Search This Blog

Saturday, October 28, 2023

Technology

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Technology
Photo of technicians working on a steam turbine
A steam turbine with the case opened, an example of energy technology

Technology is the application of knowledge for achieving practical goals in a reproducible way. The word technology can also mean the products resulting from such efforts, including both tangible tools such as utensils or machines, and intangible ones such as software. Technology plays a critical role in science, engineering, and everyday life.

Technological advancements have led to significant changes in society. The earliest known technology is the stone tool, used during prehistoric times, followed by the control of fire, which contributed to the growth of the human brain and the development of language during the Ice Age. The invention of the wheel in the Bronze Age allowed greater travel and the creation of more complex machines. More recent technological inventions, including the printing press, telephone, and the Internet, have lowered barriers to communication and ushered in the knowledge economy.

While technology contributes to economic development and improves human prosperity, it can also have negative impacts like pollution and resource depletion, and can cause social harms like technological unemployment resulting from automation. As a result, there are ongoing philosophical and political debates about the role and use of technology, the ethics of technology, and ways to mitigate its downsides.

Etymology

Technology is a term dating back to the early 17th century that meant 'systematic treatment' (from Greek Τεχνολογία, from the Greek: τέχνη, romanizedtékhnē, lit.'craft, art' and -λογία, 'study, knowledge'). It is predated in use by the Ancient Greek word tékhnē, used to mean 'knowledge of how to make things', which encompassed activities like architecture.

Starting in the 19th century, continental Europeans started using the terms Technik (German) or technique (French) to refer to a 'way of doing', which included all technical arts, such as dancing, navigation, or printing, whether or not they required tools or instruments. At the time, Technologie (German and French) referred either to the academic discipline studying the "methods of arts and crafts", or to the political discipline "intended to legislate on the functions of the arts and crafts." Since the distinction between Technik and Technologie is absent in English, both were translated as technology. The term was previously uncommon in English and mostly referred to the academic discipline, as in the Massachusetts Institute of Technology.

In the 20th century, as a result of scientific progress and the Second Industrial Revolution, technology stopped being considered a distinct academic discipline and took on its current-day meaning: the systemic use of knowledge to practical ends.

History

Prehistoric

refer to caption
A person holding a hand axe

Tools were initially developed by hominids through observation and trial and error. Around 2 Mya (million years ago), they learned to make the first stone tools by hammering flakes off a pebble, forming a sharp hand axe. This practice was refined 75 kya (thousand years ago) into pressure flaking, enabling much finer work.

The discovery of fire was described by Charles Darwin as "possibly the greatest ever made by man". Archaeological, dietary, and social evidence point to "continuous [human] fire-use" at least 1.5 Mya. Fire, fueled with wood and charcoal, allowed early humans to cook their food to increase its digestibility, improving its nutrient value and broadening the number of foods that could be eaten. The cooking hypothesis proposes that the ability to cook promoted an increase in hominid brain size, though some researchers find the evidence inconclusive. Archaeological evidence of hearths was dated to 790 kya; researchers believe this is likely to have intensified human socialization and may have contributed to the emergence of language.

Other technological advances made during the Paleolithic era include clothing and shelter. No consensus exists on the approximate time of adoption of either technology, but archaeologists have found archaeological evidence of clothing 90-120 kya and shelter 450 kya. As the Paleolithic era progressed, dwellings became more sophisticated and more elaborate; as early as 380 kya, humans were constructing temporary wood huts. Clothing, adapted from the fur and hides of hunted animals, helped humanity expand into colder regions; humans began to migrate out of Africa around 200 kya, initially moving to Eurasia.

Neolithic

Photo of Neolithic tools on display
An array of Neolithic artifacts, including bracelets, axe heads, chisels, and polishing tools

The Neolithic Revolution (or First Agricultural Revolution) brought about an acceleration of technological innovation, and a consequent increase in social complexity. The invention of the polished stone axe was a major advance that allowed large-scale forest clearance and farming. This use of polished stone axes increased greatly in the Neolithic but was originally used in the preceding Mesolithic in some areas such as Ireland. Agriculture fed larger populations, and the transition to sedentism allowed for the simultaneous raising of more children, as infants no longer needed to be carried around by nomads. Additionally, children could contribute labor to the raising of crops more readily than they could participate in hunter-gatherer activities.

With this increase in population and availability of labor came an increase in labor specialization. What triggered the progression from early Neolithic villages to the first cities, such as Uruk, and the first civilizations, such as Sumer, is not specifically known; however, the emergence of increasingly hierarchical social structures and specialized labor, of trade and war amongst adjacent cultures, and the need for collective action to overcome environmental challenges such as irrigation, are all thought to have played a role.

The invention of writing led to the spread of cultural knowledge and became the basis for history, libraries, schools, and scientific research.

Continuing improvements led to the furnace and bellows and provided, for the first time, the ability to smelt and forge gold, copper, silver, and lead  – native metals found in relatively pure form in nature. The advantages of copper tools over stone, bone and wooden tools were quickly apparent to early humans, and native copper was probably used from near the beginning of Neolithic times (about 10 ka). Native copper does not naturally occur in large amounts, but copper ores are quite common and some of them produce metal easily when burned in wood or charcoal fires. Eventually, the working of metals led to the discovery of alloys such as bronze and brass (about 4,000 BCE). The first use of iron alloys such as steel dates to around 1,800 BCE.

Ancient

Ancient technology
Photo of an early wooden wheel
The wheel was invented c. 4,000 BCE.

After harnessing fire, humans discovered other forms of energy. The earliest known use of wind power is the sailing ship; the earliest record of a ship under sail is that of a Nile boat dating to around 7,000 BCE. From prehistoric times, Egyptians likely used the power of the annual flooding of the Nile to irrigate their lands, gradually learning to regulate much of it through purposely built irrigation channels and "catch" basins. The ancient Sumerians in Mesopotamia used a complex system of canals and levees to divert water from the Tigris and Euphrates rivers for irrigation.

Archaeologists estimate that the wheel was invented independently and concurrently in Mesopotamia (in present-day Iraq), the Northern Caucasus (Maykop culture), and Central Europe. Time estimates range from 5,500 to 3,000 BCE with most experts putting it closer to 4,000 BCE. The oldest artifacts with drawings depicting wheeled carts date from about 3,500 BCE. More recently, the oldest-known wooden wheel in the world was found in the Ljubljana Marsh of Slovenia.

The invention of the wheel revolutionized trade and war. It did not take long to discover that wheeled wagons could be used to carry heavy loads. The ancient Sumerians used a potter's wheel and may have invented it. A stone pottery wheel found in the city-state of Ur dates to around 3,429 BCE, and even older fragments of wheel-thrown pottery have been found in the same area. Fast (rotary) potters' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy (through water wheels, windmills, and even treadmills) that revolutionized the application of nonhuman power sources. The first two-wheeled carts were derived from travois and were first used in Mesopotamia and Iran in around 3,000 BCE.

The oldest known constructed roadways are the stone-paved streets of the city-state of Ur, dating to c. 4,000 BCE, and timber roads leading through the swamps of Glastonbury, England, dating to around the same period. The first long-distance road, which came into use around 3,500 BCE, spanned 2,400 km from the Persian Gulf to the Mediterranean Sea, but was not paved and was only partially maintained. In around 2,000 BCE, the Minoans on the Greek island of Crete built a 50 km road leading from the palace of Gortyn on the south side of the island, through the mountains, to the palace of Knossos on the north side of the island. Unlike the earlier road, the Minoan road was completely paved.

refer to caption
Photograph of the Pont du Gard in France, one of the most famous ancient Roman aqueducts

Ancient Minoan private homes had running water. A bathtub virtually identical to modern ones was unearthed at the Palace of Knossos. Several Minoan private homes also had toilets, which could be flushed by pouring water down the drain. The ancient Romans had many public flush toilets, which emptied into an extensive sewage system. The primary sewer in Rome was the Cloaca Maxima; construction began on it in the sixth century BCE and it is still in use today.

