Search This Blog

Saturday, March 8, 2025

Electromagnetic absorption by water

Absorption spectrum (attenuation coefficient vs. wavelength) of liquid water (red), atmospheric water vapor (green) and ice (blue line) between 667 nm and 200 μm. The plot for vapor is a transformation of data Synthetic spectrum for gas mixture 'Pure H2O' (296K, 1 atm) retrieved from Hitran on the Web Information System.
Liquid water absorption spectrum across a wide wavelength range

The absorption of electromagnetic radiation by water depends on the state of the water.

The absorption in the gas phase occurs in three regions of the spectrum. Rotational transitions are responsible for absorption in the microwave and far-infrared, vibrational transitions in the mid-infrared and near-infrared. Vibrational bands have rotational fine structure. Electronic transitions occur in the vacuum ultraviolet regions.

Its weak absorption in the visible spectrum results in the pale blue color of water.

Overview

The water molecule, in the gaseous state, has three types of transition that can give rise to absorption of electromagnetic radiation:

  • Rotational transitions, in which the molecule gains a quantum of rotational energy. Atmospheric water vapour at ambient temperature and pressure gives rise to absorption in the far-infrared region of the spectrum, from about 200 cm−1 (50 μm) to longer wavelengths towards the microwave region.
  • Vibrational transitions in which a molecule gains a quantum of vibrational energy. The fundamental transitions give rise to absorption in the mid-infrared in the regions around 1650 cm−1 (μ band, 6 μm) and 3500 cm−1 (so-called X band, 2.9 μm)
  • Electronic transitions in which a molecule is promoted to an excited electronic state. The lowest energy transition of this type is in the vacuum ultraviolet region.

In reality, vibrations of molecules in the gaseous state are accompanied by rotational transitions, giving rise to a vibration-rotation spectrum. Furthermore, vibrational overtones and combination bands occur in the near-infrared region. The HITRAN spectroscopy database lists more than 37,000 spectral lines for gaseous H216O, ranging from the microwave region to the visible spectrum.

In liquid water the rotational transitions are effectively quenched, but absorption bands are affected by hydrogen bonding. In crystalline ice the vibrational spectrum is also affected by hydrogen bonding and there are lattice vibrations causing absorption in the far-infrared. Electronic transitions of gaseous molecules will show both vibrational and rotational fine structure.

Units

Infrared absorption band positions may be given either in wavelength (usually in micrometers, μm) or wavenumber (usually in reciprocal centimeters, cm−1) scale.

Rotational spectrum

Part of the pure rotation absorption spectrum of water vapour
Rotating water molecule

The water molecule is an asymmetric top, that is, it has three independent moments of inertia. Rotation about the 2-fold symmetry axis is illustrated at the left. Because of the low symmetry of the molecule, a large number of transitions can be observed in the far infrared region of the spectrum. Measurements of microwave spectra have provided a very precise value for the O−H bond length, 95.84 ± 0.05 pm and H−O−H bond angle, 104.5 ± 0.3°.

Vibrational spectrum

The three fundamental vibrations of the water molecule
ν1, O-H symmetric stretching 3657 cm−1 (2.734 μm)
ν2, H-O-H bending 1595 cm−1 (6.269 μm)
ν3, O-H asymmetric stretching 3756 cm−1 (2.662 μm)

The water molecule has three fundamental molecular vibrations. The O-H stretching vibrations give rise to absorption bands with band origins at 3657 cm−11, 2.734 μm) and 3756 cm−13, 2.662 μm) in the gas phase. The asymmetric stretching vibration, of B2 symmetry in the point group C2v is a normal vibration. The H-O-H bending mode origin is at 1595 cm−12, 6.269 μm). Both symmetric stretching and bending vibrations have A1 symmetry, but the frequency difference between them is so large that mixing is effectively zero. In the gas phase all three bands show extensive rotational fine structure. In the near-infrared spectrum ν3 has a series of overtones at wavenumbers somewhat less than n·ν3, n=2,3,4,5... Combination bands, such as ν2 + ν3 are also easily observed in the near-infrared region. The presence of water vapor in the atmosphere is important for atmospheric chemistry especially as the infrared and near infrared spectra are easy to observe. Standard (atmospheric optical) codes are assigned to absorption bands as follows. 0.718 μm (visible): α, 0.810 μm: μ, 0.935 μm: ρστ, 1.13 μm: φ, 1.38 μm: ψ, 1.88 μm: Ω, 2.68 μm: X. The gaps between the bands define the infrared window in the Earth's atmosphere.

The infrared spectrum of liquid water is dominated by the intense absorption due to the fundamental O-H stretching vibrations. Because of the high intensity, very short path lengths, usually less than 50 μm, are needed to record the spectra of aqueous solutions. There is no rotational fine structure, but the absorption bands are broader than might be expected, because of hydrogen bonding. Peak maxima for liquid water are observed at 3450 cm−1 (2.898 μm), 3615 cm−1 (2.766 μm) and 1640 cm −1 (6.097 μm). Direct measurement of the infrared spectra of aqueous solutions requires that the cuvette windows be made of substances such as calcium fluoride which are water-insoluble. This difficulty can alternatively be overcome by using an attenuated total reflectance (ATR) device rather than transmission.

In the near-infrared range liquid water has absorption bands around 1950 nm (5128 cm−1), 1450 nm (6896 cm−1), 1200 nm (8333 cm−1) and 970 nm, (10300 cm−1). The regions between these bands can be used in near-infrared spectroscopy to measure the spectra of aqueous solutions, with the advantage that glass is transparent in this region, so glass cuvettes can be used. The absorption intensity is weaker than for the fundamental vibrations, but this is not important as longer path-length cuvettes can be used. The absorption band at 698 nm (14300 cm−1) is a 3rd overtone (n=4). It tails off onto the visible region and is responsible for the intrinsic blue color of water. This can be observed with a standard UV/vis spectrophotometer, using a 10 cm path-length. The colour can be seen by eye by looking through a column of water about 10 m in length; the water must be passed through an ultrafilter to eliminate color due to Rayleigh scattering which also can make water appear blue.

