Search This Blog

Wednesday, September 15, 2021

Cardiovascular disease

From Wikipedia, the free encyclopedia
 
Cardiovascular disease
Cardiac amyloidosis very high mag movat.jpg
Micrograph of a heart with fibrosis (yellow) and amyloidosis (brown). Movat's stain.
SpecialtyCardiology
SymptomsChest pain, shortness of breath
ComplicationsCardiac arrest
Usual onsetOlder adults
TypesCoronary artery diseases, stroke, heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy
PreventionHealthy eating, exercise, avoiding tobacco smoke, limited alcohol intake
TreatmentTreating high blood pressure, high blood lipids, diabetes
Deaths17.9 million / 32% (2015)

Cardiovascular disease (CVD) is a class of diseases that involve the heart or blood vessels. CVD includes coronary artery diseases (CAD) such as angina and myocardial infarction (commonly known as a heart attack). Other CVDs include stroke, heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy, abnormal heart rhythms, congenital heart disease, valvular heart disease, carditis, aortic aneurysms, peripheral artery disease, thromboembolic disease, and venous thrombosis.

The underlying mechanisms vary depending on the disease. Coronary artery disease, stroke, and peripheral artery disease involve atherosclerosis. This may be caused by high blood pressure, smoking, diabetes mellitus, lack of exercise, obesity, high blood cholesterol, poor diet, excessive alcohol consumption, and poor sleep, among others. High blood pressure is estimated to account for approximately 13% of CVD deaths, while tobacco accounts for 9%, diabetes 6%, lack of exercise 6% and obesity 5%. Rheumatic heart disease may follow untreated strep throat.

It is estimated that up to 90% of CVD may be preventable. Prevention of CVD involves improving risk factors through: healthy eating, exercise, avoidance of tobacco smoke and limiting alcohol intake. Treating risk factors, such as high blood pressure, blood lipids and diabetes is also beneficial. Treating people who have strep throat with antibiotics can decrease the risk of rheumatic heart disease. The use of aspirin in people, who are otherwise healthy, is of unclear benefit.

Cardiovascular diseases are the leading cause of death worldwide except Africa. Together CVD resulted in 17.9 million deaths (32.1%) in 2015, up from 12.3 million (25.8%) in 1990. Deaths, at a given age, from CVD are more common and have been increasing in much of the developing world, while rates have declined in most of the developed world since the 1970s. Coronary artery disease and stroke account for 80% of CVD deaths in males and 75% of CVD deaths in females. Most cardiovascular disease affects older adults. In the United States 11% of people between 20 and 40 have CVD, while 37% between 40 and 60, 71% of people between 60 and 80, and 85% of people over 80 have CVD. The average age of death from coronary artery disease in the developed world is around 80 while it is around 68 in the developing world. Diagnosis of disease typically occurs seven to ten years earlier in men as compared to women.

Types

Disability-adjusted life year for inflammatory heart diseases per 100,000 inhabitants in 2004
  No data
  Less than 70
  70–140
  140–210
  210–280
  280–350
  350–420
  420–490
  490–560
  560–630
  630–700
  700–770
  More than 770

There are many cardiovascular diseases involving the blood vessels. They are known as vascular diseases.

There are also many cardiovascular diseases that involve the heart.

Risk factors

There are many risk factors for heart diseases: age, sex, tobacco use, physical inactivity, excessive alcohol consumption, unhealthy diet, obesity, genetic predisposition and family history of cardiovascular disease, raised blood pressure (hypertension), raised blood sugar (diabetes mellitus), raised blood cholesterol (hyperlipidemia), undiagnosed celiac disease, psychosocial factors, poverty and low educational status, air pollution and poor sleep. While the individual contribution of each risk factor varies between different communities or ethnic groups the overall contribution of these risk factors is very consistent. Some of these risk factors, such as age, sex or family history/genetic predisposition, are immutable; however, many important cardiovascular risk factors are modifiable by lifestyle change, social change, drug treatment (for example prevention of hypertension, hyperlipidemia, and diabetes). People with obesity are at increased risk of atherosclerosis of the coronary arteries.

Genetics

Genetic factors influence the development of cardiovascular disease in men who are less than 55 years old and in women who are less than 65 years old. Cardiovascular disease in a person's parents increases their risk by 3 fold. Multiple single nucleotide polymorphisms (SNP) have been found to be associated with cardiovascular disease in genetic association studies, but usually, their individual influence is small, and genetic contributions to cardiovascular disease are poorly understood.

Age

Calcified heart of an older woman with cardiomegaly

Age is the most important risk factor in developing cardiovascular or heart diseases, with approximately a tripling of risk with each decade of life. Coronary fatty streaks can begin to form in adolescence. It is estimated that 82 percent of people who die of coronary heart disease are 65 and older. Simultaneously, the risk of stroke doubles every decade after age 55.

Multiple explanations are proposed to explain why age increases the risk of cardiovascular/heart diseases. One of them relates to serum cholesterol level. In most populations, the serum total cholesterol level increases as age increases. In men, this increase levels off around age 45 to 50 years. In women, the increase continues sharply until age 60 to 65 years.

Aging is also associated with changes in the mechanical and structural properties of the vascular wall, which leads to the loss of arterial elasticity and reduced arterial compliance and may subsequently lead to coronary artery disease.