The ancient Romans also had a complex system of aqueducts, which were used to transport water across long distances. The first Roman aqueduct was built in 312 BCE. The eleventh and final ancient Roman aqueduct was built in 226 CE. Put together, the Roman aqueducts extended over 450 km, but less than 70 km of this was above ground and supported by arches.

Pre-modern

Innovations continued through the Middle Ages with the introduction of silk production (in Asia and later Europe), the horse collar, and horseshoes. Simple machines (such as the lever, the screw, and the pulley) were combined into more complicated tools, such as the wheelbarrow, windmills, and clocks. A system of universities developed and spread scientific ideas and practices, including Oxford and Cambridge.

The Renaissance era produced many innovations, including the introduction of the movable type printing press to Europe, which facilitated the communication of knowledge. Technology became increasingly influenced by science, beginning a cycle of mutual advancement.

Modern

Photo of a Ford Model T on a road
The automobile revolutionized personal transportation.

Starting in the United Kingdom in the 18th century, the discovery of steam power set off the Industrial Revolution, which saw wide-ranging technological discoveries, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, and the widespread application of the factory system. This was followed a century later by the Second Industrial Revolution which led to rapid scientific discovery, standardization, and mass production. New technologies were developed, including sewage systems, electricity, light bulbs, electric motors, railroads, automobiles, and airplanes. These technological advances led to significant developments in medicine, chemistry, physics, and engineering. They were accompanied by consequential social change, with the introduction of skyscrapers accompanied by rapid urbanization. Communication improved with the invention of the telegraph, the telephone, the radio, and television.

The 20th century brought a host of innovations. In physics, the discovery of nuclear fission in the Atomic Age led to both nuclear weapons and nuclear power. Computers were invented and later shifted from analog to digital in the Digital Revolution. Information technology, particularly optical fiber and optical amplifiers led to the birth of the Internet, which ushered in the Information Age. The Space Age began with the launch of Sputnik 1 in 1957, and later the launch of crewed missions to the moon in the 1960s. Organized efforts to search for extraterrestrial intelligence have used radio telescopes to detect signs of technology use, or technosignatures, given off by alien civilizations. In medicine, new technologies were developed for diagnosis (CT, PET, and MRI scanning), treatment (like the dialysis machine, defibrillator, pacemaker, and a wide array of new pharmaceutical drugs), and research (like interferon cloning and DNA microarrays).

Complex manufacturing and construction techniques and organizations are needed to make and maintain more modern technologies, and entire industries have arisen to develop succeeding generations of increasingly more complex tools. Modern technology increasingly relies on training and education – their designers, builders, maintainers, and users often require sophisticated general and specific training. Moreover, these technologies have become so complex that entire fields have developed to support them, including engineering, medicine, and computer science; and other fields have become more complex, such as construction, transportation, and architecture.

Impact

Technological change is the largest cause of long-term economic growth. Throughout human history, energy production was the main constraint on economic development, and new technologies allowed humans to significantly increase the amount of available energy. First came fire, which made edible a wider variety of foods, and made it less physically demanding to digest them. Fire also enabled smelting, and the use of tin, copper, and iron tools, used for hunting or tradesmanship. Then came the agricultural revolution: humans no longer needed to hunt or gather to survive, and began to settle in towns and cities, forming more complex societies, with militaries and more organized forms of religion.

Technologies have contributed to human welfare through increased prosperity, improved comfort and quality of life, and medical progress, but they can also disrupt existing social hierarchies, cause pollution, and harm individuals or groups.

Recent years have brought about a rise in social media's cultural prominence, with potential repercussions on democracy, and economic and social life. Early on, the internet was seen as a "liberation technology" that would democratize knowledge, improve access to education, and promote democracy. Modern research has turned to investigate the internet's downsides, including disinformation, polarization, hate speech, and propaganda.

Since the 1970s, technology's impact on the environment has been criticized, leading to a surge in investment in solar, wind, and other forms of clean energy.

Social

Jobs

Since the invention of the wheel, technologies have helped increase humans' economic output. Past automation has both substituted and complemented labor; machines replaced humans at some lower-paying jobs (for example in agriculture), but this was compensated by the creation of new, higher-paying jobs. Studies have found that computers did not create significant net technological unemployment. Due to artificial intelligence being far more capable than computers, and still being in its infancy, it is not known whether it will follow the same trend; the question has been debated at length among economists and policymakers. A 2017 survey found no clear consensus among economists on whether AI would increase long-term unemployment. According to the World Economic Forum's "The Future of Jobs Report 2020", AI is predicted to replace 85 million jobs worldwide, and create 97 million new jobs by 2025. From 1990 to 2007, a study in the U.S by MIT economist Daron Acemoglu showed that an addition of one robot for every 1,000 workers decreased the employment-to-population ratio by 0.2%, or about 3.3 workers, and lowered wages by 0.42%. Concerns about technology replacing human labor however are long-lasting. As US president Lyndon Johnson said in 1964, "Technology is creating both new opportunities and new obligations for us, opportunity for greater productivity and progress; obligation to be sure that no workingman, no family must pay an unjust price for progress." upon signing the National Commission on Technology, Automation, and Economic Progress bill.

Security

With the growing reliance of technology, there have been security and privacy concerns along with it. Billions of people use different online payment methods, such as WeChat Pay, PayPal, Alipay, and much more to help transfer money. Although security measures are placed, some criminals are able to bypass them. In March 2022, North Korea used Blender.io, a mixer which helped them to hide their cryptocurrency exchanges, to launder over $20.5 million in cryptocurrency, from Axie Infinity, and steal over $600 million worth of cryptocurrency from the game's owner. Because of this, the U.S. Treasury Department sanctioned Blender.io, which marked the first time it has taken action against a mixer, to try and crack down on North Korean hackers. The privacy of cryptocurrency has been debated. Although many customers like the privacy of cryptocurrency, many also argue that it needs more transparency and stability.

Environmental

Technology has impacted the world with negative and positive environmental impacts, which are usually the reverse of the initial damage, such as; the creation of pollution and the attempt to undo said pollution, deforestation and the reversing of deforestation, and oil spills. All of these have had a significant impact on the environment of the earth. As technology has advanced, so has the negative environmental impact, with the releasing of greenhouse gases, like methane and carbon dioxide, into the atmosphere, causing the greenhouse effect, gradually heating the earth and causing global warming. All of this has become worse with the advancement of technology.

Pollution

Pollution, the presence of contaminants in an environment that causes adverse effects, could have been present as early as the Inca empire. They used a lead sulfide flux in the smelting of ores, along with the use of a wind-drafted clay kiln, which released lead into the atmosphere and the sediment of rivers.

Philosophy

Philosophy of technology is a branch of philosophy that studies the "practice of designing and creating artifacts", and the "nature of the things so created." It emerged as a discipline over the past two centuries, and has grown "considerably" since the 1970s. The humanities philosophy of technology is concerned with the "meaning of technology for, and its impact on, society and culture".

