Search This Blog

Thursday, December 23, 2021

Lake

From Wikipedia, the free encyclopedia

Lake Sevan is the largest body of water in Armenia and the Caucasus region. It is one of the largest freshwater high-altitude (alpine) lakes in Eurasia
 

A lake is an area filled with water, localized in a basin, surrounded by land, apart from any river or other outlet that serves to feed or drain the lake. Lakes lie on land and are not part of the ocean, although like the much larger oceans, they form part of Earth's water cycle. Lakes are distinct from lagoons which are generally coastal parts of the ocean. They are generally larger and deeper than ponds, which also lie on land, though there are no official or scientific definitions. Lakes can be contrasted with rivers or streams, which are usually flowing in a channel on land. Most lakes are fed and drained by rivers and streams.

Natural lakes are generally found in mountainous areas, rift zones, and areas with ongoing glaciation. Other lakes are found in endorheic basins or along the courses of mature rivers, where a river channel has widened into a basin. In some parts of the world there are many lakes because of chaotic drainage patterns left over from the last Ice Age. All lakes are temporary over geologic time scales, as they will slowly fill in with sediments or spill out of the basin containing them.

Many lakes are artificial and are constructed for industrial or agricultural use, for hydro-electric power generation or domestic water supply, or for aesthetic, recreational purposes, or other activities.

Etymology, meaning, and usage of "lake"

Oeschinen Lake in the Swiss Alps
 
Lake Tahoe on the border of California and Nevada
 
Atro/Attar Lake and pass, Ishkoman Valley, Gilgit-Baltistan

The word lake comes from Middle English lake ('lake, pond, waterway'), from Old English lacu ('pond, pool, stream'), from Proto-Germanic *lakō ('pond, ditch, slow moving stream'), from the Proto-Indo-European root *leǵ- ('to leak, drain'). Cognates include Dutch laak ('lake, pond, ditch'), Middle Low German lāke ('water pooled in a riverbed, puddle') as in: de:Wolfslake, de:Butterlake, German Lache ('pool, puddle'), and Icelandic lækur ('slow flowing stream'). Also related are the English words leak and leach.

There is considerable uncertainty about defining the difference between lakes and ponds, and no current internationally accepted definition of either term across scientific disciplines or political boundaries exists. For example, limnologists have defined lakes as water bodies which are simply a larger version of a pond, which can have wave action on the shoreline or where wind-induced turbulence plays a major role in mixing the water column. None of these definitions completely excludes ponds and all are difficult to measure. For this reason, simple size-based definitions are increasingly used to separate ponds and lakes. Definitions for lake range in minimum sizes for a body of water from 2 hectares (5 acres) to 8 hectares (20 acres) (see also the definition of "pond"). Charles Elton, one of the founders of ecology, regarded lakes as waterbodies of 40 hectares (99 acres) or more. The term lake is also used to describe a feature such as Lake Eyre, which is a dry basin most of the time but may become filled under seasonal conditions of heavy rainfall. In common usage, many lakes bear names ending with the word pond, and a lesser number of names ending with lake are in quasi-technical fact, ponds. One textbook illustrates this point with the following: "In Newfoundland, for example, almost every lake is called a pond, whereas in Wisconsin, almost every pond is called a lake."

One hydrology book proposes to define the term "lake" as a body of water with the following five characteristics:

  1. It partially or totally fills one or several basins connected by straits;
  2. It has essentially the same water level in all parts (except for relatively short-lived variations caused by wind, varying ice cover, large inflows, etc.);
  3. It does not have regular intrusion of seawater;
  4. A considerable portion of the sediment suspended in the water is captured by the basins (for this to happen they need to have a sufficiently small inflow-to-volume ratio);
  5. The area measured at the mean water level exceeds an arbitrarily chosen threshold (for instance, one hectare).

With the exception of criterion 3, the others have been accepted or elaborated upon by other hydrology publications.

Distribution

There are some 187,888 lakes in Finland larger than 500 square metres. Isojärvi is Finland's 97th-largest lake.
 
The shores of Lake Peipus, the fifth-largest lake in Europe, near the town of Kallaste in Estonia

The majority of lakes on Earth are freshwater, and most lie in the Northern Hemisphere at higher latitudes. Canada, with a deranged drainage system, has an estimated 31,752 lakes larger than 3 square kilometres (1.2 sq mi) in surface area. The total number of lakes in Canada is unknown but is estimated to be at least 2 million. Finland has 187,888 lakes of 500 square metres (5,400 sq ft) in area, or larger, of which 56,000 are large (10,000 square metres (110,000 sq ft) or larger).

Most lakes have at least one natural outflow in the form of a river or stream, which maintain a lake's average level by allowing the drainage of excess water. Some lakes do not have a natural outflow and lose water solely by evaporation or underground seepage, or both. These are termed endorheic lakes.

Many lakes are artificial and are constructed for hydro-electric power generation, aesthetic purposes, recreational purposes, industrial use, agricultural use, or domestic water supply.

The number of lakes on Earth is undetermined because most lakes and ponds are very small and do not appear on maps or satellite imagery. Despite this uncertainty, a large number of studies agree that small ponds are much more abundant than large lakes. For example, one widely cited study estimated that Earth has 304 million lakes and ponds, and that 91% of these are 1 hectare (2.5 acres) or less in area. Despite the overwhelming abundance of ponds, almost all of Earth's lake water is found in fewer than 100 large lakes; this is because lake volume scales superlinearly with lake area.

Evidence of extraterrestrial lakes exists; "definitive evidence for the presence of lakes" was announced by NASA as returned by the Cassini Probe observing the moon Titan, which orbits the planet Saturn. The distribution and shape of lakes on Titan is very similar to those on Earth. Lakes were formerly present on the surface of Mars, but are now dry lake beds.

Types

The Seven Rila Lakes are a group of glacial lakes in the Bulgarian Rila mountains.

In 1957, Hutchinson published a monograph titled A Treatise on Limnology, which is regarded as a landmark discussion and classification of all major lake types, their origin, morphometric characteristics, and distribution. Hutchinson presented in his publication a comprehensive analysis of the origin of lakes and proposed what is a widely accepted classification of lakes according to their origin. This classification recognizes 11 major lake types that are divided into 76 subtypes. The 11 major lake types are:

  • tectonic lakes
  • volcanic lakes
  • glacial lakes
  • fluvial lakes
  • solution lakes
  • landslide lakes
  • aeolian lakes
  • shoreline lakes
  • organic lakes
  • anthropogenic lakes
  • meteorite (extraterrestrial impact) lakes

Tectonic lakes

Tectonic lakes are lakes formed by the deformation and resulting lateral and vertical movements of the Earth's crust. These movements include faulting, tilting, folding, and warping. Some of the largest lakes on Earth are rift lakes occupying rift valleys, e.g. Central African Rift lakes and Lake Baikal. Other well-known tectonic lakes, Caspian Sea, the Sea of Aral, and other lakes from the Pontocaspian occupy basins that have been separated from the sea by the tectonic uplift of the sea floor above the ocean level.

Often, the tectonic action of crustal extension has created an alternating series of parallel grabens and horsts that form elongate basins alternating with mountain ranges. Not only does this promote the creation of lakes by the disruption of preexisting drainage networks, it also creates within arid regions endorheic basins that contain salt lakes (also called saline lakes). They form where there is no natural outlet, a high evaporation rate and the drainage surface of the water table has a higher-than-normal salt content. Examples of these salt lakes include Great Salt Lake and the Dead Sea. Another type of tectonic lake caused by faulting is sag ponds.

Volcanic lakes

The crater lake of Volcán Irazú, Costa Rica
 

Volcanic lakes are lakes that occupy either local depressions, e.g. craters and maars, or larger basins, e.g. calderas, created by volcanism. Crater lakes are formed in volcanic craters and calderas, which fill up with precipitation more rapidly than they empty via either evaporation, groundwater discharge, or a combination of both. Sometimes the latter are called caldera lakes, although often no distinction is made. An example is Crater Lake in Oregon, in the caldera of Mount Mazama. The caldera was created in a massive volcanic eruption that led to the subsidence of Mount Mazama around 4860 BCE. Other volcanic lakes are created when either rivers or streams are dammed by lava flows or volcanic lahars. The basin which is now Malheur Lake, Oregon was created when a lava flow dammed the Malheur River. Among all lake types, volcanic crater lakes most closely approximate a circular shape.

Glacial lakes

Lake Kaniere is a glacial lake in the West Coast region of New Zealand.
 

