Search This Blog

Monday, October 14, 2024

Earthquake

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Earthquake

Earthquake epicenters occur mostly along tectonic plate boundaries, especially on the Pacific Ring of Fire.
Global plate tectonic movement

An earthquake – also called a quake, tremor, or temblor – is the shaking of the Earth's surface resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes can range in intensity, from those so weak they cannot be felt, to those violent enough to propel objects and people into the air, damage critical infrastructure, and wreak destruction across entire cities. The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume.

In its most general sense, the word earthquake is used to describe any seismic event that generates seismic waves. Earthquakes can occur naturally or be induced by human activities, such as mining, fracking, and nuclear tests. The initial point of rupture is called the hypocenter or focus, while the ground level directly above it is the epicenter. Earthquakes are primarily caused by geological faults, but also by volcanic activity, landslides, and other seismic events. The frequency, type, and size of earthquakes in an area define its seismic activity, reflecting the average rate of seismic energy release.

Significant historical earthquakes include the 1556 Shaanxi earthquake in China, with over 830,000 fatalities, and the 1960 Valdivia earthquake in Chile, the largest ever recorded at 9.5 magnitude. Earthquakes result in various effects, such as ground shaking and soil liquefaction, leading to significant damage and loss of life. When the epicenter of a large earthquake is located offshore, the seabed may be displaced sufficiently to cause a tsunami. Earthquakes can trigger landslides. Earthquakes' occurrence is influenced by tectonic movements along faults, including normal, reverse (thrust), and strike-slip faults, with energy release and rupture dynamics governed by the elastic-rebound theory.

Efforts to manage earthquake risks involve prediction, forecasting, and preparedness, including seismic retrofitting and earthquake engineering to design structures that withstand shaking. The cultural impact of earthquakes spans myths, religious beliefs, and modern media, reflecting their profound influence on human societies. Similar seismic phenomena, known as marsquakes and moonquakes, have been observed on other celestial bodies, indicating the universality of such events beyond Earth.

Terminology

An earthquake is the shaking of the surface of Earth resulting from a sudden release of energy in the lithosphere that creates seismic waves. Earthquakes may also be referred to as quakes, tremors, or temblors. The word tremor is also used for non-earthquake seismic rumbling.

In its most general sense, an earthquake is any seismic event—whether natural or caused by humans—that generates seismic waves. Earthquakes are caused mostly by the rupture of geological faults but also by other events such as volcanic activity, landslides, mine blasts, fracking and nuclear tests. An earthquake's point of initial rupture is called its hypocenter or focus. The epicenter is the point at ground level directly above the hypocenter.

The seismic activity of an area is the frequency, type, and size of earthquakes experienced over a particular time. The seismicity at a particular location in the Earth is the average rate of seismic energy release per unit volume.

Major examples

Earthquakes (M6.0+) since 1900 through 2017
Earthquakes of magnitude 8.0 and greater from 1900 to 2018. The apparent 3D volumes of the bubbles are linearly proportional to their respective fatalities.

One of the most devastating earthquakes in recorded history was the 1556 Shaanxi earthquake, which occurred on 23 January 1556 in Shaanxi, China. More than 830,000 people died. Most houses in the area were yaodongs—dwellings carved out of loess hillsides—and many victims were killed when these structures collapsed. The 1976 Tangshan earthquake, which killed between 240,000 and 655,000 people, was the deadliest of the 20th century.

The 1960 Chilean earthquake is the largest earthquake that has been measured on a seismograph, reaching 9.5 magnitude on 22 May 1960. Its epicenter was near Cañete, Chile. The energy released was approximately twice that of the next most powerful earthquake, the Good Friday earthquake (27 March 1964), which was centered in Prince William Sound, Alaska. The ten largest recorded earthquakes have all been megathrust earthquakes; however, of these ten, only the 2004 Indian Ocean earthquake is simultaneously one of the deadliest earthquakes in history.

Earthquakes that caused the greatest loss of life, while powerful, were deadly because of their proximity to either heavily populated areas or the ocean, where earthquakes often create tsunamis that can devastate communities thousands of kilometers away. Regions most at risk for great loss of life include those where earthquakes are relatively rare but powerful, and poor regions with lax, unenforced, or nonexistent seismic building codes.

Occurrence

Three types of faults:
A. Strike-slip
B. Normal
C. Reverse

Tectonic earthquakes occur anywhere on the earth where there is sufficient stored elastic strain energy to drive fracture propagation along a fault plane. The sides of a fault move past each other smoothly and aseismically only if there are no irregularities or asperities along the fault surface that increases the frictional resistance. Most fault surfaces do have such asperities, which leads to a form of stick-slip behavior. Once the fault has locked, continued relative motion between the plates leads to increasing stress and, therefore, stored strain energy in the volume around the fault surface. This continues until the stress has risen sufficiently to break through the asperity, suddenly allowing sliding over the locked portion of the fault, releasing the stored energy. This energy is released as a combination of radiated elastic strain seismic waves, frictional heating of the fault surface, and cracking of the rock, thus causing an earthquake. This process of gradual build-up of strain and stress punctuated by occasional sudden earthquake failure is referred to as the elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth or is converted into heat generated by friction. Therefore, earthquakes lower the Earth's available elastic potential energy and raise its temperature, though these changes are negligible compared to the conductive and convective flow of heat out from the Earth's deep interior.