The spectrum of ice is similar to that of liquid water, with peak maxima at 3400 cm−1 (2.941 μm), 3220 cm−1 (3.105 μm) and 1620 cm−1 (6.17 μm)

In both liquid water and ice clusters, low-frequency vibrations occur, which involve the stretching (TS) or bending (TB) of intermolecular hydrogen bonds (O–H•••O). Bands at wavelengths λ = 50-55 μm or 182-200 cm−1 (44 μm, 227 cm−1 in ice) have been attributed to TS, intermolecular stretch, and 200 μm or 50 cm−1 (166 μm, 60 cm−1 in ice), to TB, intermolecular bend

Visible region

Predicted wavelengths of overtones and combination bands of liquid water in the visible region
ν1, ν3 ν2 wavelength /nm
4 0 742
4 1 662
5 0 605
5 1 550
6 0 514
6 1 474
7 0 449
7 1 418
8 0 401
8 1 376

Absorption coefficients for 200 nm and 900 nm are almost equal at 6.9 m−1 (attenuation length of 14.5 cm). Very weak light absorption, in the visible region, by liquid water has been measured using an integrating cavity absorption meter (ICAM). The absorption was attributed to a sequence of overtone and combination bands whose intensity decreases at each step, giving rise to an absolute minimum at 418 nm, at which wavelength the attenuation coefficient is about 0.0044 m−1, which is an attenuation length of about 227 meters. These values correspond to pure absorption without scattering effects. The attenuation of, e.g., a laser beam would be slightly stronger.

Visible light absorption spectrum of pure water (absorption coefficient vs. wavelength)

Electronic spectrum

The electronic transitions of the water molecule lie in the vacuum ultraviolet region. For water vapor the bands have been assigned as follows.

  • 65 nm band — many different electronic transitions, photoionization, photodissociation
  • discrete features between 115 and 180 nm
    • set of narrow bands between 115 and 125 nm
      Rydberg series: 1b1 (n2) → many different Rydberg states and 3a1 (n1) → 3sa1 Rydberg state
    • 128 nm band
      Rydberg series: 3a1 (n1) → 3sa1 Rydberg state and 1b1 (n2) → 3sa1 Rydberg state
    • 166.5 nm band
      1b1 (n2) → 4a11*-like orbital)

Microwaves and radio waves

Dielectric permittivity and dielectric loss of water between 0 °C and 100 °C, the arrows showing the effect of increasing temperature

The pure rotation spectrum of water vapor extends into the microwave region.

Liquid water has a broad absorption spectrum in the microwave region, which has been explained in terms of changes in the hydrogen bond network giving rise to a broad, featureless, microwave spectrum. The absorption (equivalent to dielectric loss) is used in microwave ovens to heat food that contains water molecules. A frequency of 2.45 GHz, wavelength 122 mm, is commonly used.

Radiocommunication at GHz frequencies is very difficult in fresh waters and even more so in salt waters.

Atmospheric effects

Synthetic stick absorption spectrum of a simple gas mixture corresponding to the Earth's atmosphere composition based on HITRAN data created using Hitran on the Web system. Green color - water vapor, WN – wavenumber (caution: lower wavelengths on the right, higher on the left). Water vapor concentration for this gas mixture is 0.4%.

Water vapor is a greenhouse gas in the Earth's atmosphere, responsible for 70% of the known absorption of incoming sunlight, particularly in the infrared region, and about 60% of the atmospheric absorption of thermal radiation by the Earth known as the greenhouse effect. It is also an important factor in multispectral imaging and hyperspectral imaging used in remote sensing because water vapor absorbs radiation differently in different spectral bands. Its effects are also an important consideration in infrared astronomy and radio astronomy in the microwave or millimeter wave bands. The South Pole Telescope was constructed in Antarctica in part because the elevation and low temperatures there mean there is very little water vapor in the atmosphere.

Similarly, carbon dioxide absorption bands occur around 1400, 1600 and 2000 nm, but its presence in the Earth's atmosphere accounts for just 26% of the greenhouse effect. Carbon dioxide gas absorbs energy in some small segments of the thermal infrared spectrum that water vapor misses. This extra absorption within the atmosphere causes the air to warm just a bit more and the warmer the atmosphere the greater its capacity to hold more water vapor. This extra water vapor absorption further enhances the Earth's greenhouse effect.

In the atmospheric window between approximately 8000 and 14000 nm, in the far-infrared spectrum, carbon dioxide and water absorption is weak. This window allows most of the thermal radiation in this band to be radiated out to space directly from the Earth's surface. This band is also used for remote sensing of the Earth from space, for example with thermal Infrared imaging.

As well as absorbing radiation, water vapour occasionally emits radiation in all directions, according to the Black Body Emission curve for its current temperature overlaid on the water absorption spectrum. Much of this energy will be recaptured by other water molecules, but at higher altitudes, radiation sent towards space is less likely to be recaptured, as there is less water available to recapture radiation of water-specific absorbing wavelengths. By the top of the troposphere, about 12 km above sea level, most water vapor condenses to liquid water or ice as it releases its heat of vapourization. Once changed state, liquid water and ice fall away to lower altitudes. This will be balanced by incoming water vapour rising via convection currents.

Liquid water and ice emit radiation at a higher rate than water vapour (see graph above). Water at the top of the troposphere, particularly in liquid and solid states, cools as it emits net photons to space. Neighboring gas molecules other than water (e.g. nitrogen) are cooled by passing their heat kinetically to the water. This is why temperatures at the top of the troposphere (known as the tropopause) are about -50 degrees Celsius.

Synaptic vesicle

From Wikipedia, the free encyclopedia
Synaptic vesicle
Neuron A (transmitting) to neuron B (receiving).
1Mitochondrion;
2. Synaptic vesicle with neurotransmitters;
3. Autoreceptor
4Synapse with neurotransmitter released (serotonin);
5. Postsynaptic receptors activated by neurotransmitter (induction of a postsynaptic potential);
6Calcium channel;
7Exocytosis of a vesicle;
8. Recaptured neurotransmitter.