Glacial lakes are lakes created by the direct action of glaciers and continental ice sheets. A wide variety of glacial processes create enclosed basins. As a result, there are a wide variety of different types of glacial lakes and it is often difficult to define clear-cut distinctions between different types of glacial lakes and lakes influenced by other activities. The general types of glacial lakes that have been recognized are lakes in direct contact with ice, glacially carved rock basins and depressions, morainic and outwash lakes, and glacial drift basins. Glacial lakes are the most numerous lakes in the world. Most lakes in northern Europe and North America have been either influenced or created by the latest, but not last, glaciation, to have covered the region. Glacial lakes include proglacial lakes, subglacial lakes, finger lakes, and epishelf lakes. Epishelf lakes are highly stratified lakes in which a layer of freshwater, derived from ice and snow melt, is dammed behind an ice shelf that is attached to the coastline. They are mostly found in Antarctica.

Fluvial lakes

Fluvial (or riverine) lakes are lakes produced by running water. These lakes include plunge pool lakes, fluviatile dams and meander lakes.

Oxbow lakes

The most common type of fluvial lake is a crescent-shaped lake called an oxbow lake due to the distinctive curved shape. They can form in river valleys as a result of meandering. The slow-moving river forms a sinuous shape as the outer side of bends are eroded away more rapidly than the inner side. Eventually a horseshoe bend is formed and the river cuts through the narrow neck. This new passage then forms the main passage for the river and the ends of the bend become silted up, thus forming a bow-shaped lake. Their crescent shape gives oxbow lakes a higher perimeter to area ratio than other lake types.

Fluviatile dams

These form where sediment from a tributary blocks the main river.

Lateral lakes

These form where sediment from the main river blocks a tributary, usually in the form of a levee.

Solution lakes

A solution lake is a lake occupying a basin formed by surface dissolution of bedrock. In areas underlain by soluble bedrock, its solution by precipitation and percolating water commonly produce cavities. These cavities frequently collapse to form sinkholes that form part of the local karst topography. Where groundwater lies near the grounds surface, a sinkhole will be filled water as a solution lake. If such a lake consists of a large area of standing water that occupies an extensive closed depression in limestone, it is also called a karst lake. Smaller solution lakes that consist of a body of standing water in a closed depression within a karst region are known as karst ponds. Limestone caves often contain pools of standing water, which are known as underground lakes. Classic examples of solution lakes are abundant in the karst regions at the Dalmatian coast of Croatia and within large parts of Florida.

Landslide lakes

A landslide lake is created by the blockage of a river valley by either mudflows, rockslides, or screes. Such lakes are most common in mountainous regions. Although landslide lakes may be large and quite deep, they are typically short-lived. An example of a landslide lake is Quake Lake, which formed as a result of the 1959 Hebgen Lake earthquake.

Most landslide lakes disappear in the first few months after formation, but a landslide dam can burst suddenly at a later stage and threaten the population downstream when the lake water drains out. In 1911, an earthquake triggered a landslide that blocked a deep valley in the Pamir Mountains region of Tajikistan, forming the Sarez Lake. The Usoi Dam at the base of the valley has remained in place for more than 100 years but the terrain below the lake is in danger of a catastrophic flood if the dam were to fail during a future earthquake.

Aeolian lakes

Aeolian lakes are produced by wind action. These lakes are found mainly in arid environments, although some aeolian lakes are relict landforms indicative of arid paleoclimates. Aeolian lakes consist of lake basins dammed by wind-blown sand; interdunal lakes that lie between well-oriented sand dunes; and deflation basins formed by wind action under previously arid paleoenvironments. Moses Lake in Washington, United States, was originally a shallow natural lake and an example of a lake basin dammed by wind-blown sand.

China's Badain Jaran Desert is a unique landscape of megadunes and elongated interdunal aeolian lakes, particularly concentrated in the southeastern margin of the desert.

Shoreline lakes

Shoreline lakes are generally lakes created by blockage of estuaries or by the uneven accretion of beach ridges by longshore and other currents. They include maritime coastal lakes, ordinarily in drowned estuaries; lakes enclosed by two tombolos or spits connecting an island to the mainland; lakes cut off from larger lakes by a bar; or lakes divided by the meeting of two spits.

Organic lakes

Organic lakes are lakes created by the actions of plants and animals. On the whole they are relatively rare in occurrence and quite small in size. In addition, they typically ephemeral features relative to the other types of lakes. The basins in which organic lakes occur are associated with beaver dams, coral lakes, or dams formed by vegetation.

Peat lakes

Peat lakes are a form of organic lake. They form where a buildup of partly decomposed plant material in a wet environment leaves the vegetated surface below the water table for a sustained period of time. They are often low in nutrients and mildly acidic, with bottom waters low in dissolved oxygen.

Anthropogenic lakes

Anthropogenic lakes are artificially created as a result of human activity. They can be formed by the intentional damming of rivers and streams or the subsequent filling of abandoned excavations by either ground water, precipitation, or a combination of both.

The Upper Silesian region of Southern Poland contains an anthropogenic lake district consisting of more than 4,000 water bodies created by human activity. The diverse origins of these lakes include: reservoirs retained by dams, flooded mines, water bodies formed in subsidence basins and hollows, levee ponds, and residual water bodies following river regulation.

Meteorite (extraterrestrial impact/crater) lakes

Meteorite lakes, which are also known as crater lakes, are lakes created by catastrophic extraterrestrial impacts by either meteorites or asteroids. Examples of meteorite lakes are Lonar crater lake, India, Lake Elgygytgyn, Siberia, and Pingualuit crater lake, Quebec, Canada, As in case of Lake El'gygytgyn and Pingualuit crater lake, meteorite (extraterrestrial impact/ crater) lakes can contain unique and scientifically valuable sedimentary deposits associated with long records of paleoclimatic changes.

Other classification methods

These kettle lakes in Alaska were formed by a retreating glacier.
 
Ice melting on Lake Balaton in Hungary

In addition to mode of origin, lakes have been named and classified in various other ways according to their thermal stratification, salinity, relative seasonal permanence, degree of outflow, and other factors. Also, different cultures and regions of the world have their own popular nomenclature.

According to thermal stratification

One important method of lake classification is on the basis of thermal stratification, which has a major influence on the animal and plant life inhabiting a lake and the fate and distribution of dissolved and suspended material in a lake. For example, the thermal stratification and the degree and frequency of mixing exerts a strong control on the distribution of oxygen within it. In addition, lake can be classified according to important factors such as seasonal variations in lake volume and level, oxygen saturation, and salinity of its water mass. Finally, the names of types of lakes that are used by the lay public and in the scientific for different types of lakes are often informally derived from either from their morphology of other aspects or their physical characteristics.

Professor F. A. Forel, who is also referred to as the "Father of limnology", was the first scientist to classify lakes according to their thermal stratification. His system of classification was later modified and improved upon by Hutchinson and Löffler. Because the density of water varies with temperature, with a maximum at +4 DC, thermal stratification is an important physical characteristic of lakes that controls the fauna and flora, sedimentation, chemistry, and other aspects of individual lakes. First, the colder, heavier water typically forms a layer near the bottom, which called the hypolimnion. Second, normally overlying it is a transition zone known as the metalimnion. Finally, overlying the metalimnion is a surface layer of a warmer, lighter water is called the epilimnion. However, this typical stratification sequence can vary widely depending either on the specific lake, the time of season, or combination of both.

Based upon thermal stratification, lakes are classified as either holomictic lakes or meromictic lakes. A meromictic lake has layers of water that do not intermix. The deepest layer of water in such a lake does not contain any dissolved oxygen. In addition, the layers of sediment at the bottom of a meromictic lake remain relatively undisturbed because there are no living aerobic organisms. The lack of disturbance allows for the development of lacustrine deposits. A holomictic lake has a uniform temperature and density from top to bottom at a specific time of the year. This uniformity of temperature and density allows the lake waters to completely mix. Holomictic lakes are non-meromictic lakes. Based upon thermal stratification and frequency of turnover, holomictic lakes are divided into amictic lakes, cold monomictic lakes, dimictic lakes, warm monomictic lakes, polymictic lakes, and oligomictic lakes. The classification of lakes by thermal stratification presupposes lakes with sufficient depth to form a hypolimnion. As a result, very shallow lakes are excluded from this classification system.

The stratification in a lake is not always the result of variation in density because of thermal gradients. Lake stratification can also result from differences in density due to gradients in salinity. In case of a difference in salinity, the hypolimnion and epilimnion are separated not by a thermocline but by a halocline, which is sometimes referred to as a chemocline.

According to seasonal variations in water level and volume

Lakes are informally classified and named according to the seasonal variation in their lake level and volume. Some of the names include:

  • Ephemeral lake is a short-lived lake or pond. If it fills with water and dries up (disappears) seasonally it is known as an intermittent lake. They often fill poljes.
  • Dry lake is a popular name for an ephemeral lake that contains water only intermediately at irregular and infrequent intervals.
  • Perennial lake is a lake that has water in its basin throughout the year and is not subject to extreme fluctuations in level.
  • Playa lake is a typically shallow, intermittent lake that covers or occupies a playa either in wet seasons or in especially wet years but subsequently drying up in an arid or semiarid region.
  • Vlei is a name used in South Africa for a shallow lake which varies considerably in level with the seasons.