Sex

Men are at greater risk of heart disease than pre-menopausal women. Once past menopause, it has been argued that a woman's risk is similar to a man's although more recent data from the WHO and UN disputes this. If a female has diabetes, she is more likely to develop heart disease than a male with diabetes.

Coronary heart diseases are 2 to 5 times more common among middle-aged men than women. In a study done by the World Health Organization, sex contributes to approximately 40% of the variation in sex ratios of coronary heart disease mortality. Another study reports similar results finding that sex differences explains nearly half the risk associated with cardiovascular diseases One of the proposed explanations for sex differences in cardiovascular diseases is hormonal difference. Among women, estrogen is the predominant sex hormone. Estrogen may have protective effects on glucose metabolism and hemostatic system, and may have direct effect in improving endothelial cell function. The production of estrogen decreases after menopause, and this may change the female lipid metabolism toward a more atherogenic form by decreasing the HDL cholesterol level while increasing LDL and total cholesterol levels.

Among men and women, there are differences in body weight, height, body fat distribution, heart rate, stroke volume, and arterial compliance. In the very elderly, age-related large artery pulsatility and stiffness is more pronounced among women than men. This may be caused by the women's smaller body size and arterial dimensions which are independent of menopause.

Tobacco

Cigarettes are the major form of smoked tobacco. Risks to health from tobacco use result not only from direct consumption of tobacco, but also from exposure to second-hand smoke. Approximately 10% of cardiovascular disease is attributed to smoking; however, people who quit smoking by age 30 have almost as low a risk of death as never smokers.

Physical inactivity

Insufficient physical activity (defined as less than 5 x 30 minutes of moderate activity per week, or less than 3 x 20 minutes of vigorous activity per week) is currently the fourth leading risk factor for mortality worldwide. In 2008, 31.3% of adults aged 15 or older (28.2% men and 34.4% women) were insufficiently physically active. The risk of ischemic heart disease and diabetes mellitus is reduced by almost a third in adults who participate in 150 minutes of moderate physical activity each week (or equivalent). In addition, physical activity assists weight loss and improves blood glucose control, blood pressure, lipid profile and insulin sensitivity. These effects may, at least in part, explain its cardiovascular benefits.

Diet

High dietary intakes of saturated fat, trans-fats and salt, and low intake of fruits, vegetables and fish are linked to cardiovascular risk, although whether all these associations indicate causes is disputed. The World Health Organization attributes approximately 1.7 million deaths worldwide to low fruit and vegetable consumption. Frequent consumption of high-energy foods, such as processed foods that are high in fats and sugars, promotes obesity and may increase cardiovascular risk. The amount of dietary salt consumed may also be an important determinant of blood pressure levels and overall cardiovascular risk. There is moderate quality evidence that reducing saturated fat intake for at least two years reduces the risk of cardiovascular disease. High trans-fat intake has adverse effects on blood lipids and circulating inflammatory markers, and elimination of trans-fat from diets has been widely advocated. In 2018 the World Health Organization estimated that trans fats were the cause of more than half a million deaths per year. There is evidence that higher consumption of sugar is associated with higher blood pressure and unfavorable blood lipids, and sugar intake also increases the risk of diabetes mellitus. High consumption of processed meats is associated with an increased risk of cardiovascular disease, possibly in part due to increased dietary salt intake.

Alcohol

The relationship between alcohol consumption and cardiovascular disease is complex, and may depend on the amount of alcohol consumed. There is a direct relationship between high levels of drinking alcohol and cardiovascular disease. Drinking at low levels without episodes of heavy drinking may be associated with a reduced risk of cardiovascular disease, but there is evidence that associations between moderate alcohol consumption and protection from stroke are non-causal. At the population level, the health risks of drinking alcohol exceed any potential benefits.

Celiac disease

Untreated celiac disease can cause the development of many types of cardiovascular diseases, most of which improve or resolve with a gluten-free diet and intestinal healing. However, delays in recognition and diagnosis of celiac disease can cause irreversible heart damage.

Sleep

Not getting good sleep, in amount or quality, is documented as increasing cardiovascular risk in both adults and teens. Recommendations suggest that Infants typically need 12 or more hours of sleep per day, adolescent at least eight or nine hours, and adults seven or eight. About one-third of adult Americans get less than the recommended seven hours of sleep per night, and in a study of teenagers, just 2.2 percent of those studied got enough sleep, many of whom did not get good quality sleep. Studies have shown that short sleepers getting less than seven hours sleep per night have a 10 percent to 30 percent higher risk of cardiovascular disease.

Sleep disorders such as sleep disordered breathing and insomnia, are also associated with a higher cardiometabolic risk. An estimated 50 to 70 million Americans suffer from insomnia, sleep apnea or other chronic sleep disorders.

In addition, sleep research displays differences in race and class. Short sleep and poor sleep tend to be more frequently reported in ethnic minorities than in whites. African-Americans report experiencing short durations of sleep five times more often than whites, possibly as a result of social and environmental factors. Black children and children in disadvantaged neighborhoods have much higher rates of sleep apnea than white children,

Socioeconomic disadvantage

Cardiovascular disease affects low- and middle-income countries even more than high-income countries. There is relatively little information regarding social patterns of cardiovascular disease within low- and middle-income countries, but within high-income countries low income and low educational status are consistently associated with greater risk of cardiovascular disease.