In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impulses between neurons and are constantly recreated by the cell. The area in the axon that holds groups of vesicles is an axon terminal or "terminal bouton". Up to 130 vesicles can be released per bouton over a ten-minute period of stimulation at 0.2 Hz. In the visual cortex of the human brain, synaptic vesicles have an average diameter of 39.5 nanometers (nm) with a standard deviation of 5.1 nm.

Structure

Primary hippocampal neurons observed at 10 days in vitro by confocal microscopy. In both images neurons are stained with a somatodendritic marker, microtubule associated protein (red). In the right image, synaptic vesicles are stained in green (yellow where the green and red overlap). Scale bar = 25 μm.

Synaptic vesicles are relatively simple because only a limited number of proteins fit into a sphere of 40 nm diameter. Purified vesicles have a protein:phospholipid ratio of 1:3 with a lipid composition of 40% phosphatidylcholine, 32% phosphatidylethanolamine, 12% phosphatidylserine, 5% phosphatidylinositol, and 10% cholesterol.

Synaptic vesicles contain two classes of obligatory components: transport proteins involved in neurotransmitter uptake, and trafficking proteins that participate in synaptic vesicle exocytosis, endocytosis, and recycling.

  • Transport proteins are composed of proton pumps that generate electrochemical gradients, which allow for neurotransmitter uptake, and neurotransmitter transporters that regulate the actual uptake of neurotransmitters. The necessary proton gradient is created by V-ATPase, which breaks down ATP for energy. Vesicular transporters move neurotransmitters from the cells' cytoplasm into the synaptic vesicles. Vesicular glutamate transporters, for example, sequester glutamate into vesicles by this process.
  • Trafficking proteins are more complex. They include intrinsic membrane proteins, peripherally bound proteins, and proteins such as SNAREs. These proteins do not share a characteristic that would make them identifiable as synaptic vesicle proteins, and little is known about how these proteins are specifically deposited into synaptic vesicles. Many but not all of the known synaptic vesicle proteins interact with non-vesicular proteins and are linked to specific functions.

The stoichiometry for the movement of different neurotransmitters into a vesicle is given in the following table.

Neurotransmitter type(s) Inward movement Outward movement
norepinephrine, dopamine, histamine, serotonin and acetylcholine neurotransmitter+ 2 H+
GABA and glycine neurotransmitter 1 H+
glutamate neurotransmitter + Cl 1 H+

Recently, it has been discovered that synaptic vesicles also contain small RNA molecules, including transfer RNA fragments, Y RNA fragments and mirRNAs. This discovery is believed to have broad impact on studying chemical synapses.

Effects of neurotoxins

Some neurotoxins, such as batrachotoxin, are known to destroy synaptic vesicles. The tetanus toxin damages vesicle-associated membrane proteins (VAMP), a type of v-SNARE, while botulinum toxins damage t-SNARES and v-SNARES and thus inhibit synaptic transmission. A spider toxin called alpha-Latrotoxin binds to neurexins, damaging vesicles and causing massive release of neurotransmitters.

Vesicle pools

Vesicles in the nerve terminal are grouped into three pools: the readily releasable pool, the recycling pool, and the reserve pool. These pools are distinguished by their function and position in the nerve terminal. The readily releasable pool are docked to the cell membrane, making these the first group of vesicles to be released on stimulation. The readily releasable pool is small and is quickly exhausted. The recycling pool is proximate to the cell membrane, and tend to be cycled at moderate stimulation, so that the rate of vesicle release is the same as, or lower than, the rate of vesicle formation. This pool is larger than the readily releasable pool, but it takes longer to become mobilised. The reserve pool contains vesicles that are not released under normal conditions. This reserve pool can be quite large (~50%) in neurons grown on a glass substrate, but is very small or absent at mature synapses in intact brain tissue.

Physiology

Synaptic vesicle cycle

The events of the synaptic vesicle cycle can be divided into a few key steps:

1. Trafficking to the synapse

Synaptic vesicle components in the presynaptic neuron are initially trafficked to the synapse using members of the kinesin motor family. In C. elegans the major motor for synaptic vesicles is UNC-104. There is also evidence that other proteins such as UNC-16/Sunday Driver regulate the use of motors for transport of synaptic vesicles.

2. Transmitter loading

Once at the synapse, synaptic vesicles are loaded with a neurotransmitter. Loading of transmitter is an active process requiring a neurotransmitter transporter and a proton pump ATPase that provides an electrochemical gradient. These transporters are selective for different classes of transmitters. Characterization of unc-17 and unc-47, which encode the vesicular acetylcholine transporter and vesicular GABA transporter have been described to date.

3. Docking

The loaded synaptic vesicles must dock near release sites, however docking is a step of the cycle that we know little about. Many proteins on synaptic vesicles and at release sites have been identified, however none of the identified protein interactions between the vesicle proteins and release site proteins can account for the docking phase of the cycle. Mutants in rab-3 and munc-18 alter vesicle docking or vesicle organization at release sites, but they do not completely disrupt docking. SNARE proteins, now also appear to be involved in the docking step of the cycle.

4. Priming

After the synaptic vesicles initially dock, they must be primed before they can begin fusion. Priming prepares the synaptic vesicle so that they are able to fuse rapidly in response to a calcium influx. This priming step is thought to involve the formation of partially assembled SNARE complexes. The proteins Munc13, RIM, and RIM-BP participate in this event. Munc13 is thought to stimulate the change of the t-SNARE syntaxin from a closed conformation to an open conformation, which stimulates the assembly of v-SNARE /t-SNARE complexes. RIM also appears to regulate priming, but is not essential for the step.