Fault types

There are three main types of fault, all of which may cause an interplate earthquake: normal, reverse (thrust), and strike-slip. Normal and reverse faulting are examples of dip-slip, where the displacement along the fault is in the direction of dip and where movement on them involves a vertical component. Many earthquakes are caused by movement on faults that have components of both dip-slip and strike-slip; this is known as oblique slip. The topmost, brittle part of the Earth's crust, and the cool slabs of the tectonic plates that are descending into the hot mantle, are the only parts of our planet that can store elastic energy and release it in fault ruptures. Rocks hotter than about 300 °C (572 °F) flow in response to stress; they do not rupture in earthquakes. The maximum observed lengths of ruptures and mapped faults (which may break in a single rupture) are approximately 1,000 km (620 mi). Examples are the earthquakes in Alaska (1957), Chile (1960), and Sumatra (2004), all in subduction zones. The longest earthquake ruptures on strike-slip faults, like the San Andreas Fault (1857, 1906), the North Anatolian Fault in Turkey (1939), and the Denali Fault in Alaska (2002), are about half to one third as long as the lengths along subducting plate margins, and those along normal faults are even shorter.

Normal faults

Normal faults occur mainly in areas where the crust is being extended such as a divergent boundary. Earthquakes associated with normal faults are generally less than magnitude 7. Maximum magnitudes along many normal faults are even more limited because many of them are located along spreading centers, as in Iceland, where the thickness of the brittle layer is only about six kilometres (3.7 mi).

Reverse faults

Reverse faults occur in areas where the crust is being shortened such as at a convergent boundary. Reverse faults, particularly those along convergent boundaries, are associated with the most powerful earthquakes (called megathrust earthquakes) including almost all of those of magnitude 8 or more. Megathrust earthquakes are responsible for about 90% of the total seismic moment released worldwide.

Strike-slip faults

Strike-slip faults are steep structures where the two sides of the fault slip horizontally past each other; transform boundaries are a particular type of strike-slip fault. Strike-slip faults, particularly continental transforms, can produce major earthquakes up to about magnitude 8. Strike-slip faults tend to be oriented near vertically, resulting in an approximate width of 10 km (6.2 mi) within the brittle crust. Thus, earthquakes with magnitudes much larger than 8 are not possible.

Aerial photo of the San Andreas Fault in the Carrizo Plain, northwest of Los Angeles

In addition, there exists a hierarchy of stress levels in the three fault types. Thrust faults are generated by the highest, strike-slip by intermediate, and normal faults by the lowest stress levels. This can easily be understood by considering the direction of the greatest principal stress, the direction of the force that "pushes" the rock mass during the faulting. In the case of normal faults, the rock mass is pushed down in a vertical direction, thus the pushing force (greatest principal stress) equals the weight of the rock mass itself. In the case of thrusting, the rock mass "escapes" in the direction of the least principal stress, namely upward, lifting the rock mass, and thus, the overburden equals the least principal stress. Strike-slip faulting is intermediate between the other two types described above. This difference in stress regime in the three faulting environments can contribute to differences in stress drop during faulting, which contributes to differences in the radiated energy, regardless of fault dimensions.

Energy released

For every unit increase in magnitude, there is a roughly thirty-fold increase in the energy released. For instance, an earthquake of magnitude 6.0 releases approximately 32 times more energy than a 5.0 magnitude earthquake and a 7.0 magnitude earthquake releases 1,000 times more energy than a 5.0 magnitude earthquake. An 8.6-magnitude earthquake releases the same amount of energy as 10,000 atomic bombs of the size used in World War II.

This is so because the energy released in an earthquake, and thus its magnitude, is proportional to the area of the fault that ruptures and the stress drop. Therefore, the longer the length and the wider the width of the faulted area, the larger the resulting magnitude. The most important parameter controlling the maximum earthquake magnitude on a fault, however, is not the maximum available length, but the available width because the latter varies by a factor of 20. Along converging plate margins, the dip angle of the rupture plane is very shallow, typically about 10 degrees. Thus, the width of the plane within the top brittle crust of the Earth can reach 50–100 km (31–62 mi) (such as in Japan, 2011, or in Alaska, 1964), making the most powerful earthquakes possible.

Focus

Collapsed Gran Hotel building in the San Salvador metropolis, after the shallow 1986 San Salvador earthquake

The majority of tectonic earthquakes originate in the Ring of Fire at depths not exceeding tens of kilometers. Earthquakes occurring at a depth of less than 70 km (43 mi) are classified as "shallow-focus" earthquakes, while those with a focal depth between 70 and 300 km (43 and 186 mi) are commonly termed "mid-focus" or "intermediate-depth" earthquakes. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, deep-focus earthquakes may occur at much greater depths (ranging from 300 to 700 km (190 to 430 mi)). These seismically active areas of subduction are known as Wadati–Benioff zones. Deep-focus earthquakes occur at a depth where the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep-focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.

Volcanic activity

Earthquakes often occur in volcanic regions and are caused there, both by tectonic faults and the movement of magma in volcanoes. Such earthquakes can serve as an early warning of volcanic eruptions, as during the 1980 eruption of Mount St. Helens. Earthquake swarms can serve as markers for the location of the flowing magma throughout the volcanoes. These swarms can be recorded by seismometers and tiltmeters (a device that measures ground slope) and used as sensors to predict imminent or upcoming eruptions.

Rupture dynamics

A tectonic earthquake begins as an area of initial slip on the fault surface that forms the focus. Once the rupture has been initiated, it begins to propagate away from the focus, spreading out along the fault surface. Lateral propagation will continue until either the rupture reaches a barrier, such as the end of a fault segment, or a region on the fault where there is insufficient stress to allow continued rupture. For larger earthquakes, the depth extent of rupture will be constrained downwards by the brittle-ductile transition zone and upwards by the ground surface. The mechanics of this process are poorly understood because it is difficult either to recreate such rapid movements in a laboratory or to record seismic waves close to a nucleation zone due to strong ground motion.

In most cases, the rupture speed approaches, but does not exceed, the shear wave (S-wave) velocity of the surrounding rock. There are a few exceptions to this:

Supershear earthquakes

The 2023 Turkey–Syria earthquakes ruptured along segments of the East Anatolian Fault at supershear speeds; more than 50,000 people died in both countries.

Supershear earthquake ruptures are known to have propagated at speeds greater than the S-wave velocity. These have so far all been observed during large strike-slip events. The unusually wide zone of damage caused by the 2001 Kunlun earthquake has been attributed to the effects of the sonic boom developed in such earthquakes.