According to water chemistry

Lakes are also informally classified and named according to the general chemistry of their water mass. Some of the types of lakes include:

  • An acid lake is a lake that has a pH is below neutral (<6.5). A lake is considered highly acidic when the pH drops below 5.5, below which when biological consequences occur. Such lakes include acid pit lakes occupying abandoned mines and excavations; naturally acid lakes of igneous and metamorphic landscapes; peat bogs in northern regions; acid-saline lakes of arid environments; crater lakes of active and dormant volcanoes; and lakes acidified by acid rain. A salt lake, which also known as a brine lake, is an inland body of water situated in an arid or semiarid region, having no outlet to the sea, and containing a high concentration of dissolved salts (principally sodium chloride). Examples include the Great Salt Lake in Utah, and the Dead Sea in the Near East.
  • Alkali sink, also known as salt flats, are lakes on the other extreme of the scale from the large and deep saline lakes. They are, shallow saline features that occupy low-lying areas of the arid regions and in groundwater discharge zones. These are typically classifiable as either playas or playa lakes because they are periodically flooded by either rain or flood events and then dry up during drier intervals, leaving accumulations of brines and evaporitic minerals.
  • A salt pan (saltpan) is either an undrained small shallow natural depression in which water accumulates and evaporates leaving a salt deposit or the shallow lake of brackish water occupying a salt pan. This term is also used for a large pan for recovering salt by evaporation.
  • A saline pan is a name for an ephemeral saline lake which precipitates a bottom crust that is subsequently modified during subaerial exposure.

Lakes composed of other liquids

  • Lava lake is a large volume of molten lava, usually basaltic, contained in a volcanic vent, crater, or broad depression.
  • Hydrocarbon lakes are bodies of liquid ethane and methane that occupy depressions on the surface of Titan. They were detected by the Cassini–Huygens space probe.

Paleolakes

A paleolake, also spelt palaeolake, is a lake that existed in the past when hydrological conditions were different. Quaternary paleolakes can often be identified on the basis of relict lacustrine landforms such as relict lake plains and coastal landforms that form recognizable relict shorelines, which are called paleoshorelines. Paleolakes can also be recognized by characteristic sedimentary deposits that accumulated in them and any fossils that these sediments might contain. The paleoshorelines and sedimentary deposits of paleolakes provide evidence for prehistoric hydrological changes during the times that they existed.

Types of paleolakes include:

  • A former lake is a lake which is no longer in existence. Such lakes include prehistoric lakes and lakes which have permanently dried up often as the result of either evaporation or human intervention. Owens Lake in California, USA, is an example of a former lake. Former lakes are a common feature of the Basin and Range area of southwestern North America.
  • A shrunken lake is a lake which has drastically decreased in size over geological time. Lake Agassiz, which once covered much of central North America, is a good example of a shrunken lake. Two notable remnants of this lake are Lake Winnipeg and Lake Winnipegosis.

Paleolakes are of scientific and economic importance. For example, Quaternary paleolakes in semidesert basins are important for two reasons. First, they played an extremely significant, if transient, role in shaping the floors and piedmonts of many basins. Finally, their sediments contain enormous quantities of geologic and paleontologic information concerning past environments. In addition, the organic-rich deposits of pre-Quaternary paleolakes are important either for the thick deposits of oil shale and shale gas that they contain or as source rocks of petroleum and natural gas. Although of significantly less economic importance, strata deposited along the shore of paleolakes sometimes contain coal seams.

Characteristics

Lakes can have significant cultural importance. The West Lake of Hangzhou has inspired romantic poets throughout the ages, and has been an important influence on garden designs in China, Japan and Korea.
 
Lake Mapourika, New Zealand

Lakes have numerous features in addition to lake type, such as drainage basin (also known as catchment area), inflow and outflow, nutrient content, dissolved oxygen, pollutants, pH, and sedimentation.

Changes in the level of a lake are controlled by the difference between the input and output compared to the total volume of the lake. Significant input sources are precipitation onto the lake, runoff carried by streams and channels from the lake's catchment area, groundwater channels and aquifers, and artificial sources from outside the catchment area. Output sources are evaporation from the lake, surface and groundwater flows, and any extraction of lake water by humans. As climate conditions and human water requirements vary, these will create fluctuations in the lake level.

Lakes can be also categorized on the basis of their richness in nutrients, which typically affect plant growth. Nutrient-poor lakes are said to be oligotrophic and are generally clear, having a low concentration of plant life. Mesotrophic lakes have good clarity and an average level of nutrients. Eutrophic lakes are enriched with nutrients, resulting in good plant growth and possible algal blooms. Hypertrophic lakes are bodies of water that have been excessively enriched with nutrients. These lakes typically have poor clarity and are subject to devastating algal blooms. Lakes typically reach this condition due to human activities, such as heavy use of fertilizers in the lake catchment area. Such lakes are of little use to humans and have a poor ecosystem due to decreased dissolved oxygen.

Due to the unusual relationship between water's temperature and its density, lakes form layers called thermoclines, layers of drastically varying temperature relative to depth. Fresh water is most dense at about 4 degrees Celsius (39.2 °F) at sea level. When the temperature of the water at the surface of a lake reaches the same temperature as deeper water, as it does during the cooler months in temperate climates, the water in the lake can mix, bringing oxygen-starved water up from the depths and bringing oxygen down to decomposing sediments. Deep temperate lakes can maintain a reservoir of cold water year-round, which allows some cities to tap that reservoir for deep lake water cooling.

Since the surface water of deep tropical lakes never reaches the temperature of maximum density, there is no process that makes the water mix. The deeper layer becomes oxygen starved and can become saturated with carbon dioxide, or other gases such as sulfur dioxide if there is even a trace of volcanic activity. Exceptional events, such as earthquakes or landslides, can cause mixing which rapidly brings the deep layers up to the surface and release a vast cloud of gas which lay trapped in solution in the colder water at the bottom of the lake. This is called a limnic eruption. An example is the disaster at Lake Nyos in Cameroon. The amount of gas that can be dissolved in water is directly related to pressure. As deep water surfaces, the pressure drops and a vast amount of gas comes out of solution. Under these circumstances carbon dioxide is hazardous because it is heavier than air and displaces it, so it may flow down a river valley to human settlements and cause mass asphyxiation.

The material at the bottom of a lake, or lake bed, may be composed of a wide variety of inorganics, such as silt or sand, and organic material, such as decaying plant or animal matter. The composition of the lake bed has a significant impact on the flora and fauna found within the lake's environs by contributing to the amounts and the types of nutrients available.

A paired (black and white) layer of the varved lake sediments correspond to a year. During winter, when organisms die, carbon is deposited down, resulting to a black layer. At the same year, during summer, only few organic materials are deposited, resulting to a white layer at the lake bed. These are commonly used to track past paleontological events.

Natural lakes provide a microcosm of living and nonliving elements that are relatively independent of their surrounding environments. Therefore, lake organisms can often be studied in isolation from the lake's surroundings.

Limnology

Lake of Flowers (Liqeni i Lulëve), one of the Lurë Mountains glacial lakes, Albania

Limnology is the study of inland bodies of water and related ecosystems. Limnology divides lakes into three zones: the littoral zone, a sloped area close to land; the photic or open-water zone, where sunlight is abundant; and the deep-water profundal or benthic zone, where little sunlight can reach. The depth to which light can reach in lakes depends on turbidity, determined by the density and size of suspended particles. A particle is in suspension if its weight is less than the random turbidity forces acting upon it. These particles can be sedimentary or biological in origin and are responsible for the color of the water. Decaying plant matter, for instance, may be responsible for a yellow or brown color, while algae may cause greenish water. In very shallow water bodies, iron oxides make water reddish brown. Biological particles include algae and detritus. Bottom-dwelling detritivorous fish can be responsible for turbid waters, because they stir the mud in search of food. Piscivorous fish contribute to turbidity by eating plant-eating (planktonivorous) fish, thus increasing the amount of algae (see aquatic trophic cascade). The light depth or transparency is measured by using a Secchi disk, a 20-cm (8 in) disk with alternating white and black quadrants. The depth at which the disk is no longer visible is the Secchi depth, a measure of transparency. The Secchi disk is commonly used to test for eutrophication. For a detailed look at these processes, see lentic ecosystems.