Policies that have resulted in increased socio-economic inequalities have been associated with greater subsequent socio-economic differences in cardiovascular disease implying a cause and effect relationship. Psychosocial factors, environmental exposures, health behaviours, and health-care access and quality contribute to socio-economic differentials in cardiovascular disease. The Commission on Social Determinants of Health recommended that more equal distributions of power, wealth, education, housing, environmental factors, nutrition, and health care were needed to address inequalities in cardiovascular disease and non-communicable diseases.

Air pollution

Particulate matter has been studied for its short- and long-term exposure effects on cardiovascular disease. Currently, airborne particles under 2.5 micrometers in diameter (PM2.5) are the major focus, in which gradients are used to determine CVD risk. Overall, long-term PM exposure increased rate of atherosclerosis and inflammation. In regards to short-term exposure (2 hours), every 25 μg/m3 of PM2.5 resulted in a 48% increase of CVD mortality risk. In addition, after only 5 days of exposure, a rise in systolic (2.8 mmHg) and diastolic (2.7 mmHg) blood pressure occurred for every 10.5 μg/m3 of PM2.5. Other research has implicated PM2.5 in irregular heart rhythm, reduced heart rate variability (decreased vagal tone), and most notably heart failure. PM2.5 is also linked to carotid artery thickening and increased risk of acute myocardial infarction.

Cardiovascular risk assessment

Existing cardiovascular disease or a previous cardiovascular event, such as a heart attack or stroke, is the strongest predictor of a future cardiovascular event. Age, sex, smoking, blood pressure, blood lipids and diabetes are important predictors of future cardiovascular disease in people who are not known to have cardiovascular disease. These measures, and sometimes others, may be combined into composite risk scores to estimate an individual's future risk of cardiovascular disease. Numerous risk scores exist although their respective merits are debated. Other diagnostic tests and biomarkers remain under evaluation but currently these lack clear-cut evidence to support their routine use. They include family history, coronary artery calcification score, high sensitivity C-reactive protein (hs-CRP), ankle–brachial pressure index, lipoprotein subclasses and particle concentration, lipoprotein(a), apolipoproteins A-I and B, fibrinogen, white blood cell count, homocysteine, N-terminal pro B-type natriuretic peptide (NT-proBNP), and markers of kidney function. High blood phosphorus is also linked to an increased risk.

Depression and traumatic stress

There is evidence that mental health problems, in particular depression and traumatic stress, is linked to cardiovascular diseases. Whereas mental health problems are known to be associated with risk factors for cardiovascular diseases such as smoking, poor diet, and a sedentary lifestyle, these factors alone do not explain the increased risk of cardiovascular diseases seen in depression, stress, and anxiety. Moreover, posttraumatic stress disorder is independently associated with increased risk for incident coronary heart disease, even after adjusting for depression and other covariates.

Occupational exposure

Little is known about the relationship between work and cardiovascular disease, but links have been established between certain toxins, extreme heat and cold, exposure to tobacco smoke, and mental health concerns such as stress and depression.

Non-chemical risk factors

A 2015 SBU-report looking at non-chemical factors found an association for those:

  • with mentally stressful work with a lack of control over their working situation — with an effort-reward imbalance
  • who experience low social support at work; who experience injustice or experience insufficient opportunities for personal development; or those who experience job insecurity
  • those who work night schedules; or have long working weeks
  • those who are exposed to noise

Specifically the risk of stroke was also increased by exposure to ionizing radiation. Hypertension develops more often in those who experience job strain and who have shift-work. Differences between women and men in risk are small, however men risk suffering and dying of heart attacks or stroke twice as often as women during working life.

Chemical risk factors

A 2017 SBU report found evidence that workplace exposure to silica dust, engine exhaust or welding fumes is associated with heart disease. Associations also exist for exposure to arsenic, benzopyrenes, lead, dynamite, carbon disulphide, carbon monoxide, metalworking fluids and occupational exposure to tobacco smoke. Working with the electrolytic production of aluminium or the production of paper when the sulphate pulping process is used is associated with heart disease. An association was also found between heart disease and exposure to compounds which are no longer permitted in certain work environments, such as phenoxy acids containing TCDD(dioxin) or asbestos.

Workplace exposure to silica dust or asbestos is also associated with pulmonary heart disease. There is evidence that workplace exposure to lead, carbon disulphide, phenoxyacids containing TCDD, as well as working in an environment where aluminum is being electrolytically produced, is associated with stroke.

Somatic mutations

As of 2017, evidence suggests that certain leukemia-associated mutations in blood cells may also lead to increased risk of cardiovascular disease. Several large-scale research projects looking at human genetic data have found a robust link between the presence of these mutations, a condition known as clonal hematopoiesis, and cardiovascular disease-related incidents and mortality.

Radiation therapy

Radiation treatments for cancer can increase the risk of heart disease and death, as observed in breast cancer therapy. Therapeutic radiation increases the risk of a subsequent heart attack or stroke by 1.5 to 4 times the normal rate. The increase is dose-dependent, depending on the dose strength, volume, and location.

Side-effects from radiation therapy for cardiovascular diseases have been termed radiation-induced heart disease or radiation-induced vascular disease. Symptoms are dose-dependent and include cardiomyopathy, myocardial fibrosis, valvular heart disease, coronary artery disease, heart arrhythmia and peripheral artery disease. Radiation-induced fibrosis, vascular cell damage and oxidative stress can lead to these and other late side-effect symptoms.

