From Wikipedia, the free encyclopedia

Large Hadron Collider (LHC)
LHC.svg
Layout of the LHC complex
General Properties
Accelerator typeSynchrotron
Beam typeproton, heavy ion
Target typecollider
Beam Properties
Maximum energy6.8 TeV per beam (13.6 TeV collision energy)
Maximum luminosity1×1034/(cm2⋅s)
Physical Properties
Circumference26659 m
LocationGeneva, Switzerland
Coordinates46°14′06″N 06°02′42″ECoordinates: 46°14′06″N 06°02′42″E
InstitutionCERN
Dates of operation2010 – present
Preceded byLarge Electron–Positron Collider
LHC experiments
ATLASA Toroidal LHC Apparatus
CMSCompact Muon Solenoid
LHCbLHC-beauty
ALICEA Large Ion Collider Experiment
TOTEMTotal Cross Section, Elastic Scattering and Diffraction Dissociation
LHCfLHC-forward
MoEDALMonopole and Exotics Detector At the LHC
FASERForwArd Search ExpeRiment
SNDScattering and Neutrino Detector
LHC preaccelerators
p and PbLinear accelerators for protons (Linac 4) and lead (Linac 3)
(not marked)Proton Synchrotron Booster
PSProton Synchrotron
SPSSuper Proton Synchrotron
CERN Complex
CERN accelerator complex (cropped 2).jpeg
Current particle and nuclear facilities
LHCAccelerates protons and heavy ions
LEIRAccelerates ions
SPSAccelerates protons and ions
PSBAccelerates protons
PSAccelerates protons or ions
Linac 3Injects heavy ions into LEIR
Linac4Accelerates ions
ADDecelerates antiprotons
ELENADecelerates antiprotons
ISOLDEProduces radioactive ion beams

The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories, as well as more than 100 countries. It lies in a tunnel 27 kilometres (17 mi) in circumference and as deep as 175 metres (574 ft) beneath the France–Switzerland border near Geneva.

The first collisions were achieved in 2010 at an energy of 3.5 teraelectronvolts (TeV) per beam, about four times the previous world record. After upgrades it reached 6.5 TeV per beam (13 TeV total collision energy, the present world record). At the end of 2018, it was shut down for three years for further upgrades.

The collider has four crossing points where the accelerated particles collide. Seven detectors, each designed to detect different phenomena, are positioned around the crossing points. The LHC primarily collides proton beams, but it can also accelerate beams of heavy ions: lead–lead collisions and proton–lead collisions are typically performed for one month a year.

The LHC's goal is to allow physicists to test the predictions of different theories of particle physics, including measuring the properties of the Higgs boson searching for the large family of new particles predicted by supersymmetric theories, and other unresolved questions in particle physics.

Background