A lake moderates the surrounding region's temperature and climate because water has a very high specific heat capacity (4,186 J·kg−1·K−1). In the daytime a lake can cool the land beside it with local winds, resulting in a sea breeze; in the night it can warm it with a land breeze.

Biological Properties

Lake zones (left) and algal communities (right)

Lake zones:

  • Epilittoral: Zone above water level entirely that is never touched by water levels.
  • Littoral: Zone which encompasses from the small area above the normal water line that is sometimes touched by increasing water levels to the deepest part of the lake that still allows for submerged macrophytic growth.
  • Littoriprofundal: A transition zone that is commonly aligned with stratified lakes’ metalimnions, this zone is too deep for macrophytes but includes photosynthetic algae and bacteria.
  • Profundal: Sedimentary zone which does not contain any vegetation.

Algal community types:

  • Epipelic: Algae which grows on sediments.
  • Epilithic: Algae which grows on top of rock.
  • Epipsammic: Algae growing on or within sand.
  • Epiphytic: Algae growing on macrophytes.
  • Epizooic: Algae growing on animals.
  • Metaphyton: Algae present in the littoral zone that is not in a state of suspension nor attached to a substratum (such as a macrophyte).

Disappearance

Ephemeral 'Lake Badwater', a lake only noted after heavy winter and spring rainfall, Badwater Basin, Death Valley National Park, 9 February 2005. Landsat 5 satellite photo
 
Badwater Basin dry lake, 15 February 2007. Landsat 5 satellite photo

The lake may be infilled with deposited sediment and gradually become a wetland such as a swamp or marsh. Large water plants, typically reeds, accelerate this closing process significantly because they partially decompose to form peat soils that fill the shallows. Conversely, peat soils in a marsh can naturally burn and reverse this process to recreate a shallow lake resulting in a dynamic equilibrium between marsh and lake. This is significant since wildfire has been largely suppressed in the developed world over the past century. This has artificially converted many shallow lakes into emergent marshes. Turbid lakes and lakes with many plant-eating fish tend to disappear more slowly. A "disappearing" lake (barely noticeable on a human timescale) typically has extensive plant mats at the water's edge. These become a new habitat for other plants, like peat moss when conditions are right, and animals, many of which are very rare. Gradually, the lake closes and young peat may form, forming a fen. In lowland river valleys where a river can meander, the presence of peat is explained by the infilling of historical oxbow lakes. In the final stages of succession, trees can grow in, eventually turning the wetland into a forest.

Some lakes can disappear seasonally. These are called intermittent lakes, ephemeral lakes, or seasonal lakes and can be found in karstic terrain. A prime example of an intermittent lake is Lake Cerknica in Slovenia or Lag Prau Pulte in Graubünden. Other intermittent lakes are only the result of above-average precipitation in a closed, or endorheic basin, usually filling dry lake beds. This can occur in some of the driest places on earth, like Death Valley. This occurred in the spring of 2005, after unusually heavy rains. The lake did not last into the summer, and was quickly evaporated (see photos to right). A more commonly filled lake of this type is Sevier Lake of west-central Utah.

Sometimes a lake will disappear quickly. On 3 June 2005, in Nizhny Novgorod Oblast, Russia, a lake called Lake Beloye vanished in a matter of minutes. News sources reported that government officials theorized that this strange phenomenon may have been caused by a shift in the soil underneath the lake that allowed its water to drain through channels leading to the Oka River.

The presence of ground permafrost is important to the persistence of some lakes. Thawing permafrost may explain the shrinking or disappearance of hundreds of large Arctic lakes across western Siberia. The idea here is that rising air and soil temperatures thaw permafrost, allowing the lakes to drain away into the ground.

Some lakes disappear because of human development factors. The shrinking Aral Sea is described as being "murdered" by the diversion for irrigation of the rivers feeding it.

Extraterrestrial lakes

Titan's north polar hydrocarbon seas and lakes as seen in a false-color Cassini synthetic aperture radar mosaic

Only one world other than Earth is known to harbor large lakes, Saturn's largest moon, Titan. Photographs and spectroscopic analysis by the Cassini–Huygens spacecraft show liquid ethane on the surface, which is thought to be mixed with liquid methane. The largest Titanean lake, Kraken Mare at 400,000 km2, is three-times the size of any lake on Earth, and even the second, Ligeia Mare, is estimated to be slightly larger than Earth's Lake Michigan–Huron.

Jupiter's large moon Io is volcanically active, and as a result sulfur deposits have accumulated on the surface. Some photographs taken during the Galileo mission appear to show lakes of liquid sulfur in volcanic caldera, though these are more analogous to lake of lava than of water on Earth.

The planet Mars has only one confirmed lake; it is underground and near the south pole. However, the surface of Mars is too cold and has too little atmospheric pressure to permit permanent surface water. Geologic evidence appears to confirm, however, that ancient lakes once formed on the surface. It is also possible that volcanic activity on Mars will occasionally melt subsurface ice, creating large temporary lakes. This water would quickly freeze and then sublimate, unless insulated in some manner, such as by a coating of volcanic ash.

There are dark basaltic plains on the Moon, similar to lunar maria but smaller, that are called lacus (singular lacus, Latin for "lake") because they were thought by early astronomers to be lakes of water.

Notable lakes on Earth

The Caspian Sea is either the world's largest lake or a full-fledged sea
 
Round Tangle Lake, one of the Tangle Lakes, 2,864 feet (873 m) above sea level in interior Alaska
  • The largest lake by surface area is Caspian Sea, which is despite its name considered as a lake from the point of view of geography. Its surface area is 143,000 sq. mi./371,000 km2.
  • The second largest lake by surface area, and the largest freshwater lake by surface area, is Lake Michigan-Huron, which is hydrologically a single lake. Its surface area is 45,300 sq. mi./117,400 km2. For those who consider Lake Michigan-Huron to be separate lakes, and Caspian Sea to be a sea, Lake Superior would be the largest lake at 82,100 km2 (31,700 square miles)
  • Lake Baikal is the deepest lake in the world, located in Siberia, with a bottom at 1,637 metres (5,371 ft). Its mean depth is also the greatest in the world (749 metres (2,457 ft)).
    It is also the world's largest freshwater lake by volume (23,600 cubic kilometres (5,700 cu mi), but much smaller than the Caspian Sea at 78,200 cubic kilometres (18,800 cu mi)), and the second longest (about 630 kilometres (390 mi) from tip to tip).
  • The world's oldest lake is Lake Baikal, followed by Lake Tanganyika in Tanzania. Lake Maracaibo is considered by some to be the second-oldest lake on Earth, but since it lies at sea level and nowadays is a contiguous body of water with the sea, others consider that it has turned into a small bay.
  • The longest lake is Lake Tanganyika, with a length of about 660 kilometres (410 mi) (measured along the lake's center line).
    It is also the third largest by volume, the second oldest, and the second deepest (1,470 metres (4,820 ft)) in the world, after Lake Baikal.
  • The world's highest lake, if size is not a criterion, may be the crater lake of Ojos del Salado, at 6,390 metres (20,965 ft).
  • The highest large (greater than 250 square kilometres (97 sq mi)) lake in the world is the 290 square kilometres (110 sq mi) Pumoyong Tso (Pumuoyong Tso), in the Tibet Autonomous Region of China, at 28°34′N 90°24′E, 5,018 metres (16,463 ft) above sea level.
  • The world's highest commercially navigable lake is Lake Titicaca in Peru and Bolivia at 3,812 m (12,507 ft). It is also the largest lake in South America.
  • The world's lowest lake is the Dead Sea, bordered by Jordan to the east and Israel and Palestine to the west, at 418 metres (1,371 ft) below sea level. It is also one of the lakes with highest salt concentration.
  • Lake Michigan–Huron has the longest lake coastline in the world: about 5,250 kilometres (3,260 mi), excluding the coastline of its many inner islands. Even if it is considered two lakes, Lake Huron alone would still have the longest coastline in the world at 2,980 kilometres (1,850 mi).
  • The largest island in a lake is Manitoulin Island in Lake Michigan-Huron, with a surface area of 2,766 square kilometres (1,068 sq mi). Lake Manitou, on Manitoulin Island, is the largest lake on an island in a lake.
  • The largest lake on an island is Nettilling Lake on Baffin Island, with an area of 5,542 square kilometres (2,140 sq mi) and a maximum length of 123 kilometres (76 mi).
  • The largest lake in the world that drains naturally in two directions is Wollaston Lake.
  • Lake Toba on the island of Sumatra is in what is probably the largest resurgent caldera on Earth.
  • The largest lake completely within the boundaries of a single city is Lake Wanapitei in the city of Sudbury, Ontario, Canada. Before the current city boundaries came into effect in 2001, this status was held by Lake Ramsey, also in Sudbury.
  • Lake Enriquillo in Dominican Republic is the only saltwater lake in the world inhabited by crocodiles.
  • Lake Bernard, Ontario, Canada, claims to be the largest lake in the world with no islands.
  • Lake Saimaa in both South Savonia and South Karelia, Finland, forms the much larger Saimaa basin, which have more shorelines per unit of area than anywhere else in the world, with the total length being nearly 15,000 kilometres (9,300 mi).
  • The largest lake in one country is Lake Michigan, in the United States. However, it is sometimes considered part of Lake Michigan-Huron, making the record go to Great Bear Lake, Northwest Territories, in Canada, the largest lake within one jurisdiction.
  • The largest lake on an island in a lake on an island is Crater Lake on Vulcano Island in Lake Taal on the island of Luzon, The Philippines.
  • The northernmost named lake on Earth is Upper Dumbell Lake in the Qikiqtaaluk Region of Nunavut, Canada at a latitude of 82°28'N. It is 5.2 kilometres (3.2 mi) southwest of Alert, the northernmost settlement in the world. There are also several small lakes north of Upper Dumbell Lake, but they are all unnamed and only appear on very detailed maps.