Initially, technology was seen as an extension of the human organism that replicated or amplified bodily and mental faculties. Marx framed it as a tool used by capitalists to oppress the proletariat, but believed that technology would be a fundamentally liberating force once it was "freed from societal deformations". Second-wave philosophers like Ortega later shifted their focus from economics and politics to "daily life and living in a techno-material culture," arguing that technology could oppress "even the members of the bourgeoisie who were its ostensible masters and possessors." Third-stage philosophers like Don Ihde and Albert Borgmann represent a turn toward de-generalization and empiricism, and considered how humans can learn to live with technology.

Early scholarship on technology was split between two arguments: technological determinism, and social construction. Technological determinism is the idea that technologies cause unavoidable social changes. It usually encompasses a related argument, technological autonomy, which asserts that technological progress follows a natural progression and cannot be prevented. Social constructivists argue that technologies follow no natural progression, and are shaped by cultural values, laws, politics, and economic incentives. Modern scholarship has shifted towards an analysis of sociotechnical systems, "assemblages of things, people, practices, and meanings", looking at the value judgments that shape technology.

Cultural critic Neil Postman distinguished tool-using societies from technological societies and from what he called "technopolies," societies that are dominated by an ideology of technological and scientific progress to the detriment of other cultural practices, values, and world views. Herbert Marcuse and John Zerzan suggest that technological society will inevitably deprive us of our freedom and psychological health.

Ethics

The ethics of technology is an interdisciplinary subfield of ethics that analyzes technology's ethical implications and explores ways to mitigate the potential negative impacts of new technologies. There is a broad range of ethical issues revolving around technology, from specific areas of focus affecting professionals working with technology to broader social, ethical, and legal issues concerning the role of technology in society and everyday life.

Prominent debates have surrounded genetically modified organisms, the use of robotic soldiers, algorithmic bias, and the issue of aligning AI behavior with human values.

Technology ethics encompasses several key fields. Bioethics looks at ethical issues surrounding biotechnologies and modern medicine, including cloning, human genetic engineering, and stem cell research. Computer ethics focuses on issues related to computing. Cyberethics explores internet-related issues like intellectual property rights, privacy, and censorship. Nanoethics examines issues surrounding the alteration of matter at the atomic and molecular level in various disciplines including computer science, engineering, and biology. And engineering ethics deals with the professional standards of engineers, including software engineers and their moral responsibilities to the public.

A wide branch of technology ethics is concerned with the ethics of artificial intelligence: it includes robot ethics, which deals with ethical issues involved in the design, construction, use, and treatment of robots, as well as machine ethics, which is concerned with ensuring the ethical behavior of artificially intelligent agents. Within the field of AI ethics, significant yet-unsolved research problems include AI alignment (ensuring that AI behaviors are aligned with their creators' intended goals and interests) and the reduction of algorithmic bias. Some researchers have warned against the hypothetical risk of an AI takeover, and have advocated for the use of AI capability control in addition to AI alignment methods.

Other fields of ethics have had to contend with technology-related issues, including military ethics, media ethics, and educational ethics.

Futures studies

Futures studies is the systematic and interdisciplinary study of social and technological progress. It aims to quantitatively and qualitatively explore the range of plausible futures and to incorporate human values in the development of new technologies. More generally, futures researchers are interested in improving "the freedom and welfare of humankind". It relies on a thorough quantitative and qualitative analysis of past and present technological trends, and attempts to rigorously extrapolate them into the future. Science fiction is often used as a source of ideas. Futures research methodologies include survey research, modeling, statistical analysis, and computer simulations.

Existential risk

Existential risk researchers analyze risks that could lead to human extinction or civilizational collapse, and look for ways to build resilience against them. Relevant research centers include the Cambridge Center for the Study of Existential Risk, and the Stanford Existential Risk Initiative. Future technologies may contribute to the risks of artificial general intelligence, biological warfare, nuclear warfare, nanotechnology, anthropogenic climate change, global warming, or stable global totalitarianism, though technologies may also help us mitigate asteroid impacts and gamma-ray bursts. In 2019 philosopher Nick Bostrom introduced the notion of a vulnerable world, "one in which there is some level of technological development at which civilization almost certainly gets devastated by default", citing the risks of a pandemic caused by bioterrorists, or an arms race triggered by the development of novel armaments and the loss of mutual assured destruction. He invites policymakers to question the assumptions that technological progress is always beneficial, that scientific openness is always preferable, or that they can afford to wait until a dangerous technology has been invented before they prepare mitigations.

Emerging technologies

Photo of a scientist looking at a microscope pointed at a petri dish
Experimental 3D printing of muscle tissue

Emerging technologies are novel technologies whose development or practical applications are still largely unrealized. They include nanotechnology, biotechnology, robotics, 3D printing, blockchains, and artificial intelligence.

In 2005, futurist Ray Kurzweil claimed the next technological revolution would rest upon advances in genetics, nanotechnology, and robotics, with robotics being the most impactful of the three technologies. Genetic engineering will allow far greater control over human biological nature through a process called directed evolution. Some thinkers believe that this may shatter our sense of self, and have urged for renewed public debate exploring the issue more thoroughly; others fear that directed evolution could lead to eugenics or extreme social inequality. Nanotechnology will grant us the ability to manipulate matter "at the molecular and atomic scale", which could allow us to reshape ourselves and our environment in fundamental ways. Nanobots could be used within the human body to destroy cancer cells or form new body parts, blurring the line between biology and technology. Autonomous robots have undergone rapid progress, and are expected to replace humans at many dangerous tasks, including search and rescue, bomb disposal, firefighting, and war.

Estimates on the advent of artificial general intelligence vary, but half of machine learning experts surveyed in 2018 believe that AI will "accomplish every task better and more cheaply" than humans by 2063, and automate all human jobs by 2140. This expected technological unemployment has led to calls for increased emphasis on computer science education and debates about universal basic income. Political science experts predict that this could lead to a rise in extremism, while others see it as an opportunity to usher in a post-scarcity economy.

Movements

Appropriate technology

Some segments of the 1960s hippie counterculture grew to dislike urban living and developed a preference for locally autonomous, sustainable, and decentralized technology, termed appropriate technology. This later influenced hacker culture and technopaganism.

Technological utopianism

Technological utopianism refers to the belief that technological development is a moral good, which can and should bring about a utopia, that is, a society in which laws, governments, and social conditions serve the needs of all its citizens. Examples of techno-utopian goals include post-scarcity economics, life extension, mind uploading, cryonics, and the creation of artificial superintelligence. Major techno-utopian movements include transhumanism and singularitarianism.

The transhumanism movement is founded upon the "continued evolution of human life beyond its current human form" through science and technology, informed by "life-promoting principles and values." The movement gained wider popularity in the early 21st century.


Singularitarians believe that machine superintelligence will "accelerate technological progress" by orders of magnitude and "create even more intelligent entities ever faster", which may lead to a pace of societal and technological change that is "incomprehensible" to us. This event horizon is known as the technological singularity.

Major figures of techno-utopianism include Ray Kurzweil and Nick Bostrom. Techno-utopianism has attracted both praise and criticism from progressive, religious, and conservative thinkers.

Anti-technology backlash

refer to caption
Luddites smashing a power loom in 1812

Technology's central role in our lives has drawn concerns and backlash. The backlash against technology is not a uniform movement and encompasses many heterogeneous ideologies.

The earliest known revolt against technology was Luddism, a pushback against early automation in textile production. Automation had resulted in a need for fewer workers, a process known as technological unemployment.