Pathophysiology

Density-Dependent Colour Scanning Electron Micrograph SEM (DDC-SEM) of cardiovascular calcification, showing in orange calcium phosphate spherical particles (denser material) and, in green, the extracellular matrix (less dense material)

Population-based studies show that atherosclerosis, the major precursor of cardiovascular disease, begins in childhood. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study demonstrated that intimal lesions appear in all the aortas and more than half of the right coronary arteries of youths aged 7–9 years.

This is extremely important considering that 1 in 3 people die from complications attributable to atherosclerosis. In order to stem the tide, education and awareness that cardiovascular disease poses the greatest threat, and measures to prevent or reverse this disease must be taken.

Obesity and diabetes mellitus are often linked to cardiovascular disease, as are a history of chronic kidney disease and hypercholesterolaemia. In fact, cardiovascular disease is the most life-threatening of the diabetic complications and diabetics are two- to four-fold more likely to die of cardiovascular-related causes than nondiabetics.

Screening

Screening ECGs (either at rest or with exercise) are not recommended in those without symptoms who are at low risk. This includes those who are young without risk factors. In those at higher risk the evidence for screening with ECGs is inconclusive. Additionally echocardiography, myocardial perfusion imaging, and cardiac stress testing is not recommended in those at low risk who do not have symptoms. Some biomarkers may add to conventional cardiovascular risk factors in predicting the risk of future cardiovascular disease; however, the value of some biomarkers is questionable. Ankle-brachial index (ABI), high-sensitivity C-reactive protein (hsCRP), and coronary artery calcium, are also of unclear benefit in those without symptoms as of 2018.

The NIH recommends lipid testing in children beginning at the age of 2 if there is a family history of heart disease or lipid problems. It is hoped that early testing will improve lifestyle factors in those at risk such as diet and exercise.

Screening and selection for primary prevention interventions has traditionally been done through absolute risk using a variety of scores (ex. Framingham or Reynolds risk scores). This stratification has separated people who receive the lifestyle interventions (generally lower and intermediate risk) from the medication (higher risk). The number and variety of risk scores available for use has multiplied, but their efficacy according to a 2016 review was unclear due to lack of external validation or impact analysis. Risk stratification models often lack sensitivity for population groups and do not account for the large number of negative events among the intermediate and low risk groups. As a result, future preventative screening appears to shift toward applying prevention according to randomized trial results of each intervention rather than large-scale risk assessment.

Prevention

Up to 90% of cardiovascular disease may be preventable if established risk factors are avoided. Currently practiced measures to prevent cardiovascular disease include:

  • Reduction in consumption of saturated fat: there is moderate quality evidence that reducing the proportion of saturated fat in the diet, and replacing it with unsaturated fats or carbohydrates over a period of at least two years, leads to a reduction in the risk of cardiovascular disease.
  • Stopping smoking and avoidance of second-hand smoke. Stopping smoking reduces risk by about 35%.
  • Maintain a healthy diet, such as the Mediterranean diet. Dietary interventions are effective in reducing cardiovascular risk factors over a year, but the longer term effects of such interventions and their impact on cardiovascular disease events is uncertain.
  • At least 150 minutes (2 hours and 30 minutes) of moderate exercise per week.
  • Limit alcohol consumption to the recommended daily limits; People who moderately consume alcoholic drinks have a 25–30% lower risk of cardiovascular disease. However, people who are genetically predisposed to consume less alcohol have lower rates of cardiovascular disease suggesting that alcohol itself may not be protective. Excessive alcohol intake increases the risk of cardiovascular disease and consumption of alcohol is associated with increased risk of a cardiovascular event in the day following consumption.
  • Lower blood pressure, if elevated. A 10 mmHg reduction in blood pressure reduces risk by about 20%. Lowering blood pressure appears to be effective even at normal blood pressure ranges.
  • Decrease non-HDL cholesterol. Statin treatment reduces cardiovascular mortality by about 31%.
  • Decrease body fat if overweight or obese. The effect of weight loss is often difficult to distinguish from dietary change, and evidence on weight reducing diets is limited. In observational studies of people with severe obesity, weight loss following bariatric surgery is associated with a 46% reduction in cardiovascular risk.
  • Decrease psychosocial stress. This measure may be complicated by imprecise definitions of what constitute psychosocial interventions. Mental stress–induced myocardial ischemia is associated with an increased risk of heart problems in those with previous heart disease. Severe emotional and physical stress leads to a form of heart dysfunction known as Takotsubo syndrome in some people. Stress, however, plays a relatively minor role in hypertension. Specific relaxation therapies are of unclear benefit.
  • There have been studies that show that garlic and soy may help with lowering cholesterol, However, the effects of holistic dietary supplements are relatively insignificant when compared to medicines prescribed for lowering cholesterol.
  • Stress relieving techniques such as practices like yoga, meditation, and tai chi have been shown to provide some positive effects on managing blood pressure.
  • Ethylene diamine tetra-acetic acid is a new therapy that has shown some promising evidence for reducing the risks of coronary disease in people with diabetes However, the therapy is still being studied and because there has only been a single clinical trial the results are not sufficient enough for clinical use at this time.
  • Not enough sleep also raises the risk of high blood pressure. Adults need about 7-9 hours of sleep. Sleep apnea is also a major risk as it causes one to stop breathing which can put stress on your body which can raise your risk of heart disease.