Largest by continent

The largest lakes (surface area) by continent are:

  • AustraliaLake Eyre (salt lake)
  • AfricaLake Victoria, also the third-largest freshwater lake on Earth. It is one of the Great Lakes of Africa.
  • AntarcticaLake Vostok (subglacial)
  • AsiaLake Baikal (if the Caspian Sea is considered a lake, it is the largest in Eurasia, but is divided between the two geographic continents)
  • OceaniaLake Eyre when filled; the largest permanent (and freshwater) lake in Oceania is Lake Taupo.
  • EuropeLake Ladoga, followed by Lake Onega, both in northwestern Russia.
  • North AmericaLake Michigan–Huron, which is hydrologically a single lake. However, lakes Huron and Michigan are usually considered separate lakes, in which case Lake Superior would be the largest.
  • South AmericaLake Titicaca, which is also the highest navigable body of water on Earth at 3,812 metres (12,507 ft) above sea level. The much larger Lake Maracaibo is much older, but perceived by some to no longer be genuinely a lake for multiple reasons.

Wednesday, December 22, 2021

Lake Baikal

From Wikipedia, the free encyclopedia

Lake Baikal
Baikal.A2001296.0420.250m-NASA.jpg
Satellite photo of Baikal, 2001

Karte baikal2.png
LocationSiberia, Russia
Coordinates53°30′N 108°0′ECoordinates: 53°30′N 108°0′E
Lake typeAncient lake, Continental rift lake
Native nameOзеро Байкал  (Russian)
Байгал далай  (Buryat)
Байгал нуур  (Mongolian)
Primary inflowsSelenga, Barguzin, Upper Angara
Primary outflowsAngara
Catchment area560,000 km2 (216,000 sq mi)
Basin countriesMongolia and Russia

Max. length636 km (395 mi)
Max. width79 km (49 mi)
Surface area31,722 km2 (12,248 sq mi)
Average depth744.4 m (2,442 ft)
Max. depth1,642 m (5,387 ft)
Water volume23,615.39 km3 (5,670 cu mi)
Residence time330 years
Shore length12,100 km (1,300 mi)
Surface elevation455.5 m (1,494 ft)

FrozenJanuary–May
Islands27 (Olkhon Island)
SettlementsSeverobaykalsk, Slyudyanka, Baykalsk, Ust-Barguzin

CriteriaNatural: vii, viii, ix, x
Reference754
Inscription1996 (20th Session)
Area8,800,000 ha
1 Shore length is not a well-defined measure.

Lake Baikal (/bˈkɑːl, -ˈkæl/; Russian: Oзеро Байкал, romanizedOzero Baykal [ˈozʲɪrə bɐjˈkaɫ]; Buryat: Байгал далай, romanized: Baigal dalai; Mongolian: Байгал нуур, romanized: Baigal nuur) is a rift lake located in Russia situated in southern Siberia between the federal subjects of Irkutsk Oblast to the northwest and Buryatia to the southeast.

With 23,615.39 km3 (5,670 cu mi) of water, Lake Baikal is the world's largest freshwater lake by volume, containing 22–23% of the world's fresh surface water, more than all of the North American Great Lakes combined. It is the world's deepest lake, with a maximum depth of 1,642 m (5,387 ft), and the world's oldest lake, at 25–30 million years. At 31,722 km2 (12,248 sq mi)—slightly larger than Belgium—it is the world's seventh-largest lake by surface area. It is among the world's clearest lakes.

Baikal is home to thousands of species of plants and animals, many of them endemic to the region. It is also home to Buryat tribes, who raise goats, camels, cattle, sheep, and horses on the eastern side of the lake, where the mean temperature varies from a winter minimum of −19 °C (−2 °F) to a summer maximum of 14 °C (57 °F).

The region to the east of Lake Baikal is referred to as Transbaikalia or as the Transbaikal, and the loosely defined region around the lake itself is sometimes known as Baikalia. UNESCO declared Lake Baikal a World Heritage Site in 1996.

Geography and hydrography

The Yenisey basin, which includes Lake Baikal
 
A digital elevation model of Lake Baikal region

Lake Baikal is in a rift valley, created by the Baikal Rift Zone, where the Earth's crust is slowly pulling apart. At 636 km (395 mi) long and 79 km (49 mi) wide, Lake Baikal has the largest surface area of any freshwater lake in Asia, at 31,722 km2 (12,248 sq mi), and is the deepest lake in the world at 1,642 m (5,387 ft). The bottom of the lake is 1,186.5 m (3,893 ft) below sea level, but below this lies some 7 km (4.3 mi) of sediment, placing the rift floor some 8–11 km (5.0–6.8 mi) below the surface, the deepest continental rift on Earth. In geological terms, the rift is young and active – it widens about 2 cm (0.8 in) per year. The fault zone is also seismically active; hot springs occur in the area and notable earthquakes happen every few years. The lake is divided into three basins: North, Central, and South, with depths about 900 m (3,000 ft), 1,600 m (5,200 ft), and 1,400 m (4,600 ft), respectively. Fault-controlled accommodation zones rising to depths about 300 m (980 ft) separate the basins. The North and Central basins are separated by Academician Ridge, while the area around the Selenga Delta and the Buguldeika Saddle separates the Central and South basins. The lake drains into the Angara, a tributary of the Yenisey. Notable landforms include Cape Ryty on Baikal's northwest coast.

Baikal's age is estimated at 25–30 million years, making it the most ancient lake in geological history. It is unique among large, high-latitude lakes, as its sediments have not been scoured by overriding continental ice sheets. Russian, U.S., and Japanese cooperative studies of deep-drilling core sediments in the 1990s provide a detailed record of climatic variation over the past 6.7 million years. Longer and deeper sediment cores are expected in the near future. Lake Baikal is the only confined freshwater lake in which direct and indirect evidence of gas hydrates exists.

The lake is surrounded by mountains; the Baikal Mountains on the north shore, the Barguzin Range on the northeastern shore and the Primorsky Range stretching along the western shore. The mountains and the taiga are protected as a national park. It contains 27 islands; the largest, Olkhon, is 72 km (45 mi) long and is the third-largest lake-bound island in the world. The lake is fed by as many as 330 inflowing rivers. The main ones draining directly into Baikal are the Selenga, the Barguzin, the Upper Angara, the Turka, the Sarma, and the Snezhnaya. It is drained through a single outlet, the Angara.

Regular winds exist in Baikal's rift valley. The Kultuk blows southwest and the Verkhovik blows north or northeast. In addition, transverse winds blow locally and over shorter distances. The Sarma (named after the Sarma River) blows northwest in the autumn through the Sarma valley and the strait of Olkhon Island. The Barguzin (named after the Barguzin river) blows northeast in the spring.

Water characteristics

Lake Baikal's water is especially clear

Baikal is one of the clearest lakes in the world. During the winter, the water transparency in open sections can be as much as 30–40 m (100–130 ft), but during the summer it is typically 5–8 m (15–25 ft). Baikal is rich in oxygen, even in deep sections, which separates it from distinctly stratified bodies of water such as Lake Tanganyika and the Black Sea.