Between the 1970s and 1990s, American terrorist Ted Kaczynski carried out a series of bombings across America and published the Unabomber Manifesto denouncing technology's negative impacts on nature and human freedom. The essay resonated with a large part of the American public. It was partly inspired by Jacques Ellul's The Technological Society.

Some subcultures, like the off-the-grid movement, advocate a withdrawal from technology and a return to nature. The ecovillage movement seeks to reestablish harmony between technology and nature.

Relation to science and engineering

Drawing of Lavoisier conducting an experiment in front of onlookers
Antoine Lavoisier experimenting with combustion generated by amplified sunlight

Engineering is the process by which technology is developed. It often requires problem-solving under strict constraints. Technological development is "action-oriented", while scientific knowledge is fundamentally explanatory. Polish philosopher Henryk Skolimowski framed it like so: "science concerns itself with what is, technology with what is to be."

The direction of causality between scientific discovery and technological innovation has been debated by scientists, philosophers and policymakers. Because innovation is often undertaken at the edge of scientific knowledge, most technologies are not derived from scientific knowledge, but instead from engineering, tinkering and chance. For example, in the 1940s and 1950s, when knowledge of turbulent combustion or fluid dynamics was still crude, jet engines were invented through "running the device to destruction, analyzing what broke [...] and repeating the process". Scientific explanations often follow technological developments rather than preceding them. Many discoveries also arose from pure chance, like the discovery of penicillin as a result of accidental lab contamination. Since the 1960s, the assumption that government funding of basic research would lead to the discovery of marketable technologies has lost credibility. Probabilist Nassim Taleb argues that national research programs that implement the notions of serendipity and convexity through frequent trial and error are more likely to lead to useful innovations than research that aims to reach specific outcomes.

Despite this, modern technology is increasingly reliant on deep, domain-specific scientific knowledge. In 1975, there was an average of one citation of scientific literature in every three patents granted in the U.S.; by 1989, this increased to an average of one citation per patent. The average was skewed upwards by patents related to the pharmaceutical industry, chemistry, and electronics. A 2021 analysis shows that patents that are based on scientific discoveries are on average 26% more valuable than equivalent non-science-based patents.

Other animal species

Photo of a gorilla walking hip-deep in a pond, holding a stick
This adult gorilla uses a branch as a walking stick to gauge the water's depth.

The use of basic technology is also a feature of non-human animal species. Tool use was once considered a defining characteristic of the genus Homo. This view was supplanted after discovering evidence of tool use among chimpanzees and other primates, dolphins, and crows. For example, researchers have observed wild chimpanzees using basic foraging tools, pestles, levers, using leaves as sponges, and tree bark or vines as probes to fish termites. West African chimpanzees use stone hammers and anvils for cracking nuts, as do capuchin monkeys of Boa Vista, Brazil. Tool use is not the only form of animal technology use; for example, beaver dams, built with wooden sticks or large stones, are a technology with "dramatic" impacts on river habitats and ecosystems.

Popular culture

The relationship of humanity with technology has been explored in science-fiction literature, for example in Brave New World, A Clockwork Orange, Nineteen Eighty-Four, Isaac Asimov's essays, and movies like Minority Report, Total Recall, Gattaca, and Inception. It has spawned the dystopian and futuristic cyberpunk genre, which juxtaposes futuristic technology with societal collapse, dystopia or decay. Notable cyberpunk works include William Gibson's Neuromancer novel, and movies like Blade Runner, and The Matrix.

Natural disaster


From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Natural_disaster
Global multihazard proportional economic loss by natural disasters as cyclones, droughts, earthquakes, floods, landslides and volcanoes

A natural disaster is the highly harmful impact on a society or community following a natural hazard event. Some examples of natural hazard events include: flooding, drought, earthquake, tropical cyclone, lightning, tsunami, volcanic activity, wildfire. A natural disaster can cause loss of life or damage property, and typically leaves economic damage in its wake. The severity of the damage depends on the affected population's resilience and on the infrastructure available. Scholars have been saying that the term natural disaster is unsuitable and should be abandoned. Instead, the simpler term disaster could be used, while also specifying the category (or type) of hazard. A disaster is a result of a natural or human-made hazard impacting a vulnerable community. It is the combination of the hazard along with exposure of a vulnerable society that results in a disaster.

In modern times, the divide between natural, human-made and human-accelerated disasters is quite difficult to draw. Human choices and activities like architecture, fire, resource management and climate change potentially play a role in causing natural disasters. In fact, the term natural disaster was called a misnomer already in 1976.

Natural disasters can be aggravated by inadequate building norms, marginalization of people, inequities, overexploitation of resources, extreme urban sprawl and climate change. The rapid growth of the world's population and its increased concentration often in hazardous environments has escalated both the frequency and severity of disasters. Extreme climates (such as those in the Tropics) and unstable landforms, coupled with deforestation, unplanned growth proliferation and non-engineered constructions create more vulnerable interfaces of populated areas with disaster-prone natural spaces. Developing countries which suffer from chronic natural disasters, often have ineffective communication systems combined with insufficient support for disaster prevention and management.

An adverse event will not rise to the level of a disaster if it occurs in an area without a vulnerable population. Once a vulnerable population has experienced a disaster, the community can take many years to repair and that repair period can lead to further vulnerability. The disastrous consequences of natural disaster also affect the mental health of affected communities, often leading to post-traumatic symptoms. These increased emotional experiences can be supported through collective processing, leading to resilience and increased community engagement.

Terminology

A natural disaster is the highly harmful impact on a society or community following a natural hazard event. The term "disaster" itself is defined as follows: "Disasters are serious disruptions to the functioning of a community that exceed its capacity to cope using its own resources. Disasters can be caused by natural, man-made and technological hazards, as well as various factors that influence the exposure and vulnerability of a community."

The US Federal Emergency Management Agency (FEMA) explains the relationship between natural disasters and natural hazards as follows: "Natural hazards and natural disasters are related but are not the same. A natural hazard is the threat of an event that will likely have a negative impact. A natural disaster is the negative impact following an actual occurrence of natural hazard in the event that it significantly harms a community. An example of the distinction between a natural hazard and a disaster is that an earthquake is the hazard which caused the 1906 San Francisco earthquake disaster.

A natural hazard is a natural phenomenon that might have a negative effect on humans and other animals, or the environment. Natural hazard events can be classified into two broad categories: geophysical and biological. Natural hazards can be provoked or affected by anthropogenic processes, e.g. land-use change, drainage and construction.

There are 18 natural hazards included in the National Risk Index of FEMA: avalanche, coastal flooding, cold wave, drought, earthquake, hail, heat wave,tropical cyclone, ice storm, landslide, lightning, riverine flooding, strong wind, tornado, tsunami, volcanic activity, wildfire, winter weather. In addition there are also tornados and dust storms.

Critique

The term natural disaster has been called a misnomer already in 1976. A disaster is a result of a natural hazard impacting a vulnerable community. But disasters can be avoided. Earthquakes, droughts, floods, storms, and other events lead to disasters because of human action and inaction. Poor land and policy planning and deregulation can create worse conditions. They often involve development activities that ignore or fail to reduce the disaster risks. Nature alone is blamed for disasters even when disasters result from failures in development. Disasters also result from failure of societies to prepare. Examples for such failures include inadequate building norms, marginalization of people, inequities, overexploitation of resources, extreme urban sprawl and climate change.

Defining disasters as solely natural events has serious implications when it comes to understanding the causes of a disaster and the distribution of political and financial responsibility in disaster risk reduction, disaster management, compensation, insurance and disaster prevention. Using natural to describe disasters misleads people to think the devastating results are inevitable, out of our control, and are simply part of a natural process. Hazards (earthquakes, hurricanes, pandemics, drought etc.) are inevitable, but the impact they have on society is not.

