mathematics, as well as new results in pure recursion theory.

Algorithmically unsolvable problems

An important subfield of recursion theory studies algorithmic unsolvability; a decision problem or function problem is algorithmically unsolvable if there is no possible computable algorithm that returns the correct answer for all legal inputs to the problem. The first results about unsolvability, obtained independently by Church and Turing in 1936, showed that the Entscheidungsproblem is algorithmically unsolvable. Turing proved this by establishing the unsolvability of the halting problem, a result with far-ranging implications in both recursion theory and computer science.

There are many known examples of undecidable problems from ordinary mathematics. The word problem for groups was proved algorithmically unsolvable by Pyotr Novikov in 1955 and independently by W. Boone in 1959. The busy beaver problem, developed by Tibor Radó in 1962, is another well-known example.

Hilbert's tenth problem asked for an algorithm to determine whether a multivariate polynomial equation with integer coefficients has a solution in the integers. Partial progress was made by Julia Robinson, Martin Davis and Hilary Putnam. The algorithmic unsolvability of the problem was proved by Yuri Matiyasevich in 1970.

Proof theory and constructive mathematics

Proof theory is the study of formal proofs in various logical deduction systems. These proofs are represented as formal mathematical objects, facilitating their analysis by mathematical techniques. Several deduction systems are commonly considered, including Hilbert-style deduction systems, systems of natural deduction, and the sequent calculus developed by Gentzen.

The study of constructive mathematics, in the context of mathematical logic, includes the study of systems in non-classical logic such as intuitionistic logic, as well as the study of predicative systems. An early proponent of predicativism was Hermann Weyl, who showed it is possible to develop a large part of real analysis using only predicative methods.

Because proofs are entirely finitary, whereas truth in a structure is not, it is common for work in constructive mathematics to emphasize provability. The relationship between provability in classical (or nonconstructive) systems and provability in intuitionistic (or constructive, respectively) systems is of particular interest. Results such as the Gödel–Gentzen negative translation show that it is possible to embed (or translate) classical logic into intuitionistic logic, allowing some properties about intuitionistic proofs to be transferred back to classical proofs.

Recent developments in proof theory include the study of proof mining by Ulrich Kohlenbach and the study of proof-theoretic ordinals by Michael Rathjen.

Applications

"Mathematical logic has been successfully applied not only to mathematics and its foundations (G. Frege, B. Russell, D. Hilbert, P. Bernays, H. Scholz, R. Carnap, S. Lesniewski, T. Skolem), but also to physics (R. Carnap, A. Dittrich, B. Russell, C. E. Shannon, A. N. Whitehead, H. Reichenbach, P. Fevrier), to biology (J. H. Woodger, A. Tarski), to psychology (F. B. Fitch, C. G. Hempel), to law and morals (K. Menger, U. Klug, P. Oppenheim), to economics (J. Neumann, O. Morgenstern), to practical questions (E. C. Berkeley, E. Stamm), and even to metaphysics (J. [Jan] Salamucha, H. Scholz, J. M. Bochenski). Its applications to the history of logic have proven extremely fruitful (J. Lukasiewicz, H. Scholz, B. Mates, A. Becker, E. Moody, J. Salamucha, K. Duerr, Z. Jordan, P. Boehner, J. M. Bochenski, S. [Stanislaw] T. Schayer, D. Ingalls)." "Applications have also been made to theology (F. Drewnowski, J. Salamucha, I. Thomas)."

Connections with computer science

The study of computability theory in computer science is closely related to the study of computability in mathematical logic. There is a difference of emphasis, however. Computer scientists often focus on concrete programming languages and feasible computability, while researchers in mathematical logic often focus on computability as a theoretical concept and on noncomputability.

The theory of semantics of programming languages is related to model theory, as is program verification (in particular, model checking). The Curry–Howard correspondence between proofs and programs relates to proof theory, especially intuitionistic logic. Formal calculi such as the lambda calculus and combinatory logic are now studied as idealized programming languages.

Computer science also contributes to mathematics by developing techniques for the automatic checking or even finding of proofs, such as automated theorem proving and logic programming.

Descriptive complexity theory relates logics to computational complexity. The first significant result in this area, Fagin's theorem (1974) established that NP is precisely the set of languages expressible by sentences of existential second-order logic.

Foundations of mathematics

In the 19th century, mathematicians became aware of logical gaps and inconsistencies in their field. It was shown that Euclid's axioms for geometry, which had been taught for centuries as an example of the axiomatic method, were incomplete. The use of infinitesimals, and the very definition of function, came into question in analysis, as pathological examples such as Weierstrass' nowhere-differentiable continuous function were discovered.

Cantor's study of arbitrary infinite sets also drew criticism. Leopold Kronecker famously stated "God made the integers; all else is the work of man," endorsing a return to the study of finite, concrete objects in mathematics. Although Kronecker's argument was carried forward by constructivists in the 20th century, the mathematical community as a whole rejected them. David Hilbert argued in favor of the study of the infinite, saying "No one shall expel us from the Paradise that Cantor has created."

Mathematicians began to search for axiom systems that could be used to formalize large parts of mathematics. In addition to removing ambiguity from previously naive terms such as function, it was hoped that this axiomatization would allow for consistency proofs. In the 19th century, the main method of proving the consistency of a set of axioms was to provide a model for it. Thus, for example, non-Euclidean geometry can be proved consistent by defining point to mean a point on a fixed sphere and line to mean a great circle on the sphere. The resulting structure, a model of elliptic geometry, satisfies the axioms of plane geometry except the parallel postulate.

With the development of formal logic, Hilbert asked whether it would be possible to prove that an axiom system is consistent by analyzing the structure of possible proofs in the system, and showing through this analysis that it is impossible to prove a contradiction. This idea led to the study of proof theory. Moreover, Hilbert proposed that the analysis should be entirely concrete, using the term finitary to refer to the methods he would allow but not precisely defining them. This project, known as Hilbert's program, was seriously affected by Gödel's incompleteness theorems, which show that the consistency of formal theories of arithmetic cannot be established using methods formalizable in those theories. Gentzen showed that it is possible to produce a proof of the consistency of arithmetic in a finitary system augmented with axioms of transfinite induction, and the techniques he developed to do so were seminal in proof theory.

A second thread in the history of foundations of mathematics involves nonclassical logics and constructive mathematics. The study of constructive mathematics includes many different programs with various definitions of constructive. At the most accommodating end, proofs in ZF set theory that do not use the axiom of choice are called constructive by many mathematicians. More limited versions of constructivism limit themselves to natural numbers, number-theoretic functions, and sets of natural numbers (which can be used to represent real numbers, facilitating the study of mathematical analysis). A common idea is that a concrete means of computing the values of the function must be known before the function itself can be said to exist.

In the early 20th century, Luitzen Egbertus Jan Brouwer founded intuitionism as a part of philosophy of mathematics . This philosophy, poorly understood at first, stated that in order for a mathematical statement to be true to a mathematician, that person must be able to intuit the statement, to not only believe its truth but understand the reason for its truth. A consequence of this definition of truth was the rejection of the law of the excluded middle, for there are statements that, according to Brouwer, could not be claimed to be true while their negations also could not be claimed true. Brouwer's philosophy was influential, and the cause of bitter disputes among prominent mathematicians. Later, Kleene and Kreisel would study formalized versions of intuitionistic logic (Brouwer rejected formalization, and presented his work in unformalized natural language). With the advent of the BHK interpretation and Kripke models, intuitionism became easier to reconcile with classical mathematics.

Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_group In mathematics , a Lie gro...