Most guidelines recommend combining preventive strategies. There is some evidence that interventions aiming to reduce more than one cardiovascular risk factor may have beneficial effects on blood pressure, body mass index and waist circumference; however, evidence was limited and the authors were unable to draw firm conclusions on the effects on cardiovascular events and mortality. For adults without a known diagnosis of hypertension, diabetes, hyperlipidemia, or cardiovascular disease, routine counseling to advise them to improve their diet and increase their physical activity has not been found to significantly alter behavior, and thus is not recommended. There is additional evidence to suggest that simply providing people with a cardiovascular disease risk score may reduce cardiovascular disease risk factors by a small amount compared to usual care. However, there was some uncertainty as to whether providing these scores had any effect on cardiovascular disease events. It is unclear whether or not dental care in those with periodontitis affects their risk of cardiovascular disease.

Diet

A diet high in fruits and vegetables decreases the risk of cardiovascular disease and death. Evidence suggests that the Mediterranean diet may improve cardiovascular outcomes. There is also evidence that a Mediterranean diet may be more effective than a low-fat diet in bringing about long-term changes to cardiovascular risk factors (e.g., lower cholesterol level and blood pressure). The DASH diet (high in nuts, fish, fruits and vegetables, and low in sweets, red meat and fat) has been shown to reduce blood pressure, lower total and low density lipoprotein cholesterol and improve metabolic syndrome; but the long-term benefits have been questioned. A high fiber diet is associated with lower risks of cardiovascular disease.

Worldwide, dietary guidelines recommend a reduction in saturated fat, and although the role of dietary fat in cardiovascular disease is complex and controversial there is a long-standing consensus that replacing saturated fat with unsaturated fat in the diet is sound medical advice. Total fat intake has not been found to be associated with cardiovascular risk. A 2020 systematic review found moderate quality evidence that reducing saturated fat intake for at least 2 years caused a reduction in cardiovascular events. A 2015 meta-analysis of observational studies however did not find a convincing association between saturated fat intake and cardiovascular disease. Variation in what is used as a substitute for saturated fat may explain some differences in findings. The benefit from replacement with polyunsaturated fats appears greatest, while replacement of saturated fats with carbohydrates does not appear to have a beneficial effect. A diet high in trans fatty acids is associated with higher rates of cardiovascular disease, and in 2015 the Food and Drug Administration (FDA) determined that there was 'no longer a consensus among qualified experts that partially hydrogenated oils (PHOs), which are the primary dietary source of industrially produced trans fatty acids (IP-TFA), are generally recognized as safe (GRAS) for any use in human food'. There is conflicting evidence concerning dietary supplements of omega-3 fatty acids (a type of polysaturated fat in oily fish) added to diet improve cardiovascular risk. The benefits of recommending a low-salt diet in people with high or normal blood pressure are not clear. In those with heart failure, after one study was left out, the rest of the trials show a trend to benefit. Another review of dietary salt concluded that there is strong evidence that high dietary salt intake increases blood pressure and worsens hypertension, and that it increases the number of cardiovascular disease events; both as a result of the increased blood pressure and, quite likely, through other mechanisms. Moderate evidence was found that high salt intake increases cardiovascular mortality; and some evidence was found for an increase in overall mortality, strokes, and left ventricular hypertrophy.

Intermittent fasting

Overall, the current body of scientific evidence is uncertain on whether intermittent fasting could prevent cardiovascular disease. Intermittent fasting may help people lose more weight than regular eating patterns, but was not different than energy restriction diets.

Medication

Blood pressure medication reduces cardiovascular disease in people at risk, irrespective of age, the baseline level of cardiovascular risk, or baseline blood pressure. The commonly-used drug regimens have similar efficacy in reducing the risk of all major cardiovascular events, although there may be differences between drugs in their ability to prevent specific outcomes. Larger reductions in blood pressure produce larger reductions in risk, and most people with high blood pressure require more than one drug to achieve adequate reduction in blood pressure. Adherence to medications is often poor and while mobile phone text messaging has been tried to improve adherence, there is insufficient evidence that it alters secondary prevention of cardiovascular disease.

Statins are effective in preventing further cardiovascular disease in people with a history of cardiovascular disease. As the event rate is higher in men than in women, the decrease in events is more easily seen in men than women. In those at risk, but without a history of cardiovascular disease (primary prevention), statins decrease the risk of death and combined fatal and non-fatal cardiovascular disease. The benefit, however, is small. A United States guideline recommends statins in those who have a 12% or greater risk of cardiovascular disease over the next ten years. Niacin, fibrates and CETP Inhibitors, while they may increase HDL cholesterol do not affect the risk of cardiovascular disease in those who are already on statins. Fibrates lower the risk of cardiovascular and coronary events, but there is no evidence to suggest that they reduce all-cause mortality.

Anti-diabetic medication may reduce cardiovascular risk in people with Type 2 Diabetes, although evidence is not conclusive. A meta-analysis in 2009 including 27,049 participants and 2,370 major vascular events showed a 15% relative risk reduction in cardiovascular disease with more-intensive glucose lowering over an average follow-up period of 4.4 years, but an increased risk of major hypoglycemia.

