Search This Blog

Saturday, June 19, 2021

Brain in a vat

From Wikipedia, the free encyclopedia

A brain in a vat that believes it is walking

In philosophy, the brain in a vat (BIV) is a scenario used in a variety of thought experiments intended to draw out certain features of human conceptions of knowledge, reality, truth, mind, consciousness, and meaning. It is a modern incarnation of René Descartes's evil demon thought experiment originated by Gilbert Harman. Common to many science fiction stories, it outlines a scenario in which a mad scientist, machine, or other entity might remove a person's brain from the body, suspend it in a vat of life-sustaining liquid, and connect its neurons by wires to a supercomputer which would provide it with electrical impulses identical to those the brain normally receives. According to such stories, the computer would then be simulating reality (including appropriate responses to the brain's own output) and the "disembodied" brain would continue to have perfectly normal conscious experiences, such as those of a person with an embodied brain, without these being related to objects or events in the real world.

Uses

The simplest use of brain-in-a-vat scenarios is as an argument for philosophical skepticism and solipsism. A simple version of this runs as follows: Since the brain in a vat gives and receives exactly the same impulses as it would if it were in a skull, and since these are its only way of interacting with its environment, then it is not possible to tell, from the perspective of that brain, whether it is in a skull or a vat. Yet in the first case, most of the person's beliefs may be true (if they believe, say, that they are walking down the street, or eating ice-cream); in the latter case, their beliefs are false. Since the argument says one cannot know whether one is a brain in a vat, then one cannot know whether most of one's beliefs might be completely false. Since, in principle, it is impossible to rule out oneself being a brain in a vat, there cannot be good grounds for believing any of the things one believes; a skeptical argument would contend that one certainly cannot know them, raising issues with the definition of knowledge. Other philosophers have drawn upon sensation and its relationship to meaning in order to question whether brains in vats are really deceived at all, thus raising wider questions concerning perception, metaphysics, and the philosophy of language.

The brain-in-a-vat is a contemporary version of the argument given in Hindu Maya illusion, Plato's Allegory of the Cave, Zhuangzi's "Zhuangzi dreamed he was a butterfly", and the evil demon in René Descartes' Meditations on First Philosophy.

Recently, many contemporary philosophers believe that virtual reality will seriously affect human autonomy as a form of brain in a vat. But another view is that VR will not destroy our cognitive structure or take away our connection with reality. On the contrary, VR will allow us to have more new propositions, new insights and new perspectives to see the world.

Philosophical debates

While the disembodied brain (the brain in a vat) can be seen as a helpful thought experiment, there are several philosophical debates surrounding the plausibility of the thought experiment. If these debates conclude that the thought experiment is implausible, a possible consequence would be that we are no closer to knowledge, truth, consciousness, representation, etc. than we were prior to the experiment.

Argument from biology

One argument against the BIV thought experiment derives from the idea that the BIV is not – and cannot be – biologically similar to that of an embodied brain (that is, a brain found in a person). Since the BIV is dis embodied, it follows that it does not have similar biology to that of an embodied brain. That is, the BIV lacks the connections from the body to the brain, which renders the BIV neither neuroanatomically nor neurophysiologically similar to that of an embodied brain. If this is the case, we cannot say that it is even possible for the BIV to have similar experiences to the embodied brain, since the brains are not equal. However, it could be counter-argued that the hypothetical machine could be made to also replicate those types of inputs.

Argument from externalism

A second argument deals directly with the stimuli coming into the brain. This is often referred to as the account from externalism or ultra-externalism. In the BIV, the brain receives stimuli from a machine. In an embodied brain, however, the brain receives the stimuli from the sensors found in the body (via touching, tasting, smelling, etc.) which receive their input from the external environment. This argument oftentimes leads to the conclusion that there is a difference between what the BIV is representing and what the embodied brain is representing. This debate has been hashed out, but remains unresolved, by several philosophers including Uriah Kriegel, Colin McGinn, and Robert D. Rupert, and has ramifications for philosophy of mind discussions on (but not limited to) representation, consciousness, content, cognition, and embodied cognition.

Argument from incoherence

A third argument from the philosopher Hilary Putnam attempts to demonstrate the thought experiment's incoherence on the basis that it is self-refuting. To do this, Putnam first argued in favor of a theory of reference that would later become known as semantic externalism. He offers the "Twin Earth" example to demonstrate that two identical individuals, one on our earth and another on a "twin earth", may possess the exact same mental state and thoughts, yet refer to two different things. For instance, when we think of cats, the referent of our thoughts would be the cats that we find here on earth. However, our twins on twin earth, though possessing the same thoughts, would instead be referring not to our cats, but to twin earth's cats. Bearing this in mind, he writes that a "pure" brain in a vat, i.e., one that has never existed outside of the simulation, could not even truthfully say that it was a brain in a vat. This is because the BIV, when it says "brain" and "vat", can only refer to objects within the simulation, not to things outside the simulation it does not have a relationship with. Therefore, what it says is demonstrably false. Alternatively, if the speaker is not actually a BIV, then the statement is also false. He concludes, then, that the statement "I'm a BIV" is necessarily false and self-refuting. This argument has been explored at length in philosophical literature since its publication. One counter-argument says that, even assuming Putnam's reference theory, a brain on our earth that is "kidnapped", placed into a vat, and subjected to a simulation could still refer to "real" brains and vats, and thus correctly say it is a brain in a vat. However, the notion that the "pure" BIV is incorrect and the reference theory underpinning it remains influential in the philosophy of mind, language and metaphysics.