Slow earthquakes

Slow earthquake ruptures travel at unusually low velocities. A particularly dangerous form of slow earthquake is the tsunami earthquake, observed where the relatively low felt intensities, caused by the slow propagation speed of some great earthquakes, fail to alert the population of the neighboring coast, as in the 1896 Sanriku earthquake.

Co-seismic overpressuring and effect of pore pressure

During an earthquake, high temperatures can develop at the fault plane, increasing pore pressure and consequently vaporization of the groundwater already contained within the rock. In the coseismic phase, such an increase can significantly affect slip evolution and speed, in the post-seismic phase it can control the Aftershock sequence because, after the main event, pore pressure increase slowly propagates into the surrounding fracture network. From the point of view of the Mohr-Coulomb strength theory, an increase in fluid pressure reduces the normal stress acting on the fault plane that holds it in place, and fluids can exert a lubricating effect. As thermal overpressurization may provide positive feedback between slip and strength fall at the fault plane, a common opinion is that it may enhance the faulting process instability. After the mainshock, the pressure gradient between the fault plane and the neighboring rock causes a fluid flow that increases pore pressure in the surrounding fracture networks; such an increase may trigger new faulting processes by reactivating adjacent faults, giving rise to aftershocks. Analogously, artificial pore pressure increase, by fluid injection in Earth's crust, may induce seismicity.

Tidal forces

Tides may trigger some seismicity.

Clusters

Most earthquakes form part of a sequence, related to each other in terms of location and time. Most earthquake clusters consist of small tremors that cause little to no damage, but there is a theory that earthquakes can recur in a regular pattern. Earthquake clustering has been observed, for example, in Parkfield, California where a long-term research study is being conducted around the Parkfield earthquake cluster.

Aftershocks

Magnitude of the Central Italy earthquakes of August and October 2016 and January 2017 and the aftershocks (which continued to occur after the period shown here)

An aftershock is an earthquake that occurs after a previous earthquake, the mainshock. Rapid changes of stress between rocks, and the stress from the original earthquake are the main causes of these aftershocks, along with the crust around the ruptured fault plane as it adjusts to the effects of the mainshock. An aftershock is in the same region as the main shock but always of a smaller magnitude, however, they can still be powerful enough to cause even more damage to buildings that were already previously damaged from the mainshock. If an aftershock is larger than the mainshock, the aftershock is redesignated as the mainshock and the original main shock is redesignated as a foreshock. Aftershocks are formed as the crust around the displaced fault plane adjusts to the effects of the mainshock.

Swarms

Earthquake swarms are sequences of earthquakes striking in a specific area within a short period. They are different from earthquakes followed by a series of aftershocks by the fact that no single earthquake in the sequence is the main shock, so none has a notably higher magnitude than another. An example of an earthquake swarm is the 2004 activity at Yellowstone National Park. In August 2012, a swarm of earthquakes shook Southern California's Imperial Valley, showing the most recorded activity in the area since the 1970s.

Sometimes a series of earthquakes occur in what has been called an earthquake storm, where the earthquakes strike a fault in clusters, each triggered by the shaking or stress redistribution of the previous earthquakes. Similar to aftershocks but on adjacent segments of fault, these storms occur over the course of years, with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th century and has been inferred for older anomalous clusters of large earthquakes in the Middle East.

Frequency

The Messina earthquake and tsunami took almost 100,000 lives on December 28, 1908, in Sicily and Calabria.

It is estimated that around 500,000 earthquakes occur each year, detectable with current instrumentation. About 100,000 of these can be felt. Minor earthquakes occur very frequently around the world in places like California and Alaska in the U.S., as well as in El Salvador, Mexico, Guatemala, Chile, Peru, Indonesia, the Philippines, Iran, Pakistan, the Azores in Portugal, Turkey, New Zealand, Greece, Italy, India, Nepal, and Japan. Larger earthquakes occur less frequently, the relationship being exponential; for example, roughly ten times as many earthquakes larger than magnitude 4 occur than earthquakes larger than magnitude 5. In the (low seismicity) United Kingdom, for example, it has been calculated that the average recurrences are: an earthquake of 3.7–4.6 every year, an earthquake of 4.7–5.5 every 10 years, and an earthquake of 5.6 or larger every 100 years. This is an example of the Gutenberg–Richter law.

The number of seismic stations has increased from about 350 in 1931 to many thousands today. As a result, many more earthquakes are reported than in the past, but this is because of the vast improvement in instrumentation, rather than an increase in the number of earthquakes. The United States Geological Survey (USGS) estimates that, since 1900, there have been an average of 18 major earthquakes (magnitude 7.0–7.9) and one great earthquake (magnitude 8.0 or greater) per year, and that this average has been relatively stable. In recent years, the number of major earthquakes per year has decreased, though this is probably a statistical fluctuation rather than a systematic trend. More detailed statistics on the size and frequency of earthquakes is available from the United States Geological Survey. A recent increase in the number of major earthquakes has been noted, which could be explained by a cyclical pattern of periods of intense tectonic activity, interspersed with longer periods of low intensity. However, accurate recordings of earthquakes only began in the early 1900s, so it is too early to categorically state that this is the case.

Most of the world's earthquakes (90%, and 81% of the largest) take place in the 40,000-kilometre-long (25,000 mi), horseshoe-shaped zone called the circum-Pacific seismic belt, known as the Pacific Ring of Fire, which for the most part bounds the Pacific Plate. Massive earthquakes tend to occur along other plate boundaries too, such as along the Himalayan Mountains.

With the rapid growth of mega-cities such as Mexico City, Tokyo, and Tehran in areas of high seismic risk, some seismologists are warning that a single earthquake may claim the lives of up to three million people.