Thus, the term natural disaster is unsuitable and should be abandoned in favour of the simpler term disaster, while also specifying the category (or type) of hazard.

Scale

Number of recorded natural disaster events (1900–2022)

Some of the 18 natural hazards included in the National Risk Index of FEMA now have a higher probability of occurring, and at higher intensity, due to the effects of climate change. This applies to heat waves, droughts, wildfire and coastal flooding.

By region and country

As of 2019, the countries with the highest share of disability-adjusted life years (DALY) lost due to natural disasters are Bahamas, Haiti, Zimbabwe and Armenia (probably mainly due to the Spitak Earthquake). The Asia-Pacific region is the world's most disaster prone region. A person in Asia-Pacific is five times more likely to be hit by a natural disaster than someone living in other regions.

Between 1995 and 2015, the greatest number of natural disasters occurred in America, China and India. In 2012, there were 905 natural disasters worldwide, 93% of which were weather-related disasters. Overall costs were US$170 billion and insured losses $70 billion. 2012 was a moderate year. 45% were meteorological (storms), 36% were hydrological (floods), 12% were climatological (heat waves, cold waves, droughts, wildfires) and 7% were geophysical events (earthquakes and volcanic eruptions). Between 1980 and 2011 geophysical events accounted for 14% of all natural catastrophes.

Slow and rapid onset events

Natural hazards occur across different time scales as well as area scales. Tornadoes and flash floods are rapid onset events, meaning they occur with a short warning time and are short-lived. Slow onset events can also be very damaging, for example drought is a natural hazards that develops slowly, sometimes over years.

Impacts

Global death rate from natural disasters (1900–2022)
Global damage cost from natural disasters (1980–2022)

A natural disaster may cause loss of life, injury or other health impacts, property damage, loss of livelihoods and services, social and economic disruption, or environmental damage.

Various phenomena like earthquakes, landslides, volcanic eruptions, floods, hurricanes, tornadoes, blizzards, tsunamis, cyclones, wildfires, and pandemics are all natural hazards that kill thousands of people and destroy billions of dollars of habitat and property each year. However, the rapid growth of the world's population and its increased concentration often in hazardous environments has escalated both the frequency and severity of disasters. With the tropical climate and unstable landforms, coupled with deforestation, unplanned growth proliferation, non-engineered constructions make the disaster-prone areas more vulnerable.

The death rate from natural disasters is highest in poorly developed countries due to the lower quality of building construction, infrastructure, and medical facilities. Globally, the total number of deaths from natural disasters has been reduced by 75% over the last 100 years, due to the increased development of countries, increased preparedness, better education, better methods, and aid from international organizations. Since the global population has grown over the same time period, the decrease in number of deaths per capita is larger, dropping to 6% of the original amount.

On the environment

During emergencies such as natural disasters and armed conflicts more waste may be produced, while waste management is given low priority compared with other services. Existing waste management services and infrastructures can be disrupted, leaving communities with unmanaged waste and increased littering. Under these circumstances human health and the environment are often negatively impacted.

Natural disasters (e.g. earthquakes, tsunamis, hurricanes) have the potential to generate a significant amount of waste within a short period. Waste management systems can be out of action or curtailed, often requiring considerable time and funding to restore. For example, the tsunami in Japan in 2011 produced huge amounts of debris: estimates of 5 million tonnes of waste were reported by the Japanese Ministry of the Environment. Some of this waste, mostly plastic and styrofoam washed up on the coasts of Canada and the United States in late 2011. Along the west coast of the United States, this increased the amount of litter by a factor of 10 and may have transported alien species. Storms are also important generators of plastic litter. A study by Lo et al. (2020) reported a 100% increase in the amount of microplastics on beaches surveyed following a typhoon in Hong Kong in 2018.

A significant amount of plastic waste can be produced during disaster relief operations. Following the 2010 earthquake in Haiti, the generation of waste from relief operations was referred to as a "second disaster". The United States military reported that millions of water bottles and styrofoam food packages were distributed although there was no operational waste management system. Over 700,000 plastic tarpaulins and 100,000 tents were required for emergency shelters. The increase in plastic waste, combined with poor disposal practices, resulted in open drainage channels being blocked, increasing the risk of disease.

Conflicts can result in large-scale displacement of communities. People living under these conditions are often provided with minimal waste management facilities. Burn pits are widely used to dispose of mixed wastes, including plastics. Air pollution can lead to respiratory and other illnesses. For example, Sahrawi refugees have been living in five camps near Tindouf, Algeria for nearly 45 years. As waste collection services are underfunded and there is no recycling facility, plastics have flooded the camps’ streets and surroundings. In contrast, the Azraq camp in Jordan for refugees from Syria has waste management services; of 20.7 tonnes of waste produced per day, 15% is recyclable.

On vulnerable groups

Women

Because of the social, political and cultural context of many places throughout the world, women are often disproportionately affected by disaster. In the 2004 Indian Ocean tsunami, more women died than men, partly due to the fact that fewer women knew how to swim. During and after a natural disaster, women are at increased risk of being affected by gender based violence and are increasingly vulnerable to sexual violence. Disrupted police enforcement, lax regulations, and displacement all contribute to increased risk of gender based violence and sexual assault. Women who have been affected by sexual violence are at a significantly increased risk of sexually transmitted infections, unique physical injuries and long term psychological consequences. All of these long-term health outcomes can prevent successful reintegration into society after the disaster recovery period.

In addition to LGBT people and immigrants, women are also disproportionately victimised by religion-based scapegoating for natural disasters: fanatical religious leaders or adherents may claim that a god or gods are angry with women's independent, freethinking behaviour, such as dressing 'immodestly', having sex or abortions. For example, Hindutva party Hindu Makkal Katchi and others blamed women's struggle for the right to enter the Sabarimala temple for the August 2018 Kerala floods, purportedly inflicted by the angry god Ayyappan. In response to Iranian Islamic cleric Kazem Seddiqi's accusation of women dressing immodestly and spreading promiscuity being the cause of earthquakes, American student Jennifer McCreight organised the Boobquake event on 26 April 2010: she encouraged women around the world to participate in dressing immodestly all at the same time while performing regular seismographic checks to prove that such behaviour in women causes no significant increase in earthquake activity.

During and after natural disasters, routine health behaviors become interrupted. In addition, health care systems may have broken down as a result of the disaster, further reducing access to contraceptives. Unprotected intercourse during this time can lead to increased rates of childbirth, unintended pregnancies and sexually transmitted infections (STIs). Methods used to prevent STIs (such as condom use) are often forgotten or not accessible during times surrounding a disaster. Lack of health care infrastructure and medical shortages hinder the ability to treat individuals once they acquire an STI. In addition, health efforts to prevent, monitor or treat HIV/AIDS are often disrupted, leading to increased rates of HIV complications and increased transmission of the virus through the population.

Pregnant women are one of the groups disproportionately affected by natural disasters. Inadequate nutrition, little access to clean water, lack of health-care services and psychological stress in the aftermath of the disaster can lead to a significant increase in maternal morbidity and mortality. Furthermore, shortage of healthcare resources during this time can convert even routine obstetric complications into emergencies. During and after a disaster, women's prenatal, peri-natal and postpartum care can become disrupted. Among women affected by natural disaster, there are significantly higher rates of low birth weight infants, preterm infants and infants with low head circumference.