Boltzmann brain

From Wikipedia, the free encyclopedia
 
Ludwig Boltzmann, after whom Boltzmann brains are named

The Boltzmann brain argument suggests that it is more likely for a single brain to spontaneously and briefly form in a void (complete with a false memory of having existed in our universe) than it is for the universe to have come about in the way modern science thinks it actually did. It was first proposed as a reductio ad absurdum response to Ludwig Boltzmann's early explanation for the low-entropy state of our universe.

In this physics thought experiment, a Boltzmann brain is a fully formed brain, complete with memories of a full human life in our universe, that arises due to extremely rare random fluctuations out of a state of thermodynamic equilibrium. Theoretically, over an extremely large but not infinite amount of time, by sheer chance atoms in a void could spontaneously come together in such a way as to assemble a functioning human brain. Like any brain in such circumstances, it would almost immediately stop functioning and begin to deteriorate.

The idea is named after the Austrian physicist Ludwig Boltzmann (1844–1906), who in 1896 published a theory that tried to account for the fact that humans find themselves in a universe that is not as chaotic as the budding field of thermodynamics seemed to predict. He offered several explanations, one of them being that the universe, even one that is fully random (or at thermal equilibrium), would spontaneously fluctuate to a more ordered (or low-entropy) state.

Boltzmann brains gained new relevance around 2002, when some cosmologists started to become concerned that, in many theories about the Universe, human brains in the current universe appear to be vastly less likely than Boltzmann brains will be in the future; this leads to the conclusion that, statistically, humans are likely to be Boltzmann brains. Such a reductio ad absurdum argument is sometimes used to argue against certain theories of the Universe. When applied to more recent theories about the multiverse, Boltzmann brain arguments are part of the unsolved measure problem of cosmology. Physics, being an experimental science, uses the Boltzmann brain thought experiment as a tool for evaluating competing scientific theories.

Boltzmann universe

In 1896, the mathematician Ernst Zermelo advanced a theory that the second law of thermodynamics was absolute rather than statistical. Zermelo bolstered his theory by pointing out that the Poincaré recurrence theorem shows statistical entropy in a closed system must eventually be a periodic function; therefore, the Second Law, which is always observed to increase entropy, is unlikely to be statistical. To counter Zermelo's argument, the Austrian physicist Ludwig Boltzmann advanced two theories. The first theory, now believed to be the correct one, is that the Universe started for some unknown reason in a low-entropy state. The second and alternative theory, published in 1896 but attributed in 1895 to Boltzmann's assistant Ignaz Schütz, is the "Boltzmann universe" scenario. In this scenario, the Universe spends the vast majority of eternity in a featureless state of heat death; however, over enough eons, eventually a very rare thermal fluctuation will occur where atoms bounce off each other in exactly such a way as to form a substructure equivalent to our entire observable universe. Boltzmann argues that, while most of the universe is featureless, humans do not see those regions because they are devoid of intelligent life; to Boltzmann, it is unremarkable that humanity views solely the interior of its Boltzmann universe, as that is the only place where intelligent life lives. (This may be the first use in modern science of the anthropic principle).

In 1931, astronomer Arthur Eddington pointed out that, because a large fluctuation is exponentially less probable than a small fluctuation, observers in Boltzmann universes will be vastly outnumbered by observers in smaller fluctuations. Physicist Richard Feynman published a similar counterargument within his widely-read 1964 Feynman Lectures on Physics. By 2004, physicists had pushed Eddington's observation to its logical conclusion: the most numerous observers in an eternity of thermal fluctuations would be minimal "Boltzmann brains" popping up in an otherwise featureless universe.

Spontaneous formation

In the universe's eventual state of ergodic "heat death", given enough time, every possible structure (including every possible brain) gets formed via random fluctuation. The timescale for this is related to the Poincaré recurrence time. Boltzmann-style thought experiments focus on structures like human brains that are presumably self-aware observers. Given any arbitrary criteria for what constitutes a Boltzmann brain (or planet, or universe), smaller structures that minimally and barely meet the criteria are vastly and exponentially more common than larger structures; a rough analogy is how the odds of a real English word showing up when one shakes a box of Scrabble letters are greater than the odds that a whole English sentence or paragraph will form. The average timescale required for the formation of a Boltzmann brain is vastly greater than the current age of the Universe. In modern physics, Boltzmann brains can be formed either by quantum fluctuation, or by a thermal fluctuation generally involving nucleation.

Via quantum fluctuation

By one calculation, a Boltzmann brain would appear as a quantum fluctuation in the vacuum after a time interval of years. This fluctuation can occur even in a true Minkowski vacuum (a flat spacetime vacuum lacking vacuum energy). Quantum mechanics heavily favors smaller fluctuations that "borrow" the least amount of energy from the vacuum. Typically, a quantum Boltzmann brain would suddenly appear from the vacuum (alongside an equivalent amount of virtual antimatter), remain only long enough to have a single coherent thought or observation, and then disappear into the vacuum as suddenly as it appeared. Such a brain is completely self-contained, and can never radiate energy out to infinity.