Induced seismicity

While most earthquakes are caused by the movement of the Earth's tectonic plates, human activity can also produce earthquakes. Activities both above ground and below may change the stresses and strains on the crust, including building reservoirs, extracting resources such as coal or oil, and injecting fluids underground for waste disposal or fracking. Most of these earthquakes have small magnitudes. The 5.7 magnitude 2011 Oklahoma earthquake is thought to have been caused by disposing wastewater from oil production into injection wells, and studies point to the state's oil industry as the cause of other earthquakes in the past century. A Columbia University paper suggested that the 8.0 magnitude 2008 Sichuan earthquake was induced by loading from the Zipingpu Dam, though the link has not been conclusively proved.

Measurement and location

The instrumental scales used to describe the size of an earthquake began with the Richter magnitude scale in the 1930s. It is a relatively simple measurement of an event's amplitude, and its use has become minimal in the 21st century. Seismic waves travel through the Earth's interior and can be recorded by seismometers at great distances. The surface wave magnitude was developed in the 1950s as a means to measure remote earthquakes and to improve the accuracy for larger events. The moment magnitude scale not only measures the amplitude of the shock but also takes into account the seismic moment (total rupture area, average slip of the fault, and rigidity of the rock). The Japan Meteorological Agency seismic intensity scale, the Medvedev–Sponheuer–Karnik scale, and the Mercalli intensity scale are based on the observed effects and are related to the intensity of shaking.

Intensity and magnitude

The shaking of the earth is a common phenomenon that has been experienced by humans from the earliest of times. Before the development of strong-motion accelerometers, the intensity of a seismic event was estimated based on the observed effects. Magnitude and intensity are not directly related and calculated using different methods. The magnitude of an earthquake is a single value that describes the size of the earthquake at its source. Intensity is the measure of shaking at different locations around the earthquake. Intensity values vary from place to place, depending on the distance from the earthquake and the underlying rock or soil makeup.

The first scale for measuring earthquake magnitudes was developed by Charles Francis Richter in 1935. Subsequent scales (seismic magnitude scales) have retained a key feature, where each unit represents a ten-fold difference in the amplitude of the ground shaking and a 32-fold difference in energy. Subsequent scales are also adjusted to have approximately the same numeric value within the limits of the scale.

Although the mass media commonly reports earthquake magnitudes as "Richter magnitude" or "Richter scale", standard practice by most seismological authorities is to express an earthquake's strength on the moment magnitude scale, which is based on the actual energy released by an earthquake, the static seismic moment.

Seismic waves

Every earthquake produces different types of seismic waves, which travel through rock with different velocities:

Speed of seismic waves

Propagation velocity of the seismic waves through solid rock ranges from approx. 3 km/s (1.9 mi/s) up to 13 km/s (8.1 mi/s), depending on the density and elasticity of the medium. In the Earth's interior, the shock- or P-waves travel much faster than the S-waves (approx. relation 1.7:1). The differences in travel time from the epicenter to the observatory are a measure of the distance and can be used to image both sources of earthquakes and structures within the Earth. Also, the depth of the hypocenter can be computed roughly.

P-wave speed

  • Upper crust soils and unconsolidated sediments: 2–3 km (1.2–1.9 mi) per second
  • Upper crust solid rock: 3–6 km (1.9–3.7 mi) per second
  • Lower crust: 6–7 km (3.7–4.3 mi) per second
  • Deep mantle: 13 km (8.1 mi) per second.

S-waves speed

  • Light sediments: 2–3 km (1.2–1.9 mi) per second
  • Earths crust: 4–5 km (2.5–3.1 mi) per second
  • Deep mantle: 7 km (4.3 mi) per second

Seismic wave arrival

As a consequence, the first waves of a distant earthquake arrive at an observatory via the Earth's mantle.

On average, the kilometer distance to the earthquake is the number of seconds between the P- and S-wave times 8. Slight deviations are caused by inhomogeneities of subsurface structure. By such analysis of seismograms, the Earth's core was located in 1913 by Beno Gutenberg.

S-waves and later arriving surface waves do most of the damage compared to P-waves. P-waves squeeze and expand the material in the same direction they are traveling, whereas S-waves shake the ground up and down and back and forth.

Location and reporting

Earthquakes are not only categorized by their magnitude but also by the place where they occur. The world is divided into 754 Flinn–Engdahl regions (F-E regions), which are based on political and geographical boundaries as well as seismic activity. More active zones are divided into smaller F-E regions whereas less active zones belong to larger F-E regions.

Standard reporting of earthquakes includes its magnitude, date and time of occurrence, geographic coordinates of its epicenter, depth of the epicenter, geographical region, distances to population centers, location uncertainty, several parameters that are included in USGS earthquake reports (number of stations reporting, number of observations, etc.), and a unique event ID.

Although relatively slow seismic waves have traditionally been used to detect earthquakes, scientists realized in 2016 that gravitational measurement could provide instantaneous detection of earthquakes, and confirmed this by analyzing gravitational records associated with the 2011 Tohoku-Oki ("Fukushima") earthquake.

Effects

1755 copper engraving depicting Lisbon in ruins and in flames after the 1755 Lisbon earthquake, which killed an estimated 60,000 people. A tsunami overwhelms the ships in the harbor.

The effects of earthquakes include, but are not limited to, the following:

Shaking and ground rupture

Damaged buildings in Port-au-Prince, Haiti, January 2010

Shaking and ground rupture are the main effects created by earthquakes, principally resulting in more or less severe damage to buildings and other rigid structures. The severity of the local effects depends on the complex combination of the earthquake magnitude, the distance from the epicenter, and the local geological and geomorphological conditions, which may amplify or reduce wave propagation. The ground-shaking is measured by ground acceleration.

Specific local geological, geomorphological, and geostructural features can induce high levels of shaking on the ground surface even from low-intensity earthquakes. This effect is called site or local amplification. It is principally due to the transfer of the seismic motion from hard deep soils to soft superficial soils and the effects of seismic energy focalization owing to the typical geometrical setting of such deposits.