On governments and voting processes

Everyone is desperate for food and water. There's no food, water, or gasoline. The government is missing.
— Lian Gogali Aid worker following 2018 Sulawesi earthquake and tsunami.

Disasters stress government capacity, as the government tries to conduct routine as well as emergency operations. Some theorists of voting behavior propose that citizens update information about government effectiveness based on their response to disasters, which affects their vote choice in the next election. Indeed, some evidence, based on data from the United States, reveals that incumbent parties can lose votes if citizens perceives them as responsible for a poor disaster response or gain votes based on perceptions of well-executed relief work. The latter study also finds, however, that voters do not reward incumbent parties for disaster preparedness, which may end up affecting government incentives to invest in such preparedness. Other evidence, however, also based on the United States, finds that citizens can simply backlash and blame the incumbent for hardship following a natural disaster, causing the incumbent party to lose votes. One study in India finds that incumbent parties extend more relief following disasters in areas where there is higher newspaper coverage, electoral turnout, and literacy – the authors reason that these results indicate that incumbent parties are more responsive with relief to areas with more politically informed citizens who would be more likely to punish them for poor relief efforts.

Violent conflicts within states can exacerbate the impact of natural disasters by weakening the ability of states, communities and individuals to provide disaster relief. Natural disasters can also worsen ongoing conflicts within states by weakening the capacity of states to fight rebels.

In Chinese and Japanese history, it has been routine for era names or capital cities and palaces of emperors to be changed after a major natural disaster, chiefly for political reasons such as association with hardships by the populace and fear of upheaval (i.e. in East Asian government chronicles, such fears were recorded in a low profile way as an unlucky name or place requiring change).

Disasters caused by geological hazards

Landslides

A landslide near Cusco, Peru, in 2018
Animation of a landslide in San Mateo County, California

Landslides, also known as landslips, are several forms of mass wasting that may include a wide range of ground movements, such as rockfalls,mudflows, shallow or deep-seated slope failures and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients, from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides.

Gravity is the primary driving force for a landslide to occur, but there are other factors affecting slope stability that produce specific conditions that make a slope prone to failure. In many cases, the landslide is triggered by a specific event (such as a heavy rainfall, an earthquake, a slope cut to build a road, and many others), although this is not always identifiable.

Landslides are frequently made worse by human development (such as urban sprawl) and resource exploitation (such as mining and deforestation). Land degradation frequently leads to less stabilization of soil by vegetation. Additionally, global Warming caused by climate change and other human impact on the environment, can increase the frequency of natural events (such as extreme weather) which trigger landslides. Landslide mitigation describes the policy and practices for reducing the risk of human impacts of landslides, reducing the risk of natural disaster.
 
A landslide in San Clemente, California in 1966

Avalanches

A powder snow avalanche in the Himalayas near Mount Everest.
Heavy equipment in action after an avalanche has interrupted service on the Saint-Gervais–Vallorcine railway in Haute-Savoie, France (2006).
The terminus of an avalanche in Alaska's Kenai Fjords.

An avalanche is a rapid flow of snow down a slope, such as a hill or mountain.

Avalanches can be set off spontaneously, by factors such as increased precipitation or snowpack weakening, or by external means such as humans, other animals, and earthquakes. Primarily composed of flowing snow and air, large avalanches have the capability to capture and move ice, rocks, and trees.

Avalanches can happen in any mountain range that has an enduring snowpack. They are most frequent in winter or spring, but may occur at any time of the year. In mountainous areas, avalanches are among the most serious natural hazards to life and property, so great efforts are made in avalanche control.

Earthquakes

San Francisco was devastated by an earthquake in 1906
Global number of deaths from earthquake (1960–2017)
Global number of recorded earthquake events (1901–2019)

An earthquake is the result of a sudden release of energy in the Earth's crust that creates seismic waves. At the Earth's surface, earthquakes manifest themselves by vibration, shaking, and sometimes displacement of the ground. Earthquakes are caused by slippage within geological faults. The underground point of origin of the earthquake is called the seismic focus. The point directly above the focus on the surface is called the epicenter. Earthquakes by themselves rarely kill people or wildlife – it is usually the secondary events that they trigger, such as building collapse, fires, tsunamis and volcanic eruptions, that cause death. Many of these can possibly be avoided by better construction, safety systems, early warning and planning.

Sinkholes

A sinkhole is a depression or hole in the ground caused by some form of collapse of the surface layer. When natural erosion, human mining or underground excavation makes the ground too weak to support the structures built on it, the ground can collapse and produce a sinkhole. For example, the 2010 Guatemala City sinkhole, which killed one, was caused when heavy rain from Tropical Storm Agatha, diverted by leaking pipes into a pumice bedrock, led to the sudden collapse of the ground beneath a factory building.

Coastal erosion

Coastal erosion is a physical process by which shorelines in coastal areas around the world shift and change, primarily in response to waves and currents that can be influenced by tides and storm surge. Coastal erosion can result from long-term processes (see also beach evolution) as well as from episodic events such as tropical cyclones or other severe storm events. Coastal erosion is one of the most significant coastal hazards. It forms a threat to infrastructure, capital assets and property.

Volcanic eruptions

Puʻu ʻŌʻō

Volcanoes can cause widespread destruction and consequent disaster in several ways. One hazard is the volcanic eruption itself, with the force of the explosion and falling rocks able to cause harm. Lava may also be released during the eruption of a volcano; as it leaves the volcano, it can destroy buildings, plants and animals due to its extreme heat. In addition, volcanic ash may form a cloud (generally after cooling) and settle thickly in nearby locations. When mixed with water, this forms a concrete-like material. In sufficient quantities, ash may cause roofs to collapse under its weight. Even small quantities will harm humans if inhaled – it has the consistency of ground glass and therefore causes laceration to the throat and lungs. Volcanic ash can also cause abrasion damage to moving machinery such as engines. The main killer of humans in the immediate surroundings of a volcanic eruption is pyroclastic flows, consisting of a cloud of hot ash which builds up in the air above the volcano and rushes down the slopes when the eruption no longer supports the lifting of the gases. It is believed that Pompeii was destroyed by a pyroclastic flow. A lahar is a volcanic mudflow or landslide. The 1953 Tangiwai disaster was caused by a lahar, as was the 1985 Armero tragedy in which the town of Armero was buried and an estimated 23,000 people were killed.

Volcanoes rated at 8 (the highest level) on the Volcanic Explosivity Index are known as supervolcanoes. According to the Toba catastrophe theory, 75,000 to 80,000 years ago, a supervolcanic eruption at what is now Lake Toba in Sumatra reduced the human population to 10,000 or even 1,000 breeding pairs, creating a bottleneck in human evolution, and killed three-quarters of all plant life in the northern hemisphere. However, there is considerable debate regarding the veracity of this theory. The main danger from a supervolcano is the immense cloud of ash, which has a disastrous global effect on climate and temperature for many years.

Disasters caused by water hazards

The Limpopo River during the 2000 Mozambique flood

A hydrological disaster is a violent, sudden and destructive change either in the quality of Earth's water or in the distribution or movement of water on land below the surface or in the atmosphere.

Floods

A flood is an overflow of water that 'submerges' land. The EU Floods Directive defines a flood as a temporary covering of land that is usually dry with water. In the sense of 'flowing water', the word may also be applied to the inflow of the tides. Flooding may result from the volume of a body of water, such as a river or lake, becoming higher than usual, causing some of the water to escape its usual boundaries. While the size of a lake or other body of water will vary with seasonal changes in precipitation and snow melt, a flood is not considered significant unless the water covers land used by humans, such as a village, city or other inhabited area, roads or expanses of farmland.