Via nucleation

Current evidence suggests that the vacuum permeating the observable Universe is not a Minkowski space, but rather a de Sitter space with a positive cosmological constant. In a de Sitter vacuum (but not in a Minkowski vacuum), a Boltzmann brain can form via nucleation of non-virtual particles gradually assembled by chance from the Hawking radiation emitted from the de Sitter space's bounded cosmological horizon. One estimate for the average time required until nucleation is around years. A typical nucleated Boltzmann brain will, after it finishes its activity, cool off to absolute zero and eventually completely decay, as any isolated object would in the vacuum of space. Unlike the quantum fluctuation case, the Boltzmann brain will radiate energy out to infinity. In nucleation, the most common fluctuations are as close to thermal equilibrium overall as possible given whatever arbitrary criteria are provided for labeling a fluctuation a "Boltzmann brain".

Theoretically a Boltzmann brain can also form, albeit again with a tiny probability, at any time during the matter-dominated early universe.

Modern reactions to the Boltzmann brain problem

The consensus amongst cosmologists is that some yet to be revealed error is hinted at by the surprising calculation that Boltzmann brains should vastly outnumber normal human brains. Sean Carroll states "We're not arguing that Boltzmann Brains exist—we're trying to avoid them." Carroll has stated that the hypothesis of being a Boltzmann brain results in "cognitive instability". Because, he argues, it would take longer than the current age of the universe for a brain to form, and yet it thinks that it observes that it exists in a younger universe, this shows that memories and reasoning processes would be untrustworthy if it were indeed a Boltzmann brain. Seth Lloyd has stated "they fail the Monty Python test: Stop that! That's too silly!" A New Scientist journalist summarizes that "the starting point for our understanding of the universe and its behavior is that humans, not disembodied brains, are typical observers."

Some argue that brains produced via quantum fluctuation, and maybe even brains produced via nucleation in the de Sitter vacuum, do not count as observers. Quantum fluctuations are easier to exclude than nucleated brains, as quantum fluctuations can more easily be targeted by straightforward criteria (such as their lack of interaction with the environment at infinity).

Some cosmologists believe that a better understanding of the degrees of freedom in the quantum vacuum of holographic string theory can solve the Boltzmann brain problem.

Brian Greene states: "I am confident that I am not a Boltzmann brain. However, we want our theories to similarly concur that we are not Boltzmann brains, but so far it has proved surprisingly difficult for them to do so."

In single-Universe scenarios

In a single de Sitter Universe with a cosmological constant, and starting from any finite spatial slice, the number of "normal" observers is finite and bounded by the heat death of the Universe. If the Universe lasts forever, the number of nucleated Boltzmann brains is, in most models, infinite; cosmologists such as Alan Guth worry that this would make it seem "infinitely unlikely for us to be normal brains". One caveat is that if the Universe is a false vacuum that locally decays into a Minkowski or a Big Crunch-bound anti-de Sitter space in less than 20 billion years, then infinite Boltzmann nucleation is avoided. (If the average local false vacuum decay rate is over 20 billion years, Boltzmann brain nucleation is still infinite, as the Universe increases in size faster than local vacuum collapses destroy the portions of the Universe within the collapses' future light cones). Proposed hypothetical mechanisms to destroy the universe within that timeframe range from superheavy gravitinos to a heavier-than-observed top quark triggering "death by Higgs".

If no cosmological constant exists, and if the presently observed vacuum energy is from quintessence that will eventually completely dissipate, then infinite Boltzmann nucleation is also avoided.

In eternal inflation

One class of solutions to the Boltzmann brain problem makes use of differing approaches to the measure problem in cosmology: in infinite multiverse theories, the ratio of normal observers to Boltzmann brains depends on how infinite limits are taken. Measures might be chosen to avoid appreciable fractions of Boltzmann brains. Unlike the single-universe case, one challenge in finding a global solution in eternal inflation is that all possible string landscapes must be summed over; in some measures, having even a small fraction of universes infested with Boltzmann brains causes the measure of the multiverse as a whole to be dominated by Boltzmann brains.

The measurement problem in cosmology also grapples with the ratio of normal observers to abnormally early observers. In measures such as the proper time measure that suffer from an extreme "youngness" problem, the typical observer is a "Boltzmann baby" formed by rare fluctuation in an extremely hot, early universe.

Identifying whether oneself is a Boltzmann observer

In Boltzmann brain scenarios, the ratio of Boltzmann brains to "normal observers" is astronomically large. Almost any relevant subset of Boltzmann brains, such as "brains embedded within functioning bodies", "observers who believe they are perceiving 3 K microwave background radiation through telescopes", "observers who have a memory of coherent experiences", or "observers who have the same series of experiences as me", also vastly outnumber "normal observers". Therefore, under most models of consciousness, it is unclear that one can reliably conclude that oneself is not such a "Boltzmann observer", in a case where Boltzmann brains dominate the Universe. Even under "content externalism" models of consciousness, Boltzmann observers living in a consistent Earth-sized fluctuation over the course of the past several years outnumber the "normal observers" spawned before a Universe's "heat death".

As stated earlier, most Boltzmann brains have "abnormal" experiences; Feynman has pointed out that, if one knows oneself to be a typical Boltzmann brain, one does not expect "normal" observations to continue in the future. In other words, in a Boltzmann-dominated Universe, most Boltzmann brains have "abnormal" experiences, but most observers with only "normal" experiences are Boltzmann brains, due to the overwhelming vastness of the population of Boltzmann brains in such a Universe.