Ground rupture is a visible breaking and displacement of the Earth's surface along the trace of the fault, which may be of the order of several meters in the case of major earthquakes. Ground rupture is a major risk for large engineering structures such as dams, bridges, and nuclear power stations and requires careful mapping of existing faults to identify any that are likely to break the ground surface within the life of the structure.

Soil liquefaction

Soil liquefaction occurs when, because of the shaking, water-saturated granular material (such as sand) temporarily loses its strength and transforms from a solid to a liquid. Soil liquefaction may cause rigid structures, like buildings and bridges, to tilt or sink into the liquefied deposits. For example, in the 1964 Alaska earthquake, soil liquefaction caused many buildings to sink into the ground, eventually collapsing upon themselves.

Human impacts

Ruins of the Għajn Ħadid Tower, which collapsed during the 1856 Heraklion earthquake

Physical damage from an earthquake will vary depending on the intensity of shaking in a given area and the type of population. Underserved and developing communities frequently experience more severe impacts (and longer lasting) from a seismic event compared to well-developed communities. Impacts may include:

  • Injuries and loss of life
  • Damage to critical infrastructure (short and long-term)
    • Roads, bridges, and public transportation networks
    • Water, power, sewer and gas interruption
    • Communication systems
  • Loss of critical community services including hospitals, police, and fire
  • General property damage
  • Collapse or destabilization (potentially leading to future collapse) of buildings

With these impacts and others, the aftermath may bring disease, a lack of basic necessities, mental consequences such as panic attacks and depression to survivors, and higher insurance premiums. Recovery times will vary based on the level of damage and the socioeconomic status of the impacted community.

Landslides

Earthquakes can produce slope instability leading to landslides, a major geological hazard. Landslide danger may persist while emergency personnel is attempting rescue work.

Fires

Fires of the 1906 San Francisco earthquake

Earthquakes can cause fires by damaging electrical power or gas lines. In the event of water mains rupturing and a loss of pressure, it may also become difficult to stop the spread of a fire once it has started. For example, more deaths in the 1906 San Francisco earthquake were caused by fire than by the earthquake itself.

Tsunami

The tsunami of the 2004 Indian Ocean earthquake

Tsunamis are long-wavelength, long-period sea waves produced by the sudden or abrupt movement of large volumes of water—including when an earthquake occurs at sea. In the open ocean, the distance between wave crests can surpass 100 kilometres (62 mi), and the wave periods can vary from five minutes to one hour. Such tsunamis travel 600–800 kilometers per hour (373–497 miles per hour), depending on water depth. Large waves produced by an earthquake or a submarine landslide can overrun nearby coastal areas in a matter of minutes. Tsunamis can also travel thousands of kilometers across open ocean and wreak destruction on far shores hours after the earthquake that generated them.

Ordinarily, subduction earthquakes under magnitude 7.5 do not cause tsunamis, although some instances of this have been recorded. Most destructive tsunamis are caused by earthquakes of magnitude 7.5 or more.

Floods

Floods may be secondary effects of earthquakes if dams are damaged. Earthquakes may cause landslips to dam rivers, which collapse and cause floods.

The terrain below the Sarez Lake in Tajikistan is in danger of catastrophic flooding if the landslide dam formed by the earthquake, known as the Usoi Dam, were to fail during a future earthquake. Impact projections suggest the flood could affect roughly five million people.

Management

Prediction

Earthquake prediction is a branch of the science of seismology concerned with the specification of the time, location, and magnitude of future earthquakes within stated limits. Many methods have been developed for predicting the time and place in which earthquakes will occur. Despite considerable research efforts by seismologists, scientifically reproducible predictions cannot yet be made to a specific day or month. Popular belief holds earthquakes are preceded by earthquake weather, in the early morning.

Forecasting

While forecasting is usually considered to be a type of prediction, earthquake forecasting is often differentiated from earthquake prediction. Earthquake forecasting is concerned with the probabilistic assessment of general earthquake hazards, including the frequency and magnitude of damaging earthquakes in a given area over years or decades. For well-understood faults the probability that a segment may rupture during the next few decades can be estimated.

Earthquake warning systems have been developed that can provide regional notification of an earthquake in progress, but before the ground surface has begun to move, potentially allowing people within the system's range to seek shelter before the earthquake's impact is felt.

Preparedness

The objective of earthquake engineering is to foresee the impact of earthquakes on buildings, bridges, tunnels, roadways, and other structures, and to design such structures to minimize the risk of damage. Existing structures can be modified by seismic retrofitting to improve their resistance to earthquakes. Earthquake insurance can provide building owners with financial protection against losses resulting from earthquakes. Emergency management strategies can be employed by a government or organization to mitigate risks and prepare for consequences.

Artificial intelligence may help to assess buildings and plan precautionary operations. The Igor expert system is part of a mobile laboratory that supports the procedures leading to the seismic assessment of masonry buildings and the planning of retrofitting operations on them. It has been applied to assess buildings in Lisbon, Rhodes, and Naples.

Individuals can also take preparedness steps like securing water heaters and heavy items that could injure someone, locating shutoffs for utilities, and being educated about what to do when the shaking starts. For areas near large bodies of water, earthquake preparedness encompasses the possibility of a tsunami caused by a large earthquake.

In culture

Historical views

An image from a 1557 book depicting an earthquake in Italy in the 4th century BCE

From the lifetime of the Greek philosopher Anaxagoras in the 5th century BCE to the 14th century CE, earthquakes were usually attributed to "air (vapors) in the cavities of the Earth." Thales of Miletus (625–547 BCE) was the only documented person who believed that earthquakes were caused by tension between the earth and water. Other theories existed, including the Greek philosopher Anaxamines' (585–526 BCE) beliefs that short incline episodes of dryness and wetness caused seismic activity. The Greek philosopher Democritus (460–371 BCE) blamed water in general for earthquakes. Pliny the Elder called earthquakes "underground thunderstorms".