5. Fusion

Primed vesicles fuse very quickly with the cell membrane in response to calcium elevations in the cytoplasm. This releases the stored neurotransmitter into the synaptic cleft. The fusion event is thought to be mediated directly by the SNAREs and driven by the energy provided from SNARE assembly. The calcium-sensing trigger for this event is the calcium-binding synaptic vesicle protein synaptotagmin. The ability of SNAREs to mediate fusion in a calcium-dependent manner recently has been reconstituted in vitro. Consistent with SNAREs being essential for the fusion process, v-SNARE and t-SNARE mutants of C. elegans are lethal. Similarly, mutants in Drosophila and knockouts in mice indicate that these SNARES play a critical role in synaptic exocytosis.

6. Endocytosis

This accounts for the re-uptake of synaptic vesicles in the full contact fusion model. However, other studies have been compiling evidence suggesting that this type of fusion and endocytosis is not always the case.

Vesicle recycling

Two leading mechanisms of action are thought to be responsible for synaptic vesicle recycling: full collapse fusion and the "kiss-and-run" method. Both mechanisms begin with the formation of the synaptic pore that releases transmitter to the extracellular space. After release of the neurotransmitter, the pore can either dilate fully so that the vesicle collapses completely into the synaptic membrane, or it can close rapidly and pinch off the membrane to generate kiss-and-run fusion.

Full collapse fusion

It has been shown that periods of intense stimulation at neural synapses deplete vesicle count as well as increase cellular capacitance and surface area.[19] This indicates that after synaptic vesicles release their neurotransmitter payload, they merge with and become part of, the cellular membrane. After tagging synaptic vesicles with HRP (horseradish peroxidase), Heuser and Reese found that portions of the cellular membrane at the frog neuromuscular junction were taken up by the cell and converted back into synaptic vesicles. Studies suggest that the entire cycle of exocytosis, retrieval, and reformation of the synaptic vesicles requires less than 1 minute.

In full collapse fusion, the synaptic vesicle merges and becomes incorporated into the cell membrane. The formation of the new membrane is a protein mediated process and can only occur under certain conditions. After an action potential, Ca2+ floods to the presynaptic membrane. Ca2+ binds to specific proteins in the cytoplasm, one of which is synaptotagmin, which in turn trigger the complete fusion of the synaptic vesicle with the cellular membrane. This complete fusion of the pore is assisted by SNARE proteins. This large family of proteins mediate docking of synaptic vesicles in an ATP-dependent manner. With the help of synaptobrevin on the synaptic vesicle, the t-SNARE complex on the membrane, made up of syntaxin and SNAP-25, can dock, prime, and fuse the synaptic vesicle into the membrane.

The mechanism behind full collapse fusion has been shown to be the target of the botulinum and tetanus toxins. The botulinum toxin has protease activity which degrades the SNAP-25 protein. The SNAP-25 protein is required for vesicle fusion that releases neurotransmitters, in particular acetylcholine. Botulinum toxin essentially cleaves these SNARE proteins, and in doing so, prevents synaptic vesicles from fusing with the cellular synaptic membrane and releasing their neurotransmitters. Tetanus toxin follows a similar pathway, but instead attacks the protein synaptobrevin on the synaptic vesicle. In turn, these neurotoxins prevent synaptic vesicles from completing full collapse fusion. Without this mechanism in effect, muscle spasms, paralysis, and death can occur.

"Kiss-and-run"

The second mechanism by which synaptic vesicles are recycled is known as kiss-and-run fusion. In this case, the synaptic vesicle "kisses" the cellular membrane, opening a small pore for its neurotransmitter payload to be released through, then closes the pore and is recycled back into the cell. The kiss-and-run mechanism has been a hotly debated topic. Its effects have been observed and recorded; however the reason behind its use as opposed to full collapse fusion is still being explored. It has been speculated that kiss-and-run is often employed to conserve scarce vesicular resources as well as being utilized to respond to high-frequency inputs. Experiments have shown that kiss-and-run events do occur. First observed by Katz and del Castillo, it was later observed that the kiss-and-run mechanism was different from full collapse fusion in that cellular capacitance did not increase in kiss-and-run events. This reinforces the idea of a kiss-and-run fashion, the synaptic vesicle releases its payload and then separates from the membrane.

Modulation

Cells thus appear to have at least two mechanisms to follow for membrane recycling. Under certain conditions, cells can switch from one mechanism to the other. Slow, conventional, full collapse fusion predominates the synaptic membrane when Ca2+ levels are low, and the fast kiss-and-run mechanism is followed when Ca2+ levels are high.

Ales et al. showed that raised concentrations of extracellular calcium ions shift the preferred mode of recycling and synaptic vesicle release to the kiss-and-run mechanism in a calcium-concentration-dependent manner. It has been proposed that during secretion of neurotransmitters at synapses, the mode of exocytosis is modulated by calcium to attain optimal conditions for coupled exocytosis and endocytosis according to synaptic activity.

Experimental evidence suggests that kiss-and-run is the dominant mode of synaptic release at the beginning of stimulus trains. In this context, kiss-and-run reflects a high vesicle release probability. The incidence of kiss-and-run is also increased by rapid firing and stimulation of the neuron, suggesting that the kinetics of this type of release is faster than other forms of vesicle release.

History

With the advent of the electron microscope in the early 1950s, nerve endings were found to contain a large number of electron-lucent (transparent to electrons) vesicles. The term synaptic vesicle was first introduced by De Robertis and Bennett in 1954. This was shortly after transmitter release at the frog neuromuscular junction was found to induce postsynaptic miniature end-plate potentials that were ascribed to the release of discrete packages of neurotransmitter (quanta) from the presynaptic nerve terminal. It was thus reasonable to hypothesize that the transmitter substance (acetylcholine) was contained in such vesicles, which by a secretory mechanism would release their contents into the synaptic cleft (vesicle hypothesis).