Law of truly large numbers

From Wikipedia, the free encyclopedia

The law of truly large numbers (a statistical adage), attributed to Persi Diaconis and Frederick Mosteller, states that with a large enough number of samples, any outrageous (i.e. unlikely in any single sample) thing is likely to be observed. Because we never find it notable when likely events occur, we highlight unlikely events and notice them more. The law is often used to falsify different pseudo-scientific claims, as such it and its use are sometimes criticized by fringe scientists.

The law is meant to make a statement about probabilities and statistical significance: in large enough masses of statistical data, even minuscule fluctuations attain statistical significance. Thus in truly large numbers of observations, it is paradoxically easy to find significant correlations, in large numbers, which still do not lead to causal theories (see: spurious correlation), and which by their collective number, might lead to obfuscation as well.

The law can be rephrased as "large numbers also deceive", something which is counter-intuitive to a descriptive statistician. More concretely, skeptic Penn Jillette has said, "Million-to-one odds happen eight times a day in New York" (population about 8,000,000).

Example

For a simplified example of the law, assume that a given event happens with a probability for its occurrence of 0.1%, within a single trial. Then, the probability that this so-called unlikely event does not happen (improbability) in a single trial is 99.9% (0.999).

Already for a sample of 1000 independent trials, however, the probability that the event does not happen in any of them, even once (improbability), is only 0.9991000 ≈ 0.3677 = 36.77%. Then, the probability that the event does happen, at least once, in 1000 trials is 1 − 0.9991000 ≈ 0.6323 or 63.23%. This means that this "unlikely event" has a probability of 63.23% of happening if 1000 independent trials are conducted, or over 99.9% for 10,000 trials.

The probability that it happens at least once in 10,000 trials is 1 − 0.99910000 ≈ 0.99995 = 99.995%. In other words, a highly unlikely event, given enough trials with some fixed number of draws per trial, is even more likely to occur.

This calculation can be generalized, formalized to use in mathematical proof that: "the probability c for the less likely event X to happen in N independent trials can become arbitrarily near to 1, no matter how small the probability a of the event X in one single trial is, provided that N is truly large."

In criticism of pseudoscience

The law comes up in criticism of pseudoscience and is sometimes called the Jeane Dixon effect (see also Postdiction). It holds that the more predictions a psychic makes, the better the odds that one of them will "hit". Thus, if one comes true, the psychic expects us to forget the vast majority that did not happen (confirmation bias). Humans can be susceptible to this fallacy.

Another similar (to some degree) manifestation of the law can be found in gambling, where gamblers tend to remember their wins and forget their losses, even if the latter far outnumbers the former (though depending on a particular person, the opposite may also be truth when they think they need more analysis of their losses to achieve fine tuning of their playing system). Mikal Aasved links it with "selective memory bias", allowing gamblers to mentally distance themselves from the consequences of their gambling by holding an inflated view of their real winnings (or losses in the opposite case - "selective memory bias in either direction").

 

Infinite monkey theorem

From Wikipedia, the free encyclopedia
 
Chimpanzee seated at a typewriter

The infinite monkey theorem states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, such as the complete works of William Shakespeare. In fact, the monkey would almost surely type every possible finite text an infinite number of times. However, the probability that monkeys filling the entire observable universe would type a single complete work, such as Shakespeare's Hamlet, is so tiny that the chance of it occurring during a period of time hundreds of thousands of orders of magnitude longer than the age of the universe is extremely low (but technically not zero). The theorem can be generalized to state that any sequence of events which has a non-zero probability of happening, at least as long as it hasn't occurred, will almost certainly eventually occur.

In this context, "almost surely" is a mathematical term with a precise meaning, and the "monkey" is not an actual monkey, but a metaphor for an abstract device that produces an endless random sequence of letters and symbols. One of the earliest instances of the use of the "monkey metaphor" is that of French mathematician Émile Borel in 1913, but the first instance may have been even earlier.

Variants of the theorem include multiple and even infinitely many typists, and the target text varies between an entire library and a single sentence. Jorge Luis Borges traced the history of this idea from Aristotle's On Generation and Corruption and Cicero's De Natura Deorum (On the Nature of the Gods), through Blaise Pascal and Jonathan Swift, up to modern statements with their iconic simians and typewriters. In the early 20th century, Borel and Arthur Eddington used the theorem to illustrate the timescales implicit in the foundations of statistical mechanics.

Solution

Direct proof

There is a straightforward proof of this theorem. As an introduction, recall that if two events are statistically independent, then the probability of both happening equals the product of the probabilities of each one happening independently. For example, if the chance of rain in Moscow on a particular day in the future is 0.4 and the chance of an earthquake in San Francisco on any particular day is 0.00003, then the chance of both happening on the same day is 0.4 × 0.00003 = 0.000012, assuming that they are indeed independent.

Suppose the typewriter has 50 keys, and the word to be typed is banana. If the keys are pressed randomly and independently, it means that each key has an equal chance of being pressed. Then, the chance that the first letter typed is 'b' is 1/50, and the chance that the second letter typed is 'a' is also 1/50, and so on. Therefore, the chance of the first six letters spelling banana is

(1/50) × (1/50) × (1/50) × (1/50) × (1/50) × (1/50) = (1/50)6 = 1/15,625,000,000.

Less than one in 15 billion, but not zero.