Aspirin has been found to be of only modest benefit in those at low risk of heart disease as the risk of serious bleeding is almost equal to the benefit with respect to cardiovascular problems. In those at very low risk, including those over the age of 70, it is not recommended. The United States Preventive Services Task Force recommends against use of aspirin for prevention in women less than 55 and men less than 45 years old; however, in those who are older it is recommends in some individuals.

The use of vasoactive agents for people with pulmonary hypertension with left heart disease or hypoxemic lung diseases may cause harm and unnecessary expense.

Antibiotics for secondary prevention of coronary heart disease

Antibiotics may help patients with coronary disease to reduce the risk of heart attacks and strokes. However, the latest evidence suggests that antibiotics for secondary prevention of coronary heart disease are harmful with increased mortality and occurrence of stroke. So, the use of antibiotics is not currently supported for preventing secondary coronary heart disease.

Physical activity

Exercise-based cardiac rehabilitation following a heart attack reduces the risk of death from cardiovascular disease and leads to less hospitalizations. There have been few high quality studies of the benefits of exercise training in people with increased cardiovascular risk but no history of cardiovascular disease.

A systematic review estimated that inactivity is responsible for 6% of the burden of disease from coronary heart disease worldwide. The authors estimated that 121,000 deaths from coronary heart disease could have been averted in Europe in 2008, if physical inactivity had been removed. Low quality evidence from a limited number of studies suggest that yoga has beneficial effects on blood pressure and cholesterol. Tentative evidence suggests that home-based exercise programs may be more efficient at improving exercise adherence.

Dietary supplements

While a healthy diet is beneficial, the effect of antioxidant supplementation (vitamin E, vitamin C, etc.) or vitamins has not been shown to protect against cardiovascular disease and in some cases may possibly result in harm. Mineral supplements have also not been found to be useful. Niacin, a type of vitamin B3, may be an exception with a modest decrease in the risk of cardiovascular events in those at high risk. Magnesium supplementation lowers high blood pressure in a dose dependent manner. Magnesium therapy is recommended for people with ventricular arrhythmia associated with torsades de pointes who present with long QT syndrome as well as for the treatment of people with digoxin intoxication-induced arrhythmias. There is no evidence to support omega-3 fatty acid supplementation.

Management

Cardiovascular disease is treatable with initial treatment primarily focused on diet and lifestyle interventions. Influenza may make heart attacks and strokes more likely and therefore influenza vaccination may decrease the chance of cardiovascular events and death in people with heart disease.

Proper CVD management necessitates a focus on MI and stroke cases due to their combined high mortality rate, keeping in mind the cost-effectiveness of any intervention, especially in developing countries with low or middle-income levels. Regarding MI, strategies using aspirin, atenolol, streptokinase or tissue plasminogen activator have been compared for quality-adjusted life-year (QALY) in regions of low and middle income. The costs for a single QALY for aspirin and atenolol were less than $25, streptokinase was about $680, and t-PA was $16,000. Aspirin, ACE inhibitors, beta-blockers, and statins used together for secondary CVD prevention in the same regions showed single QALY costs of $350.

There is probably no additional benefit in terms of mortality and serious adverse events when blood pressure targets were lowered to ≤ 135/85 mmHg from ≤ 140 to 160/90 to 100 mmHg.

Epidemiology

Cardiovascular diseases deaths per million persons in 2012
  318–925
  926–1,148
  1,149–1,294
  1,295–1,449
  1,450–1,802
  1,803–2,098
  2,099–2,624
  2,625–3,203
  3,204–5,271
  5,272–10233
Disability-adjusted life year for cardiovascular diseases per 100,000 inhabitants in 2004
  no data
  <900
  900–1650
  1650–2300
  2300–3000
  3000–3700
  3700–4400
  4400–5100
  5100–5800
  5800–6500
  6500–7200
  7200–7900
  >7900

Cardiovascular diseases are the leading cause of death worldwide and in all regions except Africa. In 2008, 30% of all global death was attributed to cardiovascular diseases. Death caused by cardiovascular diseases are also higher in low- and middle-income countries as over 80% of all global deaths caused by cardiovascular diseases occurred in those countries. It is also estimated that by 2030, over 23 million people will die from cardiovascular diseases each year.

It is estimated that 60% of the world's cardiovascular disease burden will occur in the South Asian subcontinent despite only accounting for 20% of the world's population. This may be secondary to a combination of genetic predisposition and environmental factors. Organizations such as the Indian Heart Association are working with the World Heart Federation to raise awareness about this issue.

Research

There is evidence that cardiovascular disease existed in pre-history, and research into cardiovascular disease dates from at least the 18th century. The causes, prevention, and/or treatment of all forms of cardiovascular disease remain active fields of biomedical research, with hundreds of scientific studies being published on a weekly basis.

Recent areas of research include the link between inflammation and atherosclerosis the potential for novel therapeutic interventions, and the genetics of coronary heart disease.