The missing link was the demonstration that the neurotransmitter acetylcholine is actually contained in synaptic vesicles. About ten years later, the application of subcellular fractionation techniques to brain tissue permitted the isolation first of nerve endings (synaptosomes), and subsequently of synaptic vesicles from mammalian brain. Two competing laboratories were involved in this work, that of Victor P. Whittaker at the Institute of Animal Physiology, Agricultural Research Council, Babraham, Cambridge, UK and that of Eduardo de Robertis at the Instituto de Anatomía General y Embriología, Facultad de Medicina, Universidad de Buenos Aires, Argentina. Whittaker's work demonstrating acetylcholine in vesicle fractions from guinea-pig brain was first published in abstract form in 1960 and then in more detail in 1963 and 1964, and the paper of the de Robertis group demonstrating an enrichment of bound acetylcholine in synaptic vesicle fractions from rat brain appeared in 1963. Both groups released synaptic vesicles from isolated synaptosomes by osmotic shock. The content of acetylcholine in a vesicle was originally estimated to be 1000–2000 molecules. Subsequent work identified the vesicular localization of other neurotransmitters, such as amino acids, catecholamines, serotonin, and ATP. Later, synaptic vesicles could also be isolated from other tissues such as the superior cervical ganglion, or the octopus brain. The isolation of highly purified fractions of cholinergic synaptic vesicles from the ray Torpedo electric organ was an important step forward in the study of vesicle biochemistry and function.

Hormesis

From Wikipedia, the free encyclopedia
Hormesis is a biological phenomenon where a low dose of a potentially harmful stressor, such as a toxin or environmental factor, stimulates a beneficial adaptive response in an organism. In other words, small doses of stressors that would be damaging in larger amounts can actually enhance resilience, stimulate growth, or improve health at lower levels. 

Hormesis is a two-phased dose-response relationship to an environmental agent whereby low-dose amounts have a beneficial effect and high-dose amounts are either inhibitory to function or toxic. Within the hormetic zone, the biological response to low-dose amounts of some stressors is generally favorable. An example is the breathing of oxygen, which is required in low amounts (in air) via respiration in living animals, but can be toxic in high amounts, even in a managed clinical setting.[5]

In toxicology, hormesis is a dose-response phenomenon to xenobiotics or other stressors. In physiology and nutrition, hormesis has regions extending from low-dose deficiencies to homeostasis, and potential toxicity at high levels. Physiological concentrations of an agent above or below homeostasis may adversely affect an organism, where the hormetic zone is a region of homeostasis of balanced nutrition. In pharmacology, the hormetic zone is similar to the therapeutic window.

In the context of toxicology, the hormesis model of dose response is vigorously debated. The biochemical mechanisms by which hormesis works (particularly in applied cases pertaining to behavior and toxins) remain under early laboratory research and are not well understood.

Etymology

The term "hormesis" derives from Greek hórmēsis for "rapid motion, eagerness", itself from ancient Greek hormáein to excite. The same Greek root provides the word hormone. The term "hormetics" is used for the study of hormesis. The word hormesis was first reported in English in 1943.

History

A form of hormesis famous in antiquity was Mithridatism, the practice whereby Mithridates VI of Pontus supposedly made himself immune to a variety of toxins by regular exposure to small doses. Mithridate and theriac, polypharmaceutical electuaries claiming descent from his formula and initially including flesh from poisonous animals, were consumed for centuries by emperors, kings, and queens as protection against poison and ill health. In the Renaissance, the Swiss doctor Paracelsus said, "All things are poison, and nothing is without poison; the dosage alone makes it so a thing is not a poison."

German pharmacologist Hugo Schulz first described such a phenomenon in 1888 following his own observations that the growth of yeast could be stimulated by small doses of poisons. This was coupled with the work of German physician Rudolph Arndt, who studied animals given low doses of drugs, eventually giving rise to the Arndt–Schulz rule. Arndt's advocacy of homeopathy contributed to the rule's diminished credibility in the 1920s and 1930s. The term "hormesis" was coined and used for the first time in a scientific paper by Chester M. Southam and J. Ehrlich in 1943 in the journal Phytopathology, volume 33, pp. 517–541.

In 2004, Edward Calabrese evaluated the concept of hormesis. Over 600 substances show a U-shaped dose–response relationship; Calabrese and Baldwin wrote: "One percent (195 out of 20,285) of the published articles contained 668 dose-response relationships that met the entry criteria [of a U-shaped response indicative of hormesis]"

Examples

Carbon monoxide

Carbon monoxide is produced in small quantities across phylogenetic kingdoms, where it has essential roles as a neurotransmitter (subcategorized as a gasotransmitter). The majority of endogenous carbon monoxide is produced by heme oxygenase; the loss of heme oxygenase and subsequent loss of carbon monoxide signaling has catastrophic implications for an organism. In addition to physiological roles, small amounts of carbon monoxide can be inhaled or administered in the form of carbon monoxide-releasing molecules as a therapeutic agent.

Regarding the hormetic curve graph:

  • Deficiency zone: an absence of carbon monoxide signaling has toxic implications
  • Hormetic zone / region of homeostasis: small amount of carbon monoxide has a positive effect:
    • essential as a neurotransmitter
    • beneficial as a pharmaceutical
  • Toxicity zone: excessive exposure results in carbon monoxide poisoning

Oxygen

Many organisms maintain a hormesis relationship with oxygen, which follows a hormetic curve similar to carbon monoxide:

Physical exercise

Physical exercise intensity may exhibit a hormetic curve. Individuals with low levels of physical activity are at risk for some diseases; however, individuals engaged in moderate, regular exercise may experience less disease risk.

Mitohormesis

The possible effect of small amounts of oxidative stress is under laboratory research. Mitochondria are sometimes described as "cellular power plants" because they generate most of the cell's supply of adenosine triphosphate (ATP), a source of chemical energy. Reactive oxygen species (ROS) have been discarded as unwanted byproducts of oxidative phosphorylation in mitochondria by the proponents of the free-radical theory of aging promoted by Denham Harman. The free-radical theory states that compounds inactivating ROS would lead to a reduction of oxidative stress and thereby produce an increase in lifespan, although this theory holds only in basic research. However, in over 19 clinical trials, "nutritional and genetic interventions to boost antioxidants have generally failed to increase life span."