From the above, the chance of not typing banana in a given block of 6 letters is 1 − (1/50)6. Because each block is typed independently, the chance Xn of not typing banana in any of the first n blocks of 6 letters is

As n grows, Xn gets smaller. For n = 1 million, Xn is roughly 0.9999, but for n = 10 billion Xn is roughly 0.53 and for n = 100 billion it is roughly 0.0017. As n approaches infinity, the probability Xn approaches zero; that is, by making n large enough, Xn can be made as small as is desired, and the chance of typing banana approaches 100%.

The same argument shows why at least one of infinitely many monkeys will produce a text as quickly as it would be produced by a perfectly accurate human typist copying it from the original. In this case Xn = (1 − (1/50)6)n where Xn represents the probability that none of the first n monkeys types banana correctly on their first try. When we consider 100 billion monkeys, the probability falls to 0.17%, and as the number of monkeys n increases, the value of Xn – the probability of the monkeys failing to reproduce the given text – approaches zero arbitrarily closely. The limit, for n going to infinity, is zero. So the probability of the word banana appearing at some point in an infinite sequence of keystrokes is equal to one.

Infinite strings

This can be stated more generally and compactly in terms of strings, which are sequences of characters chosen from some finite alphabet:

  • Given an infinite string where each character is chosen uniformly at random, any given finite string almost surely occurs as a substring at some position.
  • Given an infinite sequence of infinite strings, where each character of each string is chosen uniformly at random, any given finite string almost surely occurs as a prefix of one of these strings.

Both follow easily from the second Borel–Cantelli lemma. For the second theorem, let Ek be the event that the kth string begins with the given text. Because this has some fixed nonzero probability p of occurring, the Ek are independent, and the below sum diverges,

the probability that infinitely many of the Ek occur is 1. The first theorem is shown similarly; one can divide the random string into nonoverlapping blocks matching the size of the desired text, and make Ek the event where the kth block equals the desired string.

Probabilities

However, for physically meaningful numbers of monkeys typing for physically meaningful lengths of time the results are reversed. If there were as many monkeys as there are atoms in the observable universe typing extremely fast for trillions of times the life of the universe, the probability of the monkeys replicating even a single page of Shakespeare is unfathomably small.

Ignoring punctuation, spacing, and capitalization, a monkey typing letters uniformly at random has a chance of one in 26 of correctly typing the first letter of Hamlet. It has a chance of one in 676 (26 × 26) of typing the first two letters. Because the probability shrinks exponentially, at 20 letters it already has only a chance of one in 2620 = 19,928,148,895,209,409,152,340,197,376 (almost 2 × 1028). In the case of the entire text of Hamlet, the probabilities are so vanishingly small as to be inconceivable. The text of Hamlet contains approximately 130,000 letters. Thus there is a probability of one in 3.4 × 10183,946 to get the text right at the first trial. The average number of letters that needs to be typed until the text appears is also 3.4 × 10183,946, or including punctuation, 4.4 × 10360,783.

Even if every proton in the observable universe were a monkey with a typewriter, typing from the Big Bang until the end of the universe (when protons might no longer exist), they would still need a far greater amount of time – more than three hundred and sixty thousand orders of magnitude longer – to have even a 1 in 10500 chance of success. To put it another way, for a one in a trillion chance of success, there would need to be 10360,641 observable universes made of protonic monkeys. As Kittel and Kroemer put it in their textbook on thermodynamics, the field whose statistical foundations motivated the first known expositions of typing monkeys, "The probability of Hamlet is therefore zero in any operational sense of an event ...", and the statement that the monkeys must eventually succeed "gives a misleading conclusion about very, very large numbers."

In fact there is less than a one in a trillion chance of success that such a universe made of monkeys could type any particular document a mere 79 characters long.

Almost surely

The probability that an infinite randomly generated string of text will contain a particular finite substring is 1. However, this does not mean the substring's absence is "impossible", despite the absence having a prior probability of 0. For example, the immortal monkey could randomly type G as its first letter, G as its second, and G as every single letter thereafter, producing an infinite string of Gs; at no point must the monkey be "compelled" to type anything else. (To assume otherwise implies the gambler's fallacy.) However long a randomly generated finite string is, there is a small but nonzero chance that it will turn out to consist of the same character repeated throughout; this chance approaches zero as the string's length approaches infinity. There is nothing special about such a monotonous sequence except that it is easy to describe; the same fact applies to any nameable specific sequence, such as "RGRGRG" repeated forever, or "a-b-aa-bb-aaa-bbb-...", or "Three, Six, Nine, Twelve…".

If the hypothetical monkey has a typewriter with 90 equally likely keys that include numerals and punctuation, then the first typed keys might be "3.14" (the first three digits of pi) with a probability of (1/90)4, which is 1/65,610,000. Equally probable is any other string of four characters allowed by the typewriter, such as "GGGG", "mATh", or "q%8e". The probability that 100 randomly typed keys will consist of the first 99 digits of pi (including the separator key), or any other particular sequence of that length, is much lower: (1/90)100. If the monkey's allotted length of text is infinite, the chance of typing only the digits of pi is 0, which is just as possible (mathematically probable) as typing nothing but Gs (also probability 0).

The same applies to the event of typing a particular version of Hamlet followed by endless copies of itself; or Hamlet immediately followed by all the digits of pi; these specific strings are equally infinite in length, they are not prohibited by the terms of the thought problem, and they each have a prior probability of 0. In fact, any particular infinite sequence the immortal monkey types will have had a prior probability of 0, even though the monkey must type something.