Mythology and religion

In Norse mythology, earthquakes were explained as the violent struggle of the god Loki. When Loki, god of mischief and strife, murdered Baldr, god of beauty and light, he was punished by being bound in a cave with a poisonous serpent placed above his head dripping venom. Loki's wife Sigyn stood by him with a bowl to catch the poison, but whenever she had to empty the bowl the poison dripped on Loki's face, forcing him to jerk his head away and thrash against his bonds, which caused the earth to tremble.

In Greek mythology, Poseidon was the cause and god of earthquakes. When he was in a bad mood, he struck the ground with a trident, causing earthquakes and other calamities. He also used earthquakes to punish and inflict fear upon people as revenge.

In Japanese mythology, Namazu (鯰) is a giant catfish who causes earthquakes. Namazu lives in the mud beneath the earth and is guarded by the god Kashima who restrains the fish with a stone. When Kashima lets his guard fall, Namazu thrashes about, causing violent earthquakes.

In the New Testament, Matthew's Gospel refers to earthquakes occurring both after the death of Jesus (Matthew 27:51, 54) and at his resurrection (Matthew 28:2). Earthquakes form part of the picture through which Jesus portrays the beginning of the end of time.

In modern popular culture, the portrayal of earthquakes is shaped by the memory of great cities laid waste, such as Kobe in 1995 or San Francisco in 1906. Fictional earthquakes tend to strike suddenly and without warning. For this reason, stories about earthquakes generally begin with the disaster and focus on its immediate aftermath, as in Short Walk to Daylight (1972), The Ragged Edge (1968) or Aftershock: Earthquake in New York (1999). A notable example is Heinrich von Kleist's classic novella, The Earthquake in Chile, which describes the destruction of Santiago in 1647. Haruki Murakami's short fiction collection After the Quake depicts the consequences of the Kobe earthquake of 1995.

The most popular single earthquake in fiction is the hypothetical "Big One" expected of California's San Andreas Fault someday, as depicted in the novels Richter 10 (1996), Goodbye California (1977), 2012 (2009), and San Andreas (2015), among other works. Jacob M. Appel's widely anthologized short story, A Comparative Seismology, features a con artist who convinces an elderly woman that an apocalyptic earthquake is imminent.

Contemporary depictions of earthquakes in film are variable in the manner in which they reflect human psychological reactions to the actual trauma that can be caused to directly afflicted families and their loved ones. Disaster mental health response research emphasizes the need to be aware of the different roles of loss of family and key community members, loss of home and familiar surroundings, and loss of essential supplies and services to maintain survival. Particularly for children, the clear availability of caregiving adults who can protect, nourish, and clothe them in the aftermath of the earthquake and help them make sense of what has befallen them has been shown to be more important to their emotional and physical health than the simple giving of provisions. As was observed after other disasters involving destruction and loss of life and their media depictions, recently observed in the 2010 Haiti earthquake, it is also believed to be important not to pathologize the reactions to loss and displacement or disruption of governmental administration and services, but rather to validate the reactions to support constructive problem-solving and reflection.

Outside of earth

Phenomena similar to earthquakes have been observed on other planets (e.g., marsquakes on Mars) and on the Moon (e.g., moonquakes).

Geological engineering

From Wikipedia, the free encyclopedia
Image of rock tunnel (background) and rockfall protection mesh a rock cliff face (foreground)
Example of infrastructure engineering (tunnel) and natural hazard engineering (rockfall protection), two subdisciplines of geological engineering

Geological engineering is a discipline of engineering concerned with the application of geological science and engineering principles to fields, such as civil engineering, mining, environmental engineering, and forestry, among others. The work of geological engineers often directs or supports the work of other engineering disciplines such as assessing the suitability of locations for civil engineering, environmental engineering, mining operations, and oil and gas projects by conducting geological, geoenvironmental, geophysical, and geotechnical studies. They are involved with impact studies for facilities and operations that affect surface and subsurface environments. The engineering design input and other recommendations made by geological engineers on these projects will often have a large impact on construction and operations. Geological engineers plan, design, and implement geotechnical, geological, geophysical, hydrogeological, and environmental data acquisition. This ranges from manual ground-based methods to deep drilling, to geochemical sampling, to advanced geophysical techniques and satellite surveying. Geological engineers are also concerned with the analysis of past and future ground behaviour, mapping at all scales, and ground characterization programs for specific engineering requirements. These analyses lead geological engineers to make recommendations and prepare reports which could have major effects on the foundations of construction, mining, and civil engineering projects. Some examples of projects include rock excavation, building foundation consolidation, pressure grouting, hydraulic channel erosion control, slope and fill stabilization, landslide risk assessment, groundwater monitoring, and assessment and remediation of contamination. In addition, geological engineers are included on design teams that develop solutions to surface hazards, groundwater remediation, underground and surface excavation projects, and resource management. Like mining engineers, geological engineers also conduct resource exploration campaigns, mine evaluation and feasibility assessments, and contribute to the ongoing efficiency, sustainability, and safety of active mining projects

History

While the term geological engineering was not coined until the 19th century, principles of geological engineering are demonstrated through millennia of human history.

Tunnel of Eupalinos aqueduct tunnel in Samos, Greece, which is a famous example of ancient tunnel and survey engineering.

Ancient engineering

One of the oldest examples of geological engineering principles is the Euphrates tunnel, which was constructed around 2180 B.C. – 2160 B.C... This, and other tunnels and qanats from around the same time were used by ancient civilizations such as Babylon and Persia for the purposes of irrigation. Another famous example where geological engineering principles were used in an ancient engineering project was the construction of the Eupalinos aqueduct tunnel in Ancient Greece. This was the first tunnel to be constructed inward from both ends using principles of geometry and trigonometry, marking a significant milestone for both civil engineering and geological engineering.

