From Wikipedia, the free encyclopedia
Pathological science is an area of research where "people are tricked into false results ... by subjective effects, wishful thinking or threshold interactions".[1][2] The term was first[3] used by Irving Langmuir, Nobel Prize-winning chemist, during a 1953 colloquium at the Knolls Research Laboratory. Langmuir said a pathological science is an area of research that simply will not "go away"—long after it was given up on as "false" by the majority of scientists in the field. He called pathological science "the science of things that aren't so".[4][full citation needed] [5]
Bart Simon lists it among practices pretending to be science: "categories ... such as ... pseudoscience, amateur science, deviant or fraudulent science, bad science, junk science, and popular science ... pathological science, cargo-cult science, and voodoo science".[6] Examples of pathological science may include, Martian canals, N-rays, polywater, and cold fusion. The theories and conclusions behind all of these examples are currently rejected or disregarded by the majority of scientists.
Definition
Pathological science, as defined by Langmuir, is a psychological process in which a scientist, originally conforming to the scientific method, unconsciously veers from that method, and begins a pathological process of wishful data interpretation (see the Observer-expectancy effect, and cognitive bias). Some characteristics of pathological science are:
- The maximum effect that is observed is produced by a causative agent of barely detectable intensity, and the magnitude of the effect is substantially independent of the intensity of the cause.
- The effect is of a magnitude that remains close to the limit of detectability, or many measurements are necessary because of the very low statistical significance of the results.
- There are claims of great accuracy.
- Fantastic theories contrary to experience are suggested.
- Criticisms are met by ad hoc excuses.
- The ratio of supporters to critics rises and then falls gradually to oblivion.
Langmuir's examples
N-rays
Langmuir discussed the issue of N-rays as an example of pathological science. It is still considered a traditional case of pathological science.[7]In 1903, René-Prosper Blondlot was working on X-rays (as were many physicists of the era) and noticed a new visible radiation that could penetrate aluminium. He devised experiments in which a barely visible object was illuminated by these N-rays, and thus became "more visible". Blondlot claimed that N-rays were causing a small visual reaction, too small to be seen under normal illumination, but just visible when most "normal" light sources were removed and the target was just barely visible to begin with.
N-rays became the topic of some debate within the science community. After a time, physicist Robert W. Wood decided to visit Blondlot's lab, which had moved on to the physical characterization of N-rays. An experiment passed the rays from a 2 mm slit through an aluminum prism, from which he was measuring the index of refraction to a precision that required measurements accurate to within 0.01 mm. Wood asked how it was possible that he could measure something to 0.01 mm from a 2 mm source, a physical impossibility in the propagation of any kind of wave. Blondlot replied, "That's one of the fascinating things about the N-rays. They don't follow the ordinary laws of science that you ordinarily think of." Wood then asked to see the experiments being run as usual, which took place in a room required to be very dark so the target was barely visible. Blondlot repeated his most recent experiments and got the same results—despite the fact that Wood had reached over and covertly sabotaged the N-ray apparatus by removing the prism.
Other examples
Langmuir offered additional examples of what he regarded as pathological science in his original speech:[8]- The Davis–Barnes effect (1929) (after Professor Bergen Davis from Columbia University)
- Mitogenetic rays (1923) (Alexander Gurwitsch and others)[9]
- The Allison effect (1927) (after Fred Allison)[10][11]
- Extrasensory perception (1934), where Rhine consciously discarded contrary test results because he felt they couldn't be correct.
- Flying saucers and UFOs in the late 1940s and early 1950s.
Later examples
A 1985 version of Langmuir's speech offered more examples, although at least one of these (polywater) occurred entirely after Langmuir's death in 1957:- Water dowsing
- Martian canals (Observed in late 19th century and early 20th century, they turned out to be optical illusions.)[12]
- Certain reported photomechanical and electromechanical effects[which?]
- Polywater
- Biological effects of magnetic fields (see magnetobiology and magnet therapy) except magnetoception