This is an extension of the principle that a finite string of random text has a lower and lower probability of being a particular string the longer it is (though all specific strings are equally unlikely). This probability approaches 0 as the string approaches infinity. Thus, the probability of the monkey typing an endlessly long string, such as all of the digits of pi in order, on a 90-key keyboard is (1/90) which equals (1/∞) which is essentially 0. At the same time, the probability that the sequence contains a particular subsequence (such as the word MONKEY, or the 12th through 999th digits of pi, or a version of the King James Bible) increases as the total string increases. This probability approaches 1 as the total string approaches infinity, and thus the original theorem is correct.

Correspondence between strings and numbers

In a simplification of the thought experiment, the monkey could have a typewriter with just two keys: 1 and 0. The infinitely long string thusly produced would correspond to the binary digits of a particular real number between 0 and 1. A countably infinite set of possible strings end in infinite repetitions, which means the corresponding real number is rational. Examples include the strings corresponding to one-third (010101...), five-sixths (11010101...) and five-eighths (1010000...). Only a subset of such real number strings (albeit a countably infinite subset) contains the entirety of Hamlet (assuming that the text is subjected to a numerical encoding, such as ASCII).

Meanwhile, there is an uncountably infinite set of strings which do not end in such repetition; these correspond to the irrational numbers. These can be sorted into two uncountably infinite subsets: those which contain Hamlet and those which do not. However, the "largest" subset of all the real numbers are those which not only contain Hamlet, but which contain every other possible string of any length, and with equal distribution of such strings. These irrational numbers are called normal. Because almost all numbers are normal, almost all possible strings contain all possible finite substrings. Hence, the probability of the monkey typing a normal number is 1. The same principles apply regardless of the number of keys from which the monkey can choose; a 90-key keyboard can be seen as a generator of numbers written in base 90.

History

Statistical mechanics

In one of the forms in which probabilists now know this theorem, with its "dactylographic" [i.e., typewriting] monkeys (French: singes dactylographes; the French word singe covers both the monkeys and the apes), appeared in Émile Borel's 1913 article "Mécanique Statistique et Irréversibilité" (Statistical mechanics and irreversibility), and in his book "Le Hasard" in 1914. His "monkeys" are not actual monkeys; rather, they are a metaphor for an imaginary way to produce a large, random sequence of letters. Borel said that if a million monkeys typed ten hours a day, it was extremely unlikely that their output would exactly equal all the books of the richest libraries of the world; and yet, in comparison, it was even more unlikely that the laws of statistical mechanics would ever be violated, even briefly.

The physicist Arthur Eddington drew on Borel's image further in The Nature of the Physical World (1928), writing:

If I let my fingers wander idly over the keys of a typewriter it might happen that my screed made an intelligible sentence. If an army of monkeys were strumming on typewriters they might write all the books in the British Museum. The chance of their doing so is decidedly more favourable than the chance of the molecules returning to one half of the vessel.

These images invite the reader to consider the incredible improbability of a large but finite number of monkeys working for a large but finite amount of time producing a significant work, and compare this with the even greater improbability of certain physical events. Any physical process that is even less likely than such monkeys' success is effectively impossible, and it may safely be said that such a process will never happen. It is clear from the context that Eddington is not suggesting that the probability of this happening is worthy of serious consideration. On the contrary, it was a rhetorical illustration of the fact that below certain levels of probability, the term improbable is functionally equivalent to impossible.

Origins and "The Total Library"

In a 1939 essay entitled "The Total Library", Argentine writer Jorge Luis Borges traced the infinite-monkey concept back to Aristotle's Metaphysics. Explaining the views of Leucippus, who held that the world arose through the random combination of atoms, Aristotle notes that the atoms themselves are homogeneous and their possible arrangements only differ in shape, position and ordering. In On Generation and Corruption, the Greek philosopher compares this to the way that a tragedy and a comedy consist of the same "atoms", i.e., alphabetic characters. Three centuries later, Cicero's De natura deorum (On the Nature of the Gods) argued against the atomist worldview:

He who believes this may as well believe that if a great quantity of the one-and-twenty letters, composed either of gold or any other matter, were thrown upon the ground, they would fall into such order as legibly to form the Annals of Ennius. I doubt whether fortune could make a single verse of them.

Borges follows the history of this argument through Blaise Pascal and Jonathan Swift, then observes that in his own time, the vocabulary had changed. By 1939, the idiom was "that a half-dozen monkeys provided with typewriters would, in a few eternities, produce all the books in the British Museum." (To which Borges adds, "Strictly speaking, one immortal monkey would suffice.") Borges then imagines the contents of the Total Library which this enterprise would produce if carried to its fullest extreme:

Everything would be in its blind volumes. Everything: the detailed history of the future, Aeschylus' The Egyptians, the exact number of times that the waters of the Ganges have reflected the flight of a falcon, the secret and true nature of Rome, the encyclopedia Novalis would have constructed, my dreams and half-dreams at dawn on August 14, 1934, the proof of Pierre Fermat's theorem, the unwritten chapters of Edwin Drood, those same chapters translated into the language spoken by the Garamantes, the paradoxes Berkeley invented concerning Time but didn't publish, Urizen's books of iron, the premature epiphanies of Stephen Dedalus, which would be meaningless before a cycle of a thousand years, the Gnostic Gospel of Basilides, the song the sirens sang, the complete catalog of the Library, the proof of the inaccuracy of that catalog. Everything: but for every sensible line or accurate fact there would be millions of meaningless cacophonies, verbal farragoes, and babblings. Everything: but all the generations of mankind could pass before the dizzying shelves – shelves that obliterate the day and on which chaos lies – ever reward them with a tolerable page.