Geological engineering as a discipline

Although projects that applied geological engineering principles in their design and construction have been around for thousands of years, these were included within the civil engineering discipline for most of this time. Courses in geological engineering have been offered since the early 1900s; however, these remained specialized offerings until a large increase in demand arose in the mid-20th century. This demand was created by issues encountered from development of increasingly large and ambitious structures, human-generated waste, scarcity of mineral and energy resources, and anthropogenic climate change – all of which created the need for a more specialized field of engineering with professional engineers who were also experts in geological or Earth sciences.

Notable disasters that are attributed to the formal creation of the geological engineering discipline include dam failures in the United States and western Europe in the 1950s and 1960s. These most famously include the St Francis dam failure (1928), Malpasset dam failure (1959), and the Vajont dam failure (1963), where a lack of knowledge of geology resulted in almost 3,000 deaths between the latter two alone. The Malpasset dam failure is regarded as the largest civil engineering disaster of the 20th century in France and Vajont dam failure is still the deadliest landslide in European history.

Education

Post-secondary degrees in geological engineering are offered at various universities around the world but are concentrated primarily in North America. Geological engineers often obtain degrees that include courses in both geological or Earth sciences and engineering. To practice as a professional geological engineer, a bachelor's degree in a related discipline from an accredited institution is required. For certain positions, a Master’s or Doctorate degree in a related engineering discipline may be required. After obtaining these degrees, an individual who wishes to practice as a professional geological engineer must go through the process of becoming licensed by a professional association or regulatory body in their jurisdiction.

Canadian institutions

In Canada, 8 universities are accredited by Engineers Canada to offer undergraduate degrees in geological engineering. Many of these universities also offer graduate degree programs in geological engineering. These include:

American institutions

In the United States there are 13 geological engineering programs recognized by the Engineering Accreditation Commission (EAC) of the Accreditation Board for Engineering and Technology (ABET). These include:

Other institutions

Universities in other countries that hold accreditation to offer degree programs in geological engineering from the EAC by the ABET include:

Specializations

In geological engineering there are multiple subdisciplines which analyze different aspects of Earth sciences and apply them to a variety of engineering projects. The subdisciplines listed below are commonly taught at the undergraduate level, and each has overlap with disciplines external to geological engineering. However, a geological engineer who specializes in one of these subdisciplines throughout their education may still be licensed to work in any of the other subdisciplines.

Mountain lake showing surface water. Geoenvironmental engineers (subdiscipline of geological engineering) work on managing drinking water supplies and remediation of contaminated surface water and groundwater.

Geoenvironmental and hydrogeological engineering

Geoenvironmental engineering is the subdiscipline of geological engineering that focuses on preventing or mitigating the environmental effects of anthropogenic contaminants within soil and water. It solves these issues via the development of processes and infrastructure for the supply of clean water, waste disposal, and control of pollution of all kinds. The work of geoenvironmental engineers largely deals with investigating the migration, interaction, and result of contaminants; remediating contaminated sites; and protecting uncontaminated sites. Typical work of a geoenvironmental engineer includes:

  • The preparation, review, and update of environmental investigation reports,
  • The design of projects such as water reclamation facilities or groundwater monitoring wells which lead to the protection of the environment,
  • Conducting feasibility studies and economic analyses of environmental projects,
  • Obtaining and revising permits, plans, and standard procedures,
  • Providing technical expertise for environmental remediation projects which require legal actions,
  • The analysis of groundwater data for the purpose of quality-control checks,
  • The site investigation and monitoring of environmental remediation and sustainability projects to ensure compliance with environmental regulations, and
  • Advising corporations and government agencies regarding procedures for cleaning up contaminated sites.
A tunnel under construction by conventional excavation methods with a pilot tunnel through tunnel face and a drill jumbo positioned near the face. Rock engineers and geotechnical engineers (subdisciplines of geological engineering) are involved with the design and construction of underground excavations.

Mineral and energy resource exploration engineering

Mineral and energy resource exploration (commonly known as MinEx for short) is the subdiscipline of geological engineering that applies modern tools and concepts to the discovery and sustainable extraction of natural mineral and energy resources. A geological engineer who specializes in this field may work on several stages of mineral exploration and mining projects, including exploration and orebody delineation, mine production operations, mineral processing, and environmental impact and risk assessment programs for mine tailings and other mine waste. Like a mining engineer, mineral and energy resource exploration engineers may also be responsible for the design, finance, and management of mine sites.

A Ground Penetrating Radar (GPR) being used to conduct a geophysical survey. Geophysical engineers (subdiscipline of geological engineering) use multiple geophysical techniques to noninvasively investigate the Earth's subsurface at all scales and use the results in a variety of engineering projects.

Geophysical engineering (applied geophysics)

Geophysical engineering is the subdiscipline of geological engineering that applies geophysics principles to the design of engineering projects such as tunnels, dams, and mines or for the detection of subsurface geohazards, groundwater, and pollution. Geophysical investigations are undertaken from ground surface, in boreholes, or from space to analyze ground conditions, composition, and structure at all scales. Geophysical techniques apply a variety of physics principles such as seismicity, magnetism, gravity, and resistivity. This subdiscipline was created in the early 1990s as a result of an increased demand in more accurate subsurface information created by a rapidly increasing global population. Geophysical engineering and applied geophysics differ from traditional geophysics primarily by their need for marginal returns and optimized designs and practices as opposed to satisfying regulatory requirements at a minimum cost

Job responsibilities

Geological engineers are responsible for the planning, development, and coordination of site investigation and data acquisition programs for geological, geotechnical, geophysical, geoenvironmental, and hydrogeological studies. These studies are traditionally conducted for civil engineering, mining, petroleum, waste management, and regional development projects but are becoming increasingly focused on environmental and coastal engineering projects and on more specialized projects for long-term underground nuclear waste storage. Geological engineers are also responsible for analyzing and preparing recommendations and reports to improve construction of foundations for civil engineering projects such as rock and soil excavation, pressure grouting, and hydraulic channel erosion control. In addition, geological engineers analyze and prepare recommendations and reports on the settlement of buildings, stability of slopes and fills, and probable effects of landslides and earthquakes to support construction and civil engineering projects. They must design means to safely excavate and stabilize the surrounding rock or soil in underground excavations and surface construction, in addition to managing water flow from, and within these excavations.