Whether this concept applies to humans remains to be shown, although a 2007 epidemiological study supports the possibility of mitohormesis, indicating that supplementation with beta-carotene, vitamin A or vitamin E may increase disease prevalence in humans. More recent studies have reported that rapamycin exhibits hormesis, where low doses can enhance cellular longevity by partially inhibiting mTOR, unlike higher doses that are toxic due to complete inhibition. This partial inhibition of mTOR (by the hormetic effect of low-dose rapamycin) modulates mTOR–mitochondria cross-talk, thereby demonstrating mitohormesis; and consequently reducing oxidative damage, metabolic dysregulation, and mitochondrial dysfunction, thus slowing cellular aging.

Alcohol

Alcohol is believed to be hormetic in preventing heart disease and stroke, although the benefits of light drinking may have been exaggerated. The gut microbiome of a typical healthy individual naturally ferments small amounts of ethanol, and in rare cases dysbiosis leads to auto-brewery syndrome, therefore whether benefits of alcohol are derived from the behavior of consuming alcoholic drinks or as a homeostasis factor in normal physiology via metabolites from commensal microbiota remains unclear.

In 2012, researchers at UCLA found that tiny amounts (1 mM, or 0.005%) of ethanol doubled the lifespan of Caenorhabditis elegans, a roundworm frequently used in biological studies, that were starved of other nutrients. Higher doses of 0.4% provided no longevity benefit. However, worms exposed to 0.005% did not develop normally (their development was arrested). The authors argue that the worms were using ethanol as an alternative energy source in the absence of other nutrition, or had initiated a stress response. They did not test the effect of ethanol on worms fed a normal diet.

Methylmercury

In 2010, a paper in the journal Environmental Toxicology & Chemistry showed that low doses of methylmercury, a potent neurotoxic pollutant, improved the hatching rate of mallard eggs. The author of the study, Gary Heinz, who led the study for the U.S. Geological Survey at the Patuxent Wildlife Research Center in Beltsville, stated that other explanations are possible. For instance, the flock he studied might have harbored some low, subclinical infection and that mercury, well known to be antimicrobial, might have killed the infection that otherwise hurt reproduction in the untreated birds.

Radiation

Ionizing radiation

Hormesis has been observed in a number of cases in humans and animals exposed to chronic low doses of ionizing radiation. A-bomb survivors who received high doses exhibited shortened lifespan and increased cancer mortality, but those who received low doses had lower cancer mortality than the Japanese average.

In Taiwan, recycled radiocontaminated steel was inadvertently used in the construction of over 100 apartment buildings, causing the long-term exposure of 10,000 people. The average dose rate was 50 mSv/year and a subset of the population (1,000 people) received a total dose over 4,000 mSv over ten years. In the widely used linear no-threshold model used by regulatory bodies, the expected cancer deaths in this population would have been 302 with 70 caused by the extra ionizing radiation, with the remainder caused by natural background radiation. The observed cancer rate, though, was quite low at 7 cancer deaths when 232 would be predicted by the LNT model had they not been exposed to the radiation from the building materials. Ionizing radiation hormesis appears to be at work.

Chemical and ionizing radiation combined

No experiment can be performed in perfect isolation. Thick lead shielding around a chemical dose experiment to rule out the effects of ionizing radiation is built and rigorously controlled for in the laboratory, and certainly not the field. Likewise the same applies for ionizing radiation studies. Ionizing radiation is released when an unstable particle releases radiation, creating two new substances and energy in the form of an electromagnetic wave. The resulting materials are then free to interact with any environmental elements, and the energy released can also be used as a catalyst in further ionizing radiation interactions.

The resulting confusion in the low-dose exposure field (radiation and chemical) arise from lack of consideration of this concept as described by Mothersill and Seymory.

Nucleotide excision repair

Veterans of the Gulf War (1991) who suffered from the persistent symptoms of Gulf War Illness (GWI) were likely exposed to stresses from toxic chemicals and/or radiation. The DNA damaging (genotoxic) effects of such exposures can be, at least partially, overcome by the DNA nucleotide excision repair (NER) pathway. Lymphocytes from GWI veterans exhibited a significantly elevated level of NER repair. It was suggested that this increased NER capability in exposed veterans was likely a hormetic response, that is, an induced protective response resulting from battlefield exposure.

Applications

Effects in aging

One of the areas where the concept of hormesis has been explored extensively with respect to its applicability is aging. Since the basic survival capacity of any biological system depends on its homeostatic ability, biogerontologists proposed that exposing cells and organisms to mild stress should result in the adaptive or hormetic response with various biological benefits. This idea has preliminary evidence showing that repetitive mild stress exposure may have anti-aging effects in laboratory models. Some mild stresses used for such studies on the application of hormesis in aging research and interventions are heat shock, irradiation, prooxidants, hypergravity, and food restriction. The example of heat shock refers to the proteostasis network. The addition of a bit of stress on the cell can lead to activation of signaling pathways and unfolded protein response pathways that upregulate chaperones, downregulate translation, and other processes that allow the cell to respond to stress. In this way, the activation of these pathways prepares the cell for other stressors since the pathways are already activated. However, too much stress or prolonged stress can actually damage the cell and lead to cell death on occasion. Such compounds that may modulate stress responses in cells have been termed "hormetins".

Controversy

Hormesis suggests dangerous substances have benefits. Concerns exist that the concept has been leveraged by lobbyists to weaken environmental regulations of some well-known toxic substances in the US.

Radiation controversy

The hypothesis of hormesis has generated the most controversy when applied to ionizing radiation. This hypothesis is called radiation hormesis. For policy-making purposes, the commonly accepted model of dose response in radiobiology is the linear no-threshold model (LNT), which assumes a strictly linear dependence between the risk of radiation-induced adverse health effects and radiation dose, implying that there is no safe dose of radiation for humans.

Nonetheless, many countries including the Czech Republic, Germany, Austria, Poland, and the United States have radon therapy centers whose whole primary operating principle is the assumption of radiation hormesis, or beneficial impact of small doses of radiation on human health. Countries such as Germany and Austria at the same time have imposed very strict antinuclear regulations, which have been described as radiophobic inconsistency.