Borges' total library concept was the main theme of his widely read 1941 short story "The Library of Babel", which describes an unimaginably vast library consisting of interlocking hexagonal chambers, together containing every possible volume that could be composed from the letters of the alphabet and some punctuation characters.

Actual monkeys

In 2002, lecturers and students from the University of Plymouth MediaLab Arts course used a £2,000 grant from the Arts Council to study the literary output of real monkeys. They left a computer keyboard in the enclosure of six Celebes crested macaques in Paignton Zoo in Devon, England for a month, with a radio link to broadcast the results on a website.

Not only did the monkeys produce nothing but five total pages largely consisting of the letter 'S', the lead male began striking the keyboard with a stone, and other monkeys followed by soiling it. Mike Phillips, director of the university's Institute of Digital Arts and Technology (i-DAT), said that the artist-funded project was primarily performance art, and they had learned "an awful lot" from it. He concluded that monkeys "are not random generators. They're more complex than that. ... They were quite interested in the screen, and they saw that when they typed a letter, something happened. There was a level of intention there."

The full text created by the monkeys is available to read "here" (PDF). Archived from the original (PDF) on 2009-03-18.

Applications and criticisms

Evolution

Thomas Huxley is sometimes misattributed with proposing a variant of the theory in his debates with Samuel Wilberforce.

In his 1931 book The Mysterious Universe, Eddington's rival James Jeans attributed the monkey parable to a "Huxley", presumably meaning Thomas Henry Huxley. This attribution is incorrect. Today, it is sometimes further reported that Huxley applied the example in a now-legendary debate over Charles Darwin's On the Origin of Species with the Anglican Bishop of Oxford, Samuel Wilberforce, held at a meeting of the British Association for the Advancement of Science at Oxford on 30 June 1860. This story suffers not only from a lack of evidence, but the fact that in 1860 the typewriter itself had yet to emerge.

Despite the original mix-up, monkey-and-typewriter arguments are now common in arguments over evolution. As an example of Christian apologetics Doug Powell argued that even if a monkey accidentally types the letters of Hamlet, it has failed to produce Hamlet because it lacked the intention to communicate. His parallel implication is that natural laws could not produce the information content in DNA. A more common argument is represented by Reverend John F. MacArthur, who claimed that the genetic mutations necessary to produce a tapeworm from an amoeba are as unlikely as a monkey typing Hamlet's soliloquy, and hence the odds against the evolution of all life are impossible to overcome.

Evolutionary biologist Richard Dawkins employs the typing monkey concept in his book The Blind Watchmaker to demonstrate the ability of natural selection to produce biological complexity out of random mutations. In a simulation experiment Dawkins has his weasel program produce the Hamlet phrase METHINKS IT IS LIKE A WEASEL, starting from a randomly typed parent, by "breeding" subsequent generations and always choosing the closest match from progeny that are copies of the parent, with random mutations. The chance of the target phrase appearing in a single step is extremely small, yet Dawkins showed that it could be produced rapidly (in about 40 generations) using cumulative selection of phrases. The random choices furnish raw material, while cumulative selection imparts information. As Dawkins acknowledges, however, the weasel program is an imperfect analogy for evolution, as "offspring" phrases were selected "according to the criterion of resemblance to a distant ideal target." In contrast, Dawkins affirms, evolution has no long-term plans and does not progress toward some distant goal (such as humans). The weasel program is instead meant to illustrate the difference between non-random cumulative selection, and random single-step selection. In terms of the typing monkey analogy, this means that Romeo and Juliet could be produced relatively quickly if placed under the constraints of a nonrandom, Darwinian-type selection because the fitness function will tend to preserve in place any letters that happen to match the target text, improving each successive generation of typing monkeys.

A different avenue for exploring the analogy between evolution and an unconstrained monkey lies in the problem that the monkey types only one letter at a time, independently of the other letters. Hugh Petrie argues that a more sophisticated setup is required, in his case not for biological evolution but the evolution of ideas:

In order to get the proper analogy, we would have to equip the monkey with a more complex typewriter. It would have to include whole Elizabethan sentences and thoughts. It would have to include Elizabethan beliefs about human action patterns and the causes, Elizabethan morality and science, and linguistic patterns for expressing these. It would probably even have to include an account of the sorts of experiences which shaped Shakespeare's belief structure as a particular example of an Elizabethan. Then, perhaps, we might allow the monkey to play with such a typewriter and produce variants, but the impossibility of obtaining a Shakespearean play is no longer obvious. What is varied really does encapsulate a great deal of already-achieved knowledge.

James W. Valentine, while admitting that the classic monkey's task is impossible, finds that there is a worthwhile analogy between written English and the metazoan genome in this other sense: both have "combinatorial, hierarchical structures" that greatly constrain the immense number of combinations at the alphabet level.

Literary theory

R. G. Collingwood argued in 1938 that art cannot be produced by accident, and wrote as a sarcastic aside to his critics,

... some ... have denied this proposition, pointing out that if a monkey played with a typewriter ... he would produce ... the complete text of Shakespeare. Any reader who has nothing to do can amuse himself by calculating how long it would take for the probability to be worth betting on. But the interest of the suggestion lies in the revelation of the mental state of a person who can identify the 'works' of Shakespeare with the series of letters printed on the pages of a book ...