In Lake Baikal, the water temperature varies significantly depending on location, depth, and time of the year. During the winter and spring, the surface freezes for about 4–5 months; from early January to early May–June (latest in the north), the lake surface is covered in ice. On average, the ice reaches a thickness of 0.5 to 1.4 m (1.6–4.6 ft), but in some places with hummocks, it can be more than 2 m (6.6 ft). During this period, the temperature slowly increases with depth in the lake, being coldest near the ice-covered surface at around freezing, and reaching about 3.5–3.8 °C (38.3–38.8 °F) at a depth of 200–250 m (660–820 ft). After the surface ice breaks up, the surface water is slowly warmed up by the sun, and in May–June, the upper 300 m (980 ft) or so becomes homothermic (same temperature throughout) at around 4 °C (39 °F) because of water mixing. The sun continues to heat up the surface layer, and at the peak in August can reach up to about 16 °C (61 °F) in the main sections and 20–24 °C (68–75 °F) in shallow bays in the southern half of the lake. During this time, the pattern is inverted compared to the winter and spring, as the water temperature falls with increasing depth. As the autumn begins, the surface temperature falls again and a second homothermic period at around 4 °C (39 °F) of the upper circa 300 m (980 ft) occurs in October–November. In the deepest parts of the lake, from about 300 m (980 ft), the temperature is stable at 3.1–3.4 °C (37.6–38.1 °F) with only minor annual variations.

The average surface temperature has risen by almost 1.5 °C (2.7 °F) in the last 50 years, resulting in a shorter period where the lake is covered by ice. At some locations, hydrothermal vents with water that is about 50 °C (122 °F) have been found. These are mostly in deep water but locally have also been found in relatively shallow water. They have little effect on the lake's temperature because of its huge volume.

Stormy weather on the lake is common, especially during the summer and autumn, and can result in waves as high as 4.5 m (15 ft).

Fauna and flora

The Baikal seal is endemic to Lake Baikal.

Lake Baikal is rich in biodiversity. It hosts more than 1,000 species of plants and 2,500 species of animals based on current knowledge, but the actual figures for both groups are believed to be significantly higher. More than 80% of the animals are endemic.

Flora

The watershed of Lake Baikal has numerous floral species represented. The marsh thistle (Cirsium palustre) is found here at the eastern limit of its geographic range.

Submerged macrophytic vascular plants are mostly absent, except in some shallow bays along the shores of Lake Baikal. More than 85 species of submerged macrophytes have been recorded, including genera such as Ceratophyllum, Myriophyllum, Potamogeton, and Sparganium. The invasive species Elodea canadensis was introduced to the lake in the 1950s. Instead of vascular plants, aquatic flora is often dominated by several green algae species, notably Draparnaldioides, Tetraspora, and Ulothrix in water shallower than 20 m (65 ft); although Aegagrophila, Cladophora, and Draparnaldioides may occur deeper than 30 m (100 ft). Except for Ulothrix, there are endemic Baikal species in all these green algae genera. More than 400 diatom species, both benthic and planktonic, are found in the lake, and about half of these are endemic to Baikal; however, significant taxonomic uncertainties remain for this group.

Mammals

The Baikal seal or nerpa (Pusa sibirica) is endemic to Lake Baikal. It is the only exclusively freshwater seal species in the world.

A wide range of land mammals can be found in the habitats around the lake, such as the Eurasian brown bear (Ursus arctos arctos), Eurasian wolf (Canis lupus lupus), red fox (Vulpes vulpes), sable (Martes zibellina), stoat (Mustela erminea), elk (Alces alces), wapiti (Cervus canadensis), reindeer (Rangifer tarandus), Siberian roe deer (Capreolus pygargus), Siberian musk deer ((Moschus moschiferus), wild boar (Sus scrofa), red squirrel (Sciurus vulgaris), Siberian chipmunk (Eutamias sibiricus), marmots (Marmota sp.), lemmings (Lemmus sp.), and mountain hare (Lepus timidus). Until the Early Middle Ages, populations of the European bison (Bison bonasus) were found near the lake; this represented the easternmost range of the species.

Birds

Mongolian gulls on Baikal

There are 236 species of birds that inhabit Lake Baikal, 29 of which are waterfowl. Although named after the lake, both the Baikal teal and Baikal bush warbler are widespread in eastern Asia.

Fish

Two species of grayling (Thymallus baikalensis and T. brevipinnis) are found only in Baikal and rivers that drain into the lake.

Fewer than 65 native fish species occur in the lake basin, but more than half of these are endemic. The families Abyssocottidae (deep-water sculpins), Comephoridae (golomyankas or Baikal oilfish), and Cottocomephoridae (Baikal sculpins) are entirely restricted to the lake basin. All these are part of the Cottoidea and are typically less than 20 cm (8 in) long. Of particular note are the two species of golomyanka (Comephorus baicalensis and C. dybowskii). These long-finned, translucent fish typically live in open water at depths of 100–500 m (330–1,640 ft), but occur both shallower and much deeper. Together with certain abyssocottid sculpins, they are the deepest living freshwater fish in the world, occurring to near the bottom of Lake Baikal. The golomyankas are the primary prey of the Baikal seal and represent the largest fish biomass in the lake. Beyond members of Cottoidea, there are few endemic fish species in the lake basin.

The omul (Coregonus migratorius) is endemic to Lake Baikal, and is a source of income to locals.

The most important local species for fisheries is the omul (Coregonus migratorius), an endemic whitefish. It is caught, smoked, and then sold widely in markets around the lake. Also, a second endemic whitefish inhabits the lake, C. baicalensis. The Baikal black grayling (Thymallus baicalensis), Baikal white grayling (T. brevipinnis), and Baikal sturgeon (Acipenser baerii baicalensis) are other important species with commercial value. They are also endemic to the Lake Baikal basin.

Invertebrates

The lake hosts a rich endemic fauna of invertebrates. The copepod Epischura baikalensis is endemic to Lake Baikal and the dominating zooplankton species there, making up 80 to 90% of total biomass. It is estimated that the epischurans filter as much as a thousand cubic kilometers of water a year, or the lake's entire volume every twenty-three years.

Among the most diverse invertebrate groups are the amphipod and ostracod crustaceans, freshwater snails, annelid worms and turbellarian worms:

Amphipod and ostracod crustaceans

A "giant" Brachyuropus reicherti (Acanthogammaridae) amphipod caught during ice fishing in the lake. Red-orange is its natural, living coloration

More than 350 species and subspecies of amphipods are endemic to the lake. They are exceptionally diverse in ecology and appearance, ranging from the pelagic Macrohectopus to the relatively large deep-water Abyssogammarus and Garjajewia, the tiny herbivorous Micruropus, and the parasitic Pachyschesis (parasitic on other amphipods). The "gigantism" of some Baikal amphipods, which has been compared to that seen in Antarctic amphipods, has been linked to the high level of dissolved oxygen in the lake. Among the "giants" are several species of spiny Acanthogammarus and Brachyuropus (Acanthogammaridae) found at both shallow and deep depths. These conspicuous and common amphipods are essentially carnivores (will also take detritus), and can reach a body length up to 7 cm (2.8 in).

Similar to another ancient lake, Tanganyika, Baikal is a center for ostracod diversity. About 90% of the Lake Baikal ostracods are endemic, meaning that there are c. 200 endemic species. This makes it the second-most diverse group of crustacean in the lake, after the amphipods. The vast majority of the Baikal ostracods belong in the families Candonidae (more than 100 described species) and Cytherideidae (about 50 described species), but genetic studies indicate that the true diversity in at least the latter family has been heavily underestimated. The morphology of the Baikal ostracods is highly diverse.

Snails and bivalves

As of 2006, almost 150 freshwater snails are known from Lake Baikal, including 117 endemic species from the subfamilies Baicaliinae (part of the Amnicolidae) and Benedictiinae (part of the Lithoglyphidae), and the families Planorbidae and Valvatidae. All endemics have been recorded between 20 and 30 m (66 and 98 ft), but the majority mainly live at shallower depths. About 30 freshwater snail species can be seen deeper than 100 m (330 ft), which represents the approximate limit of the sunlight zone, but only 10 are truly deepwater species. In general, Baikal snails are thin-shelled and small. Two of the most common species are Benedictia baicalensis and Megalovalvata baicalensis. Bivalve diversity is lower with more than 30 species; about half of these, all in the families Euglesidae, Pisidiidae, and Sphaeriidae, are endemic (the only other family in the lake is the Unionidae with a single nonendemic species). The endemic bivalves are mainly found in shallows, with few species from deep water.

Aquatic worms

With almost 200 described species, including more than 160 endemics, the center of diversity for aquatic freshwater oligochaetes is Lake Baikal. A smaller number of other freshwater annelids is known: 30 species of leeches (Hirudinea), and 4 polychaetes. Several hundred species of nematodes are known from the lake, but a large percentage of these are undescribed.

More than 140 endemic flatworm (Plathelminthes) species are in Lake Baikal, where they occur on a wide range of bottom types. Most of the flatworms are predatory, and some are relatively brightly marked. They are often abundant in shallow waters, where they are typically less than 2 cm (1 in) long, but in deeper parts of the lake, the largest, Baikaloplana valida, can reach up to 30 cm (1 ft) when outstretched.