Tsunami

1755 copper engraving depicting Lisbon in ruins and in flames after the 1755 Lisbon earthquake. A tsunami overwhelms the ships in the harbor.

A tsunami (plural: tsunamis or tsunami; from Japanese: 津波, lit. "harbour wave"; English pronunciation: /tsuːˈnɑːmi/), also known as a seismic sea wave or tidal wave, is a series of waves in a water body caused by the displacement of a large volume of water, generally in an ocean or a large lake. Tsunamis can be caused by undersea earthquakes such as the 2004 Boxing Day tsunami, or by landslides such as the one in 1958 at Lituya Bay, Alaska, or by volcanic eruptions such as the ancient eruption of Santorini. On March 11, 2011, a tsunami occurred near Fukushima, Japan and spread through the Pacific Ocean.

Limnic eruptions

A limnic eruption, also known as a lake overturn, occurs when a gas, usually CO2, suddenly erupts from deep lake water, posing the threat of suffocating wildlife, livestock and humans. Such an eruption may also cause tsunamis in the lake as the rising gas displaces water. Scientists believe that landslides, explosions or volcanic activity can trigger such an eruption. To date, only two limnic eruptions have been observed and recorded. In 1984, in Cameroon, a limnic eruption in Lake Monoun caused the deaths of 37 nearby residents; at nearby Lake Nyos in 1986, a much larger eruption killed between 1,700 and 1,800 people by asphyxiation.

Disasters caused by extreme weather hazards

Hot and dry conditions

Heat waves

A heat wave is a period of unusually and excessively hot weather. Heat waves are rare and require specific combinations of weather events to take place, and may include temperature inversions, katabatic winds, or other phenomena. The worst heat wave in recent history was the European Heat Wave of 2003. A summer heat wave in Victoria, Australia, created conditions which fuelled the massive bushfires in 2009. Melbourne experienced three days in a row of temperatures exceeding 40 °C (104 °F), with some regional areas sweltering through much higher temperatures. The bushfires, collectively known as "Black Saturday", were partly the act of arsonists. The 2010 Northern Hemisphere summer resulted in severe heat waves which killed over 2,000 people. The heat caused hundreds of wildfires which led to widespread air pollution and burned thousands of square kilometers of forest.

Droughts

xxx
xxx
xxx
xxx
 Droughts cause a range of impacts and are often worsened by to the effects of climate change on the water cycle: a dry riverbed in France; sandstorm in Somaliland due to drought; droughts negatively impact agriculture in Texas; drought and high temperatures worsened the 2020 bushfires in Australia.
A drought is a period of drier-than-normal conditions. A drought can last for days, months or years. Drought often has large impacts on the ecosystems and agriculture of affected regions, and causes harm to the local economy. Annual dry seasons in the tropics significantly increase the chances of a drought developing and subsequent wildfires. Periods of heat can significantly worsen drought conditions by hastening evaporation of water vapour, drying out forests and other vegetation and increasing fuel for wildfires.

Well-known historical droughts include the 1997–2009 Millennium Drought in Australia which led to a water supply crisis across much of the country. As a result, many desalination plants were built for the first time (see list). In 2011, the State of Texas lived under a drought emergency declaration for the entire calendar year and suffered severe economic losses. The drought caused the Bastrop fires.

Duststorms

A dust storm, also called a sandstorm, is a meteorological phenomenon common in arid and semi-arid regions. Dust storms arise when a gust front or other strong wind blows loose sand and dirt from a dry surface. Fine particles are transported by saltation and suspension, a process that moves soil from one place and deposits it in another.

Firestorms

A firestorm is a conflagration which attains such intensity that it creates and sustains its own wind system. It is most commonly a natural phenomenon, created during some of the largest bushfires and wildfires. Although the term has been used to describe certain large fires, the phenomenon's determining characteristic is a fire with its own storm-force winds from every point of the compass towards the storm's center, where the air is heated and then ascends.

Wildfires

A wildfire in California.

Wildfires are large fires which often start in wildland areas. Common causes include lightning and drought but wildfires may also be started by human negligence or arson. They can spread to populated areas and thus be a threat to humans and property, as well as wildlife. Notable wildfires include the 1871 Peshtigo Fire in the United States, which killed at least 1700 people, and the 2009 Victorian bushfires in Australia.

Storms

Tropical cyclone

Typhoon, cyclone, cyclonic storm and hurricane are different names for the same phenomenon: a tropical storm that forms over an ocean. It is caused by evaporated water that comes off of the ocean and becomes a storm. It is characterized by strong winds, heavy rainfall and thunderstorms. The determining factor on which term is used is based on where the storm originates. In the Atlantic and Northeast Pacific, the term "hurricane" is used; in the Northwest Pacific, it is referred to as a "typhoon"; a "cyclone" occurs in the South Pacific and Indian Ocean.

The deadliest hurricane ever was the 1970 Bhola cyclone; the deadliest Atlantic hurricane was the Great Hurricane of 1780, which devastated Martinique, St. Eustatius and Barbados. Another notable hurricane is Hurricane Katrina, which devastated the Gulf Coast of the United States in 2005. Hurricanes may become more intense and produce more heavy rainfall as a consequence of human-induced climate change.

Thunderstorms

A classic anvil-shaped, and clearly-developed Cumulonimbus incus

Severe storms, dust clouds and volcanic eruptions can generate lightning. Apart from the damage typically associated with storms, such as winds, hail and flooding, the lightning itself can damage buildings, ignite fires and kill by direct contact. Especially deadly lightning incidents include a 2007 strike in Ushari Dara, a remote mountain village in northwestern Pakistan, that killed 30 people; the crash of LANSA Flight 508 which killed 91 people; and a fuel explosion in Dronka, Egypt, caused by lightning in 1994 which killed 469 people. Most deaths from lightning occur in the poorer countries of the Americas and Asia, where lightning is common and adobe mud brick housing provides little protection.

Tornadoes

A rope tornado in its dissipating stage, Tecumseh, Oklahoma.

A tornado is a violent and dangerous rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud, or, in rare cases, the base of a cumulus cloud. It is also referred to as a twister or a cyclone, although the word cyclone is used in meteorology in a wider sense to refer to any closed low pressure circulation. Tornadoes come in many shapes and sizes but typically take the form of a visible condensation funnel, the narrow end of which touches the Earth and is often encircled by a cloud of debris and dust. Tornadoes can occur one at a time, or can occur in large tornado outbreaks associated with supercells or in other large areas of thunderstorm development.

Most tornadoes have wind speeds of less than 180 km/h (110 mph), are approximately 75 m (250 ft) across, and travel a few kilometers before dissipating. The most extreme tornadoes can attain wind speeds of more than 480 km/h (300 mph), stretch more than 3 km (2 mi) across, and stay on the ground for perhaps more than 100 km (60 mi).

Cold-weather events

Blizzards

A blizzard in Maryland in 2009

Blizzards are severe winter storms characterized by heavy snow and strong winds. When high winds stir up snow that has already fallen, it is known as a ground blizzard. Blizzards can impact local economic activities, especially in regions where snowfall is rare. The Great Blizzard of 1888 affected the United States, when many tons of wheat crops were destroyed. In Asia, the 1972 Iran blizzard and the 2008 Afghanistan blizzard, were the deadliest blizzards in history; in the former, an area the size of Wisconsin was entirely buried in snow. The 1993 Superstorm originated in the Gulf of Mexico and traveled north, causing damage in 26 American states as well as in Canada and leading to more than 300 deaths.