Hypercholesterolemia

From Wikipedia, the free encyclopedia
 
Hypercholesterolemia
Other namesHypercholesterolaemia, high cholesterol
Xanthelasma palpebrarum.jpg
Xanthelasma palpebrarum, yellowish patches consisting of cholesterol deposits above the eyelids. These are more common in people with familial hypercholesterolemia.
SpecialtyCardiology

Hypercholesterolemia, also called high cholesterol, is the presence of high levels of cholesterol in the blood. It is a form of hyperlipidemia (high levels of lipids in the blood), hyperlipoproteinemia (high levels of lipoproteins in the blood), and dyslipidemia (any abnormalities of lipid and lipoprotein levels in the blood).

Elevated levels of non-HDL cholesterol and LDL in the blood may be a consequence of diet, obesity, inherited (genetic) diseases (such as LDL receptor mutations in familial hypercholesterolemia), or the presence of other diseases such as type 2 diabetes and an underactive thyroid.

Cholesterol is one of three major classes of lipids which all animal cells use to construct their membranes and is thus manufactured by all animal cells. Plant cells do manufacture phytosterols (similar to cholesterol), but in rather small quantities. It is also the precursor of the steroid hormones and bile acids. Since cholesterol is insoluble in water, it is transported in the blood plasma within protein particles (lipoproteins). Lipoproteins are classified by their density: very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), low density lipoprotein (LDL) and high density lipoprotein (HDL). All the lipoproteins carry cholesterol, but elevated levels of the lipoproteins other than HDL (termed non-HDL cholesterol), particularly LDL-cholesterol, are associated with an increased risk of atherosclerosis and coronary heart disease. In contrast, higher levels of HDL cholesterol are protective.

Avoiding trans fats and replacing saturated fats in adult diets with polyunsaturated fats are recommended dietary measures to reduce total blood cholesterol and LDL in adults. In people with very high cholesterol (e.g., familial hypercholesterolemia), diet is often not sufficient to achieve the desired lowering of LDL, and lipid-lowering medications are usually required. If necessary, other treatments such as LDL apheresis or even surgery (for particularly severe subtypes of familial hypercholesterolemia) are performed. About 34 million adults in the United States have high blood cholesterol.

Signs and symptoms

Although hypercholesterolemia itself is asymptomatic, longstanding elevation of serum cholesterol can lead to atherosclerosis (hardening of arteries). Over a period of decades, elevated serum cholesterol contributes to formation of atheromatous plaques in the arteries. This can lead to progressive narrowing of the involved arteries. Alternatively smaller plaques may rupture and cause a clot to form and obstruct blood flow. A sudden blockage of a coronary artery may result in a heart attack. A blockage of an artery supplying the brain can cause a stroke. If the development of the stenosis or occlusion is gradual, blood supply to the tissues and organs slowly diminishes until organ function becomes impaired. At this point tissue ischemia (restriction in blood supply) may manifest as specific symptoms. For example, temporary ischemia of the brain (commonly referred to as a transient ischemic attack) may manifest as temporary loss of vision, dizziness and impairment of balance, difficulty speaking, weakness or numbness or tingling, usually on one side of the body. Insufficient blood supply to the heart may cause chest pain, and ischemia of the eye may manifest as transient visual loss in one eye. Insufficient blood supply to the legs may manifest as calf pain when walking, while in the intestines it may present as abdominal pain after eating a meal.

Some types of hypercholesterolemia lead to specific physical findings. For example, familial hypercholesterolemia (Type IIa hyperlipoproteinemia) may be associated with xanthelasma palpebrarum (yellowish patches underneath the skin around the eyelids), arcus senilis (white or gray discoloration of the peripheral cornea), and xanthomata (deposition of yellowish cholesterol-rich material) of the tendons, especially of the fingers. Type III hyperlipidemia may be associated with xanthomata of the palms, knees and elbows.

Causes

Formula structure of cholesterol

Hypercholesterolemia is typically due to a combination of environmental and genetic factors. Environmental factors include weight, diet, and stress. Loneliness is also a risk factor.

Medical conditions and treatments

A number of other conditions can also increase cholesterol levels including diabetes mellitus type 2, obesity, alcohol use, monoclonal gammopathy, dialysis therapy, nephrotic syndrome, hypothyroidism, Cushing’s syndrome and anorexia nervosa. Several medications and classes of medications may interfere with lipid metabolism: thiazide diuretics, ciclosporin, glucocorticoids, beta blockers, retinoic acid, antipsychotics), certain anticonvulsants and medications for HIV as well as interferons.

Genetics

Genetic contributions are usually due to the additive effects of multiple genes ("polygenic"), though occasionally may be due to a single gene defect such as in the case of familial hypercholesterolaemia. In familial hypercholesterolemia, mutations may be present in the APOB gene (autosomal dominant), the autosomal recessive LDLRAP1 gene, autosomal dominant familial hypercholesterolemia (HCHOLA3) variant of the PCSK9 gene, or the LDL receptor gene. Familial hypercholesterolemia affects about one in 250 individuals.

Diet

Diet has an effect on blood cholesterol, but the size of this effect varies between individuals. Moreover, when dietary cholesterol intake goes down, production (principally by the liver) typically increases, so that blood cholesterol changes can be modest or even elevated. This compensatory response may explain hypercholesterolemia in anorexia nervosa. A 2016 review found tentative evidence that dietary cholesterol is associated with higher blood cholesterol. Trans fats have been shown to reduce levels of HDL while increasing levels of LDL. LDL and total cholesterol also increases by very high fructose intake.

As of 2018 there appears to be a modest positive, dose-related relationship between cholesterol intake and LDL cholesterol.