Museum specimen of the branching sponge Lubomirskia baicalensis (living are brighter green)

Sponges

At least 18 species of sponges occur in the lake, including about 15 species from the endemic family Lubomirskiidae (the remaining are from the nonendemic family Spongillidae). In the nearshore regions of Baikal, the largest benthic biomass is sponges. Lubomirskia baicalensis, Baikalospongia bacillifera, and B. intermedia are unusually large for freshwater sponges and can reach 1 m (3.3 ft) or more. These three are also the most common sponges in the lake. While the Baikalospongia species typically have encrusting or carpet-like structures, L. baikalensis often has branching structures and in areas where common may form underwater "forests". Most sponges in the lake are typically green when alive because of symbiotic chlorophytes (zoochlorella), but can also be brownish or yellowish.

History

The Baikal area, sometimes known as Baikalia, has a long history of human habitation. Near the village of Mal'ta, some 160 km northwest of the lake, remains of a young human male known as MA-1 or "Mal'ta Boy" are indications of local habitation by the Mal'ta–Buret' culture ca. 24,000 BP. An early known tribe in the area was the Kurykans.

Located in the former northern territory of the Xiongnu confederation, Lake Baikal is one site of the Han–Xiongnu War, where the armies of the Han dynasty pursued and defeated the Xiongnu forces from the second century BC to the first century AD. They recorded that the lake was a "huge sea" (hanhai) and designated it the North Sea (Běihǎi) of the semimythical Four Seas. The Kurykans, a Siberian tribe who inhabited the area in the sixth century, gave it a name that translates to "much water". Later on, it was called "natural lake" (Baygal nuur) by the Buryats and "rich lake" (Bay göl) by the Yakuts. Little was known to Europeans about the lake until Russia expanded into the area in the 17th century. The first Russian explorer to reach Lake Baikal was Kurbat Ivanov in 1643.

Russian expansion into the Buryat area around Lake Baikal in 1628–58 was part of the Russian conquest of Siberia. It was done first by following the Angara River upstream from Yeniseysk (founded 1619) and later by moving south from the Lena River. Russians first heard of the Buryats in 1609 at Tomsk. According to folktales related a century after the fact, in 1623, Demid Pyanda, who may have been the first Russian to reach the Lena, crossed from the upper Lena to the Angara and arrived at Yeniseysk.

Vikhor Savin (1624) and Maksim Perfilyev (1626 and 1627–28) explored Tungus country on the lower Angara. To the west, Krasnoyarsk on the upper Yenisei was founded in 1627. A number of ill-documented expeditions explored eastward from Krasnoyarsk. In 1628, Pyotr Beketov first encountered a group of Buryats and collected yasak (tribute) from them at the future site of Bratsk. In 1629, Yakov Khripunov set off from Tomsk to find a rumored silver mine. His men soon began plundering both Russians and natives. They were joined by another band of rioters from Krasnoyarsk, but left the Buryat country when they ran short of food. This made it difficult for other Russians to enter the area. In 1631, Maksim Perfilyev built an ostrog at Bratsk. The pacification was moderately successful, but in 1634, Bratsk was destroyed and its garrison killed. In 1635, Bratsk was restored by a punitive expedition under Radukovskii. In 1638, it was besieged unsuccessfully.

In 1638, Perfilyev crossed from the Angara over the Ilim portage to the Lena River and went downstream as far as Olyokminsk. Returning, he sailed up the Vitim River into the area east of Lake Baikal (1640) where he heard reports of the Amur country. In 1641, Verkholensk was founded on the upper Lena. In 1643, Kurbat Ivanov went further up the Lena and became the first Russian to see Lake Baikal and Olkhon Island. Half his party under Skorokhodov remained on the lake, reached the Upper Angara at its northern tip, and wintered on the Barguzin River on the northeast side.

In 1644, Ivan Pokhabov went up the Angara to Baikal, becoming perhaps the first Russian to use this route, which is difficult because of the rapids. He crossed the lake and explored the lower Selenge River. About 1647, he repeated the trip, obtained guides, and visited a 'Tsetsen Khan' near Ulan Bator. In 1648, Ivan Galkin built an ostrog on the Barguzin River which became a center for eastward expansion. In 1652, Vasily Kolesnikov reported from Barguzin that one could reach the Amur country by following the Selenga, Uda, and Khilok Rivers to the future sites of Chita and Nerchinsk. In 1653, Pyotr Beketov took Kolesnikov's route to Lake Irgen west of Chita, and that winter his man Urasov founded Nerchinsk. Next spring, he tried to occupy Nerchensk, but was forced by his men to join Stephanov on the Amur. Nerchinsk was destroyed by the local Tungus, but restored in 1658.

The Trans-Siberian Railway was built between 1896 and 1902. Construction of the scenic railway around the southwestern end of Lake Baikal required 200 bridges and 33 tunnels. Until its completion, a train ferry transported railcars across the lake from Port Baikal to Mysovaya for a number of years. The lake became the site of the minor engagement between the Czechoslovak legion and the Red Army in 1918. At times during winter freezes, the lake could be crossed on foot, though at risk of frostbite and deadly hypothermia from the cold wind moving unobstructed across flat expanses of ice. In the winter of 1920, the Great Siberian Ice March occurred, when the retreating White Russian Army crossed frozen Lake Baikal. The wind on the exposed lake was so cold, many people died, freezing in place until spring thaw. Beginning in 1956, the impounding of the Irkutsk Dam on the Angara River raised the level of the lake by 1.4 m (4.6 ft).

As the railway was built, a large hydrogeographical expedition headed by F.K. Drizhenko produced the first detailed contour map of the lake bed.

Research

Ice cover survey on the lake

Several organizations are carrying out natural research projects on Lake Baikal. Most of them are governmental or associated with governmental organizations. The Baikalian Research Centre is an independent research organization carrying out environmental, educational and research projects at Lake Baikal.

In July 2008, Russia sent two small submersibles, Mir-1 and Mir-2, to descend 1,592 m (5,223 ft) to the bottom of Lake Baikal to conduct geological and biological tests on its unique ecosystem. Although originally reported as being successful, they did not set a world record for the deepest freshwater dive, reaching a depth of only 1,580 m (5,180 ft). That record is currently held by Anatoly Sagalevich, at 1,637 m (5,371 ft) (also in Lake Baikal aboard a Pisces submersible in 1990). Russian scientist and federal politician Artur Chilingarov, the leader of the mission, took part in the Mir dives as did Russian leader Vladimir Putin.

Since 1993, neutrino research has been conducted at the Baikal Deep Underwater Neutrino Telescope (BDUNT). The Baikal Neutrino Telescope NT-200 is being deployed in Lake Baikal, 3.6 km (2.2 mi) from shore at a depth of 1.1 km (0.68 mi). It consists of 192 optical modules.

Economy

Baikal fishermen fish for 15 commercially used species. The omul, found only in Baikal, accounts for most of the catch.

The lake, nicknamed "the Pearl of Siberia", drew investors from the tourist industry as energy revenues sparked an economic boom. Viktor Grigorov's Grand Baikal in Irkutsk is one of the investors, who planned to build three hotels, creating 570 jobs. In 2007, the Russian government declared the Baikal region a special economic zone. A popular resort in Listvyanka is home to the seven-story Hotel Mayak. At the northern part of the lake, Baikalplan (a German NGO) built together with Russians in 2009 the Frolikha Adventure Coastline Track, a 100 km (62 mi)-long long-distance trail as an example for sustainable development of the region. Baikal was also declared a UNESCO World Heritage site in 1996. Rosatom plans to build a laboratory near Baikal, in conjunction with an international uranium plant and to invest $2.5 billion in the region and create 2,000 jobs in the city of Angarsk.

Lake Baikal is a popular destination among tourists from all over the world. According to the Russian Federal State Statistics Service, in 2013, 79,179 foreign tourists visited Irkutsk and Lake Baikal; in 2014, 146,937 visitors. The most popular places to stay by the lake are Listvyanka village, Olkhon Island, Kotelnikovsky cape, Baykalskiy Priboi, resort Khakusy and Turka village. The popularity of Lake Baikal is growing from year to year, but there is no developed infrastructure in the area. For the quality of service and comfort from the visitor's point of view, Lake Baikal still has a long way to go.

The ice road to Olkhon Island is the only legal ice road on Lake Baikal. The route is prepared by specialists every year and it opens when the ice conditions allow it. In 2015, the ice road to Olkhon was open from 17 February to 23 March. The thickness of the ice on the road is about 60 cm (24 in), maximum capacity allowed – 10 t (9.8 long tons; 11 short tons); it is open to the public from 9 am to 6 pm. The road through the lake is 12 km (7.5 mi) long and it goes from the village Kurkut on the mainland, to Irkutskaya Guba on Olkhon Island.