Hailstorms

A large hailstone, about 6 cm (2+12 in) in diameter

Hail is precipitation in the form of ice that does not melt before it hits the ground. Hailstorms are produced by thunderstorms .Hailstones usually measure between 5 and 150 mm (14 and 6 in) in diameter. These can damage the location in which they fall. Hailstorms can be especially devastating to farm fields, ruining crops and damaging equipment. A particularly damaging hailstorm hit Munich, Germany, on July 12, 1984, causing about $2 billion in insurance claims.

Ice storms

An ice storm is a type of winter storm characterized by freezing rain. The U.S. National Weather Service defines an ice storm as a storm which results in the accumulation of at least 14 inch (6.35 mm) of ice on exposed surfaces.

Cold waves

A cold wave, known in some regions as a cold snap or cold spell, is a weather phenomenon that is distinguished by a cooling of the air. Specifically, as used by the U.S. National Weather Service, a cold wave is a rapid fall in temperature within a 24-hour period, requiring substantially increased protection to agriculture, industry, commerce and social activities. The precise criterion for a cold wave is determined by the rate at which the temperature falls and the minimum to which it falls. This minimum temperature is dependent on the geographical region and time of year.

Multi-hazard analysis

Each of the natural hazard types outlined above have very different characteristics, in terms of the spatial and temporal scales they influence, hazard frequency and return period, and measures of intensity and impact. These complexities result in "single-hazard" assessments being commonplace, where the hazard potential from one particular hazard type is constrained. In these examples, hazards are often treated as isolated or independent. An alternative is a "multi-hazard" approach which seeks to identify all possible natural hazards and their interactions or interrelationships.

Many examples exist of one natural hazard triggering or increasing the probability of one or more other natural hazards. For example, an earthquake may trigger landslides, whereas a wildfire may increase the probability of landslides being generated in the future. A detailed review of such interactions across 21 natural hazards identified 90 possible interactions, of varying likelihood and spatial importance. There may also be interactions between these natural hazards and anthropic processes. For example, groundwater abstraction may trigger groundwater-related subsidence.

Effective hazard analysis in any given area (e.g., for the purposes of disaster risk reduction) should ideally include an examination of all relevant hazards and their interactions. To be of most use for risk reduction, hazard analysis should be extended to risk assessment wherein the vulnerability of the built environment to each of the hazards is taken into account. This step is well developed for seismic risk, where the possible effect of future earthquakes on structures and infrastructure is assessed, as well as for risk from extreme wind and to a lesser extent flood risk. For other types of natural hazard the calculation of risk is more challenging, principally because of the lack of functions linking the intensity of a hazard and the probability of different levels of damage (fragility curves).

Responses

Disaster management is a main function of civil protection (or civil defence) authorities. It should address all four of the phases of disasters: mitigation and prevention, disaster response, recovery and preparedness.

Haiti earthquake damage

Mitigation and prevention

Preventive or mitigation measures vary for different types of disasters. In earthquake prone areas, these preventive measures might include structural changes such as the installation of an earthquake valve to instantly shut off the natural gas supply, seismic retrofits of property, and the securing of items inside a building. The latter may include the mounting of furniture, refrigerators, water heaters and breakables to the walls, and the addition of cabinet latches. In flood prone areas, houses can be built on stilts. In areas prone to prolonged electricity black-outs installation of a generator ensures continuation of electrical service. The construction of storm cellars and fallout shelters are further examples of personal mitigative actions.

Disaster risk reduction

Villages have adapted the design of houses to protect people from rising flood waters and small boats are used to transport people and food to sustain livelihoods. This kind of disaster risk reduction is an important Climate change adaptation

Disaster risk reduction (DRR) sometimes called disaster risk management (DRM) is a systematic approach to identifying, assessing and reducing the risks of disaster. It aims to reduce socio-economic vulnerabilities to disaster as well as dealing with the environmental and other hazards that trigger them. In other words, the aim of DRR is "to prevent new and reducing existing disaster risk and managing residual risk, all of which contribute to strengthening resilience and therefore to the achievement of sustainable development".

Disaster risk reduction has been strongly influenced by the research on vulnerability since the mid-1970s as well as the mapping of natural disaster risks. Disaster risk reduction is the responsibility of development and relief agencies alike. It should be an integral part of the way such organizations do their work, not an add-on or one-off action. Disaster risk reduction is very wide-ranging: Its scope is much broader and deeper than conventional emergency management. There is potential for disaster risk reduction initiatives in most sectors of development and humanitarian work.

Internationally, an important initiative is the Sendai Framework for Disaster Risk Reduction. It aims to help countries establish national and local strategies for DRR; as of 2022, 125 countries had national strategies. The International Day for Disaster Risk Reduction, on October 13, has helped increase the visibility of DRR and promote a culture of prevention. Some of the main issues and challenges include the importance of communities and local organisations in disaster risk management, governance of disaster risk and how this relates to development, and gender sensitivity of disaster impacts and disaster prevention strategies.

Response

Disaster response refers to the actions taken directly before, during or in the immediate aftermath of a disaster. The objective is to save lives, ensure health and safety and to meet the subsistence needs of the people affected. This includes warning/evacuation, search and rescue, providing immediate assistance, assessing damage, continuing assistance and the immediate restoration or construction of infrastructure (i.e. provisional storm drains or diversion dams). The aim of emergency response is to provide immediate assistance to maintain life, improve health and support the morale of the affected population. Such assistance may range from providing specific but limited aid, such as assisting refugees with transport, temporary shelter, and food to establishing semi-permanent settlements in camps and other locations. It also may involve initial repairs to damage or diversion to infrastructure.

Recovery

Driving through flash flood

The recovery phase starts after the immediate threat to human life has subsided. The immediate goal of the recovery phase is to bring the affected area back to normalcy as quickly as possible. During reconstruction, it is recommended to consider the location or construction material of the property.

The most extreme home confinement scenarios include war, famine, and severe epidemics and may last a year or more. Then recovery will take place inside the home. Planners for these events usually buy bulk foods and appropriate storage and preparation equipment, and eat the food as part of normal life. A simple balanced diet can be constructed from vitamin pills, whole-grain wheat, beans, dried milk, corn, and cooking oil. Vegetables, fruits, spices and meats, both prepared and fresh-gardened, are included when possible.

Preparedness

Preparedness focuses on preparing equipment and procedures for use when a disaster occurs. The equipment and procedures can be used to reduce vulnerability to disaster, to mitigate the impacts of a disaster, or to respond more efficiently in an emergency. The US Federal Emergency Management Agency (FEMA) proposed out a basic four-stage vision of preparedness flowing from mitigation to preparedness to response to recovery and back to mitigation in a circular planning process. This circular, overlapping model has been modified by other agencies, taught in emergency classes, and discussed in academic papers.

Society and culture

International law

The United Nations Office for the Coordination of Humanitarian Affairs was formed by General Assembly Resolution 44/182.

Under the Convention on the Rights of Persons with Disabilities, "States Parties shall take, in accordance with their obligations under international law, including international humanitarian law and international human rights law, all necessary measures to ensure the protection and safety of persons with disabilities in situations of risk, including situations of armed conflict, humanitarian emergencies and the occurrence of natural disasters." The 1998 UN Guiding Principles on Internal Displacement and 2009 Kampala Convention also protect people displaced due to natural disasters.

Thermodynamic diagrams

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Thermodynamic_diagrams Thermodynamic diagrams are diagrams used to repr...