Geological engineers also perform a primary role in all forms of underground infrastructure including tunnelling, mining, hydropower projects, shafts, deep repositories and caverns for power, storage, industrial activities, and recreation. Moreover, geological engineers design monitoring systems, analyze natural and induced ground response, and prepare recommendations and reports on the settlement of buildings, stability of slopes and fills, and the probable effects of natural disasters to support construction and civil engineering projects. In some jobs, geological engineers conduct theoretical and applied studies of groundwater flow and contamination to develop site specific solutions which treat the contaminants and allow for safe construction. Additionally, they design means to manage and protect surface and groundwater resources and remediation solutions in the event of contamination. If working on a mine site, geological engineers may be tasked with planning, development, coordination, and conducting theoretical and experimental studies in mining exploration, mine evaluation and feasibility studies relative to the mining industry. They conduct surveys and studies of ore deposits, ore reserve calculations, and contribute mineral resource expertise, geotechnical and geomechanical design and monitoring expertise and environmental management to a developing or ongoing mining operation. In a variety of projects, they may be expected to design and perform geophysical investigations from surface using boreholes or from space to analyze ground conditions, composition, and structure at all scales.

Professional associations and licensing

Professional Engineering Licenses may be issued through a municipal, provincial/state, or federal/national government organization, depending on the jurisdiction. The purpose of this licensing process is to ensure professional engineers possess the necessary technical knowledge, real-world experience, and basic understanding of the local legal system to practice engineering at a professional level. In Canada, the United States, Japan, South Korea, Bangladesh, and South Africa, the title of Professional Engineer is granted through licensure. In the United Kingdom, Ireland, India, and Zimbabwe the granted title is Chartered Engineer . In Australia, the granted title is Chartered Professional Engineer. Lastly, in the European Union, the granted title is European Engineer. All these titles have similar requirements for accreditation, including a recognized post-secondary degree and relevant work experience.

Canada

In Canada, Professional Engineer (P.Eng.) and Professional Geoscientist (P.Geo.) licenses are regulated by provincial professional bodies which have the groundwork for their legislation laid out by Engineers Canada and Geoscientists Canada. The provincial organizations are listed in the table below.

Regulatory body responsible for awarding licenses for professional engineering and geosciences in each province and territory of Canada
Province Regulatory Body
Alberta Association of Professional Engineers and Geoscientists of Alberta
British Columbia Association of Engineers and Geoscientists of British Columbia
Manitoba Engineers Geoscientists of Manitoba
New Brunswick Association of Professional Engineers and Geoscientists of New Brunswick
Newfoundland and Labrador Professional Engineers and Geoscientists of Newfoundland and Labrador
Northwest Territories Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists
Nova Scotia Association of Professional Engineers of Nova Scotia
Nunavut Northwest Territories and Nunavut Association of Professional Engineers and Geoscientists
Ontario Professional Engineers Ontario
Prince Edward Island Association of Professional Engineers of Prince Edward Island
Quebec Ordre des ingénieurs du Québec
Saskatchewan Association of Professional Engineers and Geoscientists of Saskatchewan
Yukon Engineers of Yukon

United States

In the United States, all individuals seeking to become a Professional Engineer (P.E.) must attain their license through the Engineering Accreditation Commission (EAC) of the Accreditation Board for Engineering and Technology (ABET). Licenses to be a Certified Professional Geologist in the United States are issued and regulated by the American Institute of Professional Geologists (AIPG)

Professional Societies

Professional societies in geological engineering are not-for-profit organizations that seek to advance and promote the represented profession(s) and connect professionals using networking, regular conferences, meetings, and other events, as well as provide platforms to publish technical literature through forms of conference proceedings, books, technical standards, and suggested methods, and provide opportunities for professional development such as short courses, workshops, and technical tours. Some regional, national, and international professional societies relevant to geological engineers are listed here:

Distinction from engineering geology

Engineering geologists and geological engineers are both interested in the study of the Earth, its shifting movement, and alterations, and the interactions of human society and infrastructure with, on, and in Earth materials. Both disciplines require licenses from professional bodies in most jurisdictions to conduct related work. The primary difference between geological engineers and engineering geologists is that geological engineers are licensed professional engineers (and sometimes also professional geoscientists/geologists) with a combined understanding of Earth sciences and engineering principles, while engineering geologists are geological scientists whose work focusses on applications to engineering projects, and they may be licensed professional geoscientists/geologists, but not professional engineers. The following subsections provide more details on the differing responsibilities between engineering geologists and geological engineers.

Engineering geology

Engineering geologists are applied geological scientists who assess problems that might arise before, during, and after an engineering project. They are trained to be aware of potential problems like:

They use a variety of field and laboratory testing techniques to characterize ground materials that might affect the construction, the long-term safety, or environmental footprint of a project. Job responsibilities of an engineering geologist include:

  • collecting samples and surveys,
  • conducting lab tests on samples,
  • assessing in situ soil or rock conditions at many scales,
  • preparing reports based on testing and on-site observations for clients, and
  • creating geological models, maps, and sections.

Geological engineering

Geological engineers are engineers with extensive knowledge of geological or Earth sciences as well as engineering geology, engineering principles, and engineering design practices. These professionals are qualified to perform the role of or interact with engineering geologists. Their primary focus, however, is the use of engineering geology data, as well as engineering skills to:

In all these activities, the geological model, geological history, and environment, as well as measured engineering properties of relevant Earth materials are critical to engineering design and decision making.

Lie point symmetry

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_point_symmetry     ...