Two models of a generic pentaquark
A five-quark "bag"
A "meson-baryon molecule"
A q indicates a quark and a q an antiquark. Gluons (wavy lines) mediate strong interactions between quarks. Red, green, and blue colour charges must each be present, while the remaining quark and antiquark must share a colour and its anticolour, in this example blue and antiblue (shown as yellow).

A pentaquark is a human-made subatomic particle, consisting of four quarks and one antiquark bound together; they are not known to occur naturally, or exist outside of experiments specifically carried out to create them.

As quarks have a baryon number of ++1/3, and antiquarks of +1/3, the pentaquark would have a total baryon number of 1, and thus would be a baryon. Further, because it has five quarks instead of the usual three found in regular baryons (a.k.a. 'triquarks'), it is classified as an exotic baryon. The name pentaquark was coined by Claude Gignoux et al. (1987) and Harry J. Lipkin in 1987; however, the possibility of five-quark particles was identified as early as 1964 when Murray Gell-Mann first postulated the existence of quarks. Although predicted for decades, pentaquarks proved surprisingly difficult to discover and some physicists were beginning to suspect that an unknown law of nature prevented their production.

The first claim of pentaquark discovery was recorded at LEPS in Japan in 2003, and several experiments in the mid-2000s also reported discoveries of other pentaquark states. However, other researchers were not able to replicate the LEPS results, and the other pentaquark discoveries were not accepted because of poor data and statistical analysis. On 13 July 2015, the LHCb collaboration at CERN reported results consistent with pentaquark states in the decay of bottom Lambda baryons (Λ0
b
). On 26 March 2019, the LHCb collaboration announced the discovery of a new pentaquark that had not been previously observed. On 5 July 2022, the LHCb collaboration announced the discovery of the PΛ
ψs
(4338)0
pentaquark.

Outside of particle research laboratories, pentaquarks might be produced naturally in the processes that result in the formation of neutron stars.

Background