The United States National Research Council (part of the National Academy of Sciences), the National Council on Radiation Protection and Measurements (a body commissioned by the United States Congress) and the United Nations Scientific Committee on the Effects of Ionizing Radiation all agree that radiation hormesis is not clearly shown, nor clearly the rule for radiation doses.

A United States–based National Council on Radiation Protection and Measurements stated in 2001 that evidence for radiation hormesis is insufficient and radiation protection authorities should continue to apply the LNT model for purposes of risk estimation.

A 2005 report commissioned by the French National Academy concluded that evidence for hormesis occurring at low doses is sufficient and LNT should be reconsidered as the methodology used to estimate risks from low-level sources of radiation, such as deep geological repositories for nuclear waste.

Policy consequences

Hormesis remains largely unknown to the public, requiring a policy change for a possible toxin to consider exposure risk of small doses.

Vedanā

From Wikipedia, the free encyclopedia

Vedanā (Pāli and Sanskrit: वेदना) is an ancient term traditionally translated as either "feeling" or "sensation." In general, vedanā refers to the pleasant, unpleasant and neutral sensations that occur when our internal sense organs come into contact with external sense objects and the associated consciousness. Vedanā is identified as valence or "hedonic tone" in psychology.

Vedanā is identified within the Buddhist teaching as follows:

In the context of the twelve links, craving for and attachment to vedanā leads to suffering; reciprocally, concentrated awareness and clear comprehension of vedanā can lead to Enlightenment and the extinction of the causes of suffering.

Definitions

Theravada

Bhikkhu Bodhi states:

Feeling is the mental factor which feels the object. It is the affective mode in which the object is experienced. The Pali word vedanā does not signify emotion (which appears to be a complex phenomenon involving a variety of concomitant mental factors), but the bare affective quality of an experience, which may be either pleasant, painful or neutral....

Nina van Gorkom states:

When we study the Abhidhamma we learn that 'vedanā' is not the same as what we mean by feeling in conventional language. Feeling is nāma, it experiences something. Feeling never arises alone; it accompanies citta and other cetasikas and it is conditioned by them. Thus, feeling is a conditioned nāma. Citta does not feel, it cognizes the object and vedanā feels...
All feelings have the function of experiencing the taste, the flavour of an object (Atthasālinī, I, Part IV, Chapter I, 109). The Atthasālinī uses a simile in order to illustrate that feeling experiences the taste of an object and that citta and the other cetasikas which arise together with feeling experience the taste only partially. A cook who has prepared a meal for the king merely tests the food and then offers it to the king who enjoys the taste of it:
...and the king, being lord, expert, and master, eats whatever he likes, even so the mere testing of the food by the cook is like the partial enjoyment of the object by the remaining dhammas (the citta and the other cetasikas), and as the cook tests a portion of the food, so the remaining dhammas enjoy a portion of the object, and as the king, being lord, expert and master, eats the meal according to his pleasure, so feeling, being lord, expert and master, enjoys the taste of the object, and therefore it is said that enjoyment or experience is its function.
Thus, all feelings have in common that they experience the 'taste' of an object. Citta and the other accompanying cetasikas also experience the object, but feeling experiences it in its own characteristic way.

Mahayana

The Abhidharma-samuccaya states:

What is the absolutely specific characteristic of vedana? It is to experience. That is to say, in any experience, what we experience is the individual maturation of any positive or negative action as its final result.

Mipham Rinpoche states:

Sensations are defined as impressions.
The aggregate of sensations can be divided into three: pleasant, painful, and neutral. Alternatively, there are five: pleasure and mental pleasure, pain and mental pain, and neutral sensation.
In terms of support, there are six sensations resulting from contact...

Alexander Berzin describes this mental factors as feeling (tshor-ba, Skt. vedanā) some level of happiness. He states:

When we hear the word “feeling” in a Buddhist context, it’s only referring to this: feeling some level of happy or unhappy, somewhere on the spectrum. So, on the basis of pleasant contacting awareness—it comes easily to mind—we feel happy. Happiness is: we would like it to continue. And, on the basis of unpleasant contacting awareness—it doesn’t come easily to the mind, we basically want to get rid of it—we feel unhappiness. “Unhappiness” is the same word as “suffering” (mi-bde-ba, Skt. duhkha). Unhappiness is: I don’t want to continue this; I want to be parted from this.
And neutral contacting awareness. We feel neutral about it—neither want to continue it nor to discontinue it...

Relation to "emotions"

Vedanā is the distinct valence or "hedonic tone" of emotional psychology, neurologically identified and isolated.

Contemporary teachers Bhikkhu Bodhi and Chögyam Trungpa Rinpoche clarify the relationship between vedanā (often translated as "feelings") and Western notions of "emotions."

Bhikkhu Bodhi writes:

"The Pali word vedanā does not signify emotion (which appears to be a complex phenomenon involving a variety of concomitant mental factors), but the bare affective quality of an experience, which may be either pleasant, painful or neutral."

Chögyam Trungpa Rinpoche writes:

"In case [i.e. within the Buddhist teachings] 'feeling' is not quite our ordinary notion of feeling. It is not the feeling we take so seriously as, for instance, when we say, 'He hurt my feelings.' This kind of feeling that we take so seriously belongs to the fourth and fifth skandhas of concept and consciousness."

Attributes

In general, the Pali canon describes vedanā in terms of three "modes" and six "classes." Some discourses discuss alternate enumerations including up to 108 kinds.