Nelson Goodman took the contrary position, illustrating his point along with Catherine Elgin by the example of Borges' "Pierre Menard, Author of the Quixote",

What Menard wrote is simply another inscription of the text. Any of us can do the same, as can printing presses and photocopiers. Indeed, we are told, if infinitely many monkeys ... one would eventually produce a replica of the text. That replica, we maintain, would be as much an instance of the work, Don Quixote, as Cervantes' manuscript, Menard's manuscript, and each copy of the book that ever has been or will be printed.

In another writing, Goodman elaborates, "That the monkey may be supposed to have produced his copy randomly makes no difference. It is the same text, and it is open to all the same interpretations. ..." Gérard Genette dismisses Goodman's argument as begging the question.

For Jorge J. E. Gracia, the question of the identity of texts leads to a different question, that of author. If a monkey is capable of typing Hamlet, despite having no intention of meaning and therefore disqualifying itself as an author, then it appears that texts do not require authors. Possible solutions include saying that whoever finds the text and identifies it as Hamlet is the author; or that Shakespeare is the author, the monkey his agent, and the finder merely a user of the text. These solutions have their own difficulties, in that the text appears to have a meaning separate from the other agents: What if the monkey operates before Shakespeare is born, or if Shakespeare is never born, or if no one ever finds the monkey's typescript?

Random document generation

The theorem concerns a thought experiment which cannot be fully carried out in practice, since it is predicted to require prohibitive amounts of time and resources. Nonetheless, it has inspired efforts in finite random text generation.

One computer program run by Dan Oliver of Scottsdale, Arizona, according to an article in The New Yorker, came up with a result on 4 August 2004: After the group had worked for 42,162,500,000 billion billion monkey-years, one of the "monkeys" typed, 

"VALENTINE. Cease toIdor:eFLP0FRjWK78aXzVOwm)-‘;8.t" The first 19 letters of this sequence can be found in "The Two Gentlemen of Verona". Other teams have reproduced 18 characters from "Timon of Athens", 17 from "Troilus and Cressida", and 16 from "Richard II".

A website entitled The Monkey Shakespeare Simulator, launched on 1 July 2003, contained a Java applet that simulated a large population of monkeys typing randomly, with the stated intention of seeing how long it takes the virtual monkeys to produce a complete Shakespearean play from beginning to end. For example, it produced this partial line from Henry IV, Part 2, reporting that it took "2,737,850 million billion billion billion monkey-years" to reach 24 matching characters:

RUMOUR. Open your ears; 9r"5j5&?OWTY Z0d

Due to processing power limitations, the program used a probabilistic model (by using a random number generator or RNG) instead of actually generating random text and comparing it to Shakespeare. When the simulator "detected a match" (that is, the RNG generated a certain value or a value within a certain range), the simulator simulated the match by generating matched text.

More sophisticated methods are used in practice for natural language generation. If instead of simply generating random characters one restricts the generator to a meaningful vocabulary and conservatively following grammar rules, like using a context-free grammar, then a random document generated this way can even fool some humans (at least on a cursory reading) as shown in the experiments with SCIgen, snarXiv, and the Postmodernism Generator.

In February 2019, the OpenAI group published the Generative Pre-trained Transformer 2 (GPT-2) artificial intelligence to GitHub, which is able to produce a fully plausible news article given a two sentence input from a human hand. The AI was so effective that instead of publishing the full code, the group chose to publish a scaled-back version and released a statement regarding "concerns about large language models being used to generate deceptive, biased, or abusive language at scale."

Testing of random-number generators

Questions about the statistics describing how often an ideal monkey is expected to type certain strings translate into practical tests for random-number generators; these range from the simple to the "quite sophisticated". Computer-science professors George Marsaglia and Arif Zaman report that they used to call one such category of tests "overlapping m-tuple tests" in lectures, since they concern overlapping m-tuples of successive elements in a random sequence. But they found that calling them "monkey tests" helped to motivate the idea with students. They published a report on the class of tests and their results for various RNGs in 1993.

In popular culture

The infinite monkey theorem and its associated imagery is considered a popular and proverbial illustration of the mathematics of probability, widely known to the general public because of its transmission through popular culture rather than through formal education. This is helped by the innate humor stemming from the image of literal monkeys rattling away on a set of typewriters, and is a popular visual gag.

A quotation attributed to a 1996 speech by Robert Wilensky stated, "We've heard that a million monkeys at a million keyboards could produce the complete works of Shakespeare; now, thanks to the Internet, we know that is not true."

The enduring, widespread popularity of the theorem was noted in the introduction to a 2001 paper, "Monkeys, Typewriters and Networks: The Internet in the Light of the Theory of Accidental Excellence". In 2002, an article in The Washington Post said, "Plenty of people have had fun with the famous notion that an infinite number of monkeys with an infinite number of typewriters and an infinite amount of time could eventually write the works of Shakespeare". In 2003, the previously mentioned Arts Council funded experiment involving real monkeys and a computer keyboard received widespread press coverage. In 2007, the theorem was listed by Wired magazine in a list of eight classic thought experiments.

American playwright David Ives' short one-act play Words, Words, Words, from the collection All in the Timing, pokes fun of the concept of the infinite monkey theorem.

Watchmaker analogy

From Wikipedia, the free encyclopedia

Representation of a Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Representation_of_a_Lie_group...