Ecotourism

Crevasses of Baikal ice

Baikal has a number of different tourist activities, depending on the season. Generally, Baikal has two top tourist seasons. The first season is ice season, which starts usually in mid-January and lasts till mid-April. During this season ice depth increases up to 140 centimeters, that allows safe vehicle driving on the ice cover (except heavy vehicles, such as tourist buses, that do not take this risk). This allows access to the figures of ice that are formed at rocky banks of Olkhon Island, including Cape Hoboy, the Three Brothers rock, and caves to the North of Khuzhir. It also provides access to small islands like Ogoy Island and Zamogoy.

The ice itself has a transparency of one meter depth, having different patterns of crevasses, bubbles, and sounds. That is why this season is popular for hiking, ice-walking, ice-skating, and bicycle-riding. An ice route around Olkhon is around 200 km. Some tourists may spot a Baikal seal along the route. Local entrepreneurs offer overnight in Yurt on ice. Also this season attracts fans of ice fishing. This activity is most popular on Buryatia side of Baikal (Ust-Barguzin). Non-fishermen may try fresh Baikal fish in local village markets. (Listvyanka, Ust-Barguzin).

The ice season ends in mid-April. Owing to increasing temperatures ice starts to melt and becomes shallow and fragile, especially in places with strong under-ice flows. A range of factors contribute to an increased risk of falling through the ice towards the end of the season, resulting in multiple deaths in Russia each year, although exact data for Baikal are unknown. Viktor Viktorovych Yanukovych, son of former Ukrainian President Viktor Yanukovych, reportedly died after his car fell through the ice while driving on Baikal in 2015.

The second tourist season is summer, which lets tourists dive deeper into virgin Baikal nature. Hiking trails become open, many of them cross two mountain ranges: Baikal Range on the western side and Barguzin Range on the eastern side of Baikal. The most popular trail starts in Listvyanka and goes along the Baikal coast to Bolshoye Goloustnoye. The total length of the route is 55 km, but the most part of tourists usually take only a part of it – a section of 25 km to Bolshie Koty. It has a lower difficulty level and could be passed by people without special skills and gear.

Small tourist vessels operate in the area, availing bird-watching, animal watching (especially Baikal seal), and fishing. Water in the lake stays extremely cold in most places (does not exceed 10 C most of the year), but in few gulfs like Chivirkuy it can be comfortable for swimming.

Great Baikal Trail goes from Litvyanka to Bolshoe Goloustnoye along Lake Baikal coast

Olkhon's most-populated village Khuzhir is an ecotourist destination. Baikal has always been popular in Russia and CIS-countries, but for the last few years Baikal has seen an influx of visitors from China and Europe.

Environmental concerns

Environmentalists have previously acknowledged pollution at Lake Baikal. It faces a series of detrimental phenomena including the disappearance of the omul fish, the rapid growth of putrid algae and the death of endemic species of sponges across its area. Environmental advocacy for the lake began in the late 1950s. Since 2010, more than 15,000 metric tons of toxic waste have flowed into the lake.

Baykalsk Pulp and Paper Mill

Baykalsk Pulp and Paper Mill in 2008, 5 years before its closure

The Baykalsk Pulp and Paper Mill was constructed in 1966, directly on the shoreline of Lake Baikal. The plant bleached paper using chlorine and discharged waste directly into Lake Baikal. The decision to construct the plant on the Lake Baikal resulted in strong protests from Soviet scientists; according to them, the ultra-pure water of the lake was a significant resource and should have been used for innovative chemical production (for instance, the production of high-quality viscose for the aeronautics and space industries). The Soviet scientists felt that it was irrational to change Lake Baikal's water quality by beginning paper production on the shore. It was their position that it was also necessary to preserve endemic species of local biota, and to maintain the area around Lake Baikal as a recreation zone. However, the objections of the Soviet scientists faced opposition from the industrial lobby and only after decades of protest, the plant was closed in November 2008 due to unprofitability. On 4 January 2010, production was resumed. On 13 January 2010, Russian President Vladimir Putin introduced changes in legislation legalising the operation of the plant; this action brought about a wave of protests from ecologists and local residents. These changes were based on the determination President Putin made through a visual verification of Lake Baikal's condition from a miniature submarine, where he said: "I could see with my own eyes – and scientists can confirm – Baikal is in good condition and there is practically no pollution". Despite this, in September 2013, the mill underwent a final bankruptcy, with the last 800 workers slated to lose their jobs by 28 December 2013.

Cancelled East Siberia-Pacific Ocean oil pipeline

The lake in the winter. The ice is thick enough to support pedestrians and snowmobiles.

Russian oil pipelines state company Transneft was planning to build a trunk pipeline that would have come within 800 m (2,600 ft) of the lake shore in a zone of substantial seismic activity. Environmental activists in Russia, Greenpeace, Baikal pipeline opposition and local citizens were strongly opposed to these plans, due to the possibility of an accidental oil spill that might cause significant damage to the environment. According to the Transneft's president, numerous meetings with citizens near the lake were held in towns along the route, especially in Irkutsk. Transneft agreed to alter its plans when Russian president Vladimir Putin ordered the company to consider an alternative route 40 kilometers (25 mi) to the north to avoid such ecological risks. Transneft has since decided to move the pipeline away from Lake Baikal, so that it will not pass through any federal or republic natural reserves. Work began on the pipeline two days after President Putin agreed to changing the route away from Lake Baikal.

Proposed uranium enrichment center

In 2006, the Russian government announced plans to build the world's first international uranium enrichment center at an existing nuclear facility in Angarsk, a city on the river Angara some 95 km (59 mi) downstream from the lake's shores. Critics and environmentalists argued it would be a disaster for the region and are urging the government to reconsider.

After enrichment, only 10% of the uranium-derived radioactive material would be exported to international customers, leaving 90% near the Lake Baikal region for storage. Uranium tailings contain radioactive and toxic materials, which if improperly stored, are potentially dangerous to humans and can contaminate rivers and lakes.

An enrichment center was constructed in the 2010s.

Chinese-owned bottled water plant

Chinese-owned AquaSib had been purchasing land alongside the lake and in 2019 started building a bottling plant and pipeline in the town of Kultuk. The goal was to export 190 million liters of water to China even though the lake had been experiencing historically low water levels. This spurred protests by the local population that the lake would be drained of its water, at which point the local government halted the plans pending analysis.

Other pollution sources

According to The Moscow Times and Vice, an increasing number of an invasive species of algae thrives in the lake from hundreds of tons of liquid waste, including fuel and excrement, regularly disposed into the lake by tourist sites, and up to 25,000 tons of liquid waste are disposed of every year by local ships.

Historical traditions

An 1883 British map using the More Baikal (Baikal Sea) designation, rather than the conventional Ozero Baikal (Lake Baikal)

The first European to reach the lake is said to have been Kurbat Ivanov in 1643.

In the past, the Baikal was referred to by many Russians as the "Baikal Sea" (море Байкал, More Baikal), rather than merely "Lake Baikal" (озеро Байкал, Ozero Baikal). This usage is attested already in the Life of Protopope Avvakum (1621–1682), and on the late-17th-century maps by Semyon Remezov. It is also attested in the famous song, now passed into the tradition, that opens with the words Славное море, священный Байкал (Glorious sea, [the] sacred Bajkal). To this day, the strait between the western shore of the Lake and the Olkhon Island is called Maloye More (Малое море), i.e. "the Little Sea".

Lake Baikal is nicknamed "Older sister of Sister Lakes (Lake Khövsgöl and Lake Baikal)".

According to 19th-century traveler T. W. Atkinson, locals in the Lake Baikal Region had the tradition that Christ visited the area:

The people have a tradition in connection with this region which they implicitly believe. They say "that Christ visited this part of Asia and ascended this summit, whence he looked down on all the region around. After blessing the country to the northward, he turned towards the south, and looking across the Baikal, he waved his hand, exclaiming 'Beyond this there is nothing.'" Thus they account for the sterility of Daouria, where it is said "no corn will grow."

Lake Baikal has been celebrated in several Russian folk songs. Two of these songs are well known in Russia and its neighboring countries, such as Japan.

  • "Glorious Sea, Sacred Baikal" (Славное мope, священный Байкал) is about a katorga fugitive. The lyrics as documented and edited in the 19th century by Dmitriy P. Davydov (1811–1888). See "Barguzin River" for sample lyrics.
  • "The Wanderer" (Бродяга) is about a convict who had escaped from jail and was attempting to return home from Transbaikal. The lyrics were collected and edited in the 20th century by Ivan Kondratyev.

The latter song was a secondary theme song for the Soviet Union's second color film, Ballad of Siberia (1947; Сказание о земле Сибирской).

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...