Three modes, six classes

Figure 1: The Pali Canon's Six Sextets:
 
  sense bases  
 
  f
e
e
l
i
n
g
   
 
  c
r
a
v
i
n
g
   
  "internal"
sense
organs
<–> "external"
sense
objects
 
 
contact
   
consciousness
 
 
 
  1. The six internal sense bases are the eye, ear,
    nose, tongue, body & mind.
  2. The six external sense bases are visible forms,
    sound, odor, flavors, touch & mental objects.
  3. Sense-specific consciousness arises dependent
    on an internal & an external sense base.
  4. Contact is the meeting of an internal sense
    base, external sense base & consciousness.
  5. Feeling is dependent on contact.
  6. Craving is dependent on feeling.
 Source: MN 148 (Thanissaro, 1998)    diagram details

Throughout canonical discourses (Sutta Pitaka), the Buddha teaches that there are three modes of vedanā:

  • pleasant (sukhā)
  • unpleasant (dukkhā)
  • neither pleasant nor unpleasant (adukkham-asukhā, "ambivalent", sometimes referred to as "neutral" in translation)

Elsewhere in the Pali canon it is stated that there are six classes of vedanā, corresponding to sensations arising from contact (Skt: sparśa; Pali: phassa) between an internal sense organ (āyatana; that is, the eye, ear, nose, tongue, body or mind), an external sense object and the associated consciousness (Skt.: vijnana; Pali: viññāna). (See Figure 1.) In other words:

  • feeling arising from the contact of eye, visible form and eye-consciousness
  • feeling arising from the contact of ear, sound and ear-consciousness
  • feeling arising from the contact of nose, smell and nose-consciousness
  • feeling arising from the contact of tongue, taste and tongue-consciousness
  • feeling arising from the contact of body, touch and body-consciousness
  • feeling arising from the contact of mind (mano), thoughts (dhamma) and mind-consciousness

Two, three, five, six, 18, 36, 108 kinds

In a few discourses, a multitude of kinds of vedana are alluded to ranging from two to 108, as follows:

  • two kinds of feeling: physical and mental
  • three kinds: pleasant, painful, neutral
  • five kinds: physical pleasant, physical painful, mental pleasant, mental painful, equanimous
  • six kinds: one for each sense faculty (eye, ear, nose, tongue, body, mind)
  • 18 kinds: explorations of the aforementioned three mental kinds of feelings (mental pleasant, mental painful, equanimous) each in terms of each of the aforementioned six sense faculties
  • 36 kinds: the aforementioned 18 kinds of feeling for the householder and the aforementioned 18 kinds for the renunciate
  • 108 kinds: the aforementioned 36 kinds for the past, for the present and for the future

In the wider Pali literature, of the above enumerations, the post-canonical Visuddhimagga highlights the five types of vedanā: physical pleasure (sukha); physical displeasure (dukkha); mental happiness (somanassa); mental unhappiness (domanassa); and, equanimity (upekkhā).

Canonical frameworks

 Figure 2:
The Five Aggregates (pañca khandha)

according to the Pali Canon.
 
 
form (rūpa)
  4 elements
(mahābhūta)
 
 
   
    contact
(phassa)
    
 
consciousness
(viññāna)

 
 
 
 
 


 
 
 
  mental factors (cetasika)  
 
feeling
(vedanā)

 
 
 
perception
(sañña)

 
 
 
formation
(saṅkhāra)

 
 
 
 
 Source: MN 109 (Thanissaro, 2001)  |  diagram details
Uses of samādhi (based on AN IV.41)
object of concentration development
four jhānas pleasant abiding (sukha-vihārāya) in this life (diţţhadhamma)
perception (sañña) of light (āloka) knowing (ñāṇa) and seeing (dassana)
arising, passing, fading of feelings (vedanā), perceptions (saññā) and thoughts (vitakkā) mindfulness (sati) and clear comprehension (sampajaññā)
arising and fading of the five aggregates of clinging (pañc'upādāna-khandha) extinction (khaya) of the taints (āsava) [Arahantship]

Vedanā is a pivotal phenomenon in the following frequently identified frameworks of the Pali canon:

  • the "five aggregates"
  • the twelve conditions of "dependent origination"
  • the four "foundations of mindfulness"

Mental aggregate

Vedanā is one of the five aggregates (Skt.: skandha; Pali: khandha) of clinging (Skt., Pali: upādāna; see Figure 2 to the right). In the canon, as indicated above, feeling arises from the contact of a sense organ, sense object and consciousness.

Central condition

In the Chain of Conditioned Arising (Skt: pratītyasamutpāda; Pali: paṭiccasamuppāda), the Buddha explains that:

  • vedanā arises with contact (phassa) as its condition
  • vedanā acts as a condition for craving (Pali: taṇhā; Skt.: tṛṣṇā).

In the post-canonical 5th-century Visuddhimagga, feeling (vedana) is identified as simultaneously and inseparably arising from consciousness (viññāṇa) and the mind-and-body (nāmarūpa). On the other hand, while this text identifies feeling as decisive to craving and its mental sequelae leading to suffering, the conditional relationship between feeling and craving is not identified as simultaneous nor as being karmically necessary.

Mindfulness base

Throughout the canon, there are references to the four "foundations of mindfulness" (satipaṭṭhāna): the body (kāya), feelings (vedanā), mind states (citta) and mental experiences (dhammā). These four foundations are recognized among the seven sets of qualities conducive to enlightenment (bodhipakkhiyādhammā). The use of vedanā and the other satipaṭṭhāna in Buddhist meditation practices can be found in the Satipaṭṭhāna Sutta and the Ānāpānasati Sutta.

Wisdom practices

Each mode of vedanā is accompanied by its corresponding underlying tendency or obsession (anusaya). The underlying tendency for pleasant vedanā is the tendency toward lust, for unpleasant, the tendency toward aversion, and for neither pleasant nor unpleasant, the tendency toward ignorance.

In the Canon it is stated that meditating with concentration (samādhi) on vedanā can lead to deep mindfulness (sati) and clear comprehension (sampajañña) (see Table to the right). With this development, one can experience directly within oneself the reality of impermanence (anicca) and the nature of attachment (upādāna). This in turn can ultimately lead to liberation of the mind (nibbāna).

Alternate translations

Alternate translations for the term vedana are:

  • Feeling (Nina van Gorkom, Bhikkhu Bodhi, Alexander Berzin)
  • Feeling some level of happiness (Alexander Berzin)
  • Feeling-tone (Herbert Guenther)
  • Sensation (Erik Kunsang)

Bias

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Bias   Interp...