Diagnosis

Interpretation of cholesterol levels
cholesterol type mmol/L mg/dL interpretation
total cholesterol <5.2 <200 desirable
5.2–6.2 200–239 borderline
>6.2 >240 high
LDL cholesterol <2.6 <100 most desirable
2.6–3.3 100–129 good
3.4–4.1 130–159 borderline high
4.1–4.9 160–189 high and undesirable
>4.9 >190 very high
HDL cholesterol <1.0 <40 undesirable; risk increased
1.0–1.5 41–59 okay, but not optimal
>1.55 >60 good; risk lowered

Cholesterol is measured in milligrams per deciliter (mg/dL) of blood in the United States and some other countries. In the United Kingdom, most European countries and Canada, millimoles per liter of blood (mmol/Ll) is the measure.

For healthy adults, the UK National Health Service recommends upper limits of total cholesterol of 5 mmol/L, and low-density lipoprotein cholesterol (LDL) of 3 mmol/L. For people at high risk of cardiovascular disease, the recommended limit for total cholesterol is 4 mmol/L, and 2 mmol/L for LDL.

In the United States, the National Heart, Lung, and Blood Institute within the National Institutes of Health classifies total cholesterol of less than 200 mg/dL as “desirable,” 200 to 239 mg/dL as “borderline high,” and 240 mg/dL or more as “high”.

No absolute cutoff between normal and abnormal cholesterol levels exists, and interpretation of values must be made in relation to other health conditions and risk factors.

Higher levels of total cholesterol increase the risk of cardiovascular disease, particularly coronary heart disease. Levels of LDL or non-HDL cholesterol both predict future coronary heart disease; which is the better predictor is disputed. High levels of small dense LDL may be particularly adverse, although measurement of small dense LDL is not advocated for risk prediction. In the past, LDL and VLDL levels were rarely measured directly due to cost. Levels of fasting triglycerides were taken as an indicator of VLDL levels (generally about 45% of fasting triglycerides is composed of VLDL), while LDL was usually estimated by the Friedewald formula:

LDL total cholesterol – HDL – (0.2 x fasting triglycerides).

However, this equation is not valid on nonfasting blood samples or if fasting triglycerides are elevated >4.5 mmol/L (> ∼400 mg/dL). Recent guidelines have, therefore, advocated the use of direct methods for measurement of LDL wherever possible. It may be useful to measure all lipoprotein subfractions ( VLDL, IDL, LDL, and HDL) when assessing hypercholesterolemia and measurement of apolipoproteins and lipoprotein (a) can also be of value. Genetic screening is now advised if a form of familial hypercholesterolemia is suspected.

Classification

Classically, hypercholesterolemia was categorized by lipoprotein electrophoresis and the Fredrickson classification. Newer methods, such as "lipoprotein subclass analysis", have offered significant improvements in understanding the connection with atherosclerosis progression and clinical consequences. If the hypercholesterolemia is hereditary (familial hypercholesterolemia), more often a family history of premature, earlier onset atherosclerosis is found.

Screening

A color photograph of two bags of thawed fresh frozen plasma: The bag on the left was obtained from a donor with hypercholesterolemia, and contains cloudy yellow fluid, while the bag obtained from a normal donor contains clear yellow fluid.
Two bags of fresh frozen plasma: The bag on the left was obtained from a donor with hyperlipidemia, while the other bag was obtained from a donor with normal serum lipid levels.

The U.S. Preventive Services Task Force in 2008 strongly recommends routine screening for men 35 years and older and women 45 years and older for lipid disorders and the treatment of abnormal lipids in people who are at increased risk of coronary heart disease. They also recommend routinely screening men aged 20 to 35 years and women aged 20 to 45 years if they have other risk factors for coronary heart disease. In 2016 they concluded that testing the general population under the age of 40 without symptoms is of unclear benefit.

In Canada, screening is recommended for men 40 and older and women 50 and older. In those with normal cholesterol levels, screening is recommended once every five years. Once people are on a statin further testing provides little benefit except to possibly determine compliance with treatment.

Treatment

Treatment recommendations have been based on four risk levels for heart disease. For each risk level, LDL cholesterol levels representing goals and thresholds for treatment and other action are made. The higher the risk category, the lower the cholesterol thresholds.

LDL cholesterol level thresholds
Risk category Criteria for risk category Consider lifestyle modifications Consider medication
No. of risk factors†
10-year risk of
myocardial ischemia
mmol/litre mg/dL mmol/litre mg/dL
High Prior heart disease OR >20% >2.6 >100 >2.6 >100
Moderately high 2 or more AND 10–20% >3.4 >130 >3.4 >130
Moderate 2 or more AND <10% >3.4 >130 >4.1 >160
Low 0 or 1 >4.1 >160 >4.9 >190
†Risk factors include cigarette smoking, hypertension (BP ≥140/90 mm Hg or on antihypertensive medication),
low HDL cholesterol (<40 mg/dL), family history of premature heart disease, and age (men ≥45 years; women ≥55 years).

For those at high risk, a combination of lifestyle modification and statins has been shown to decrease mortality.

Lifestyle

Lifestyle changes recommended for those with high cholesterol include: smoking cessation, limiting alcohol consumption, increasing physical activity, and maintaining a healthy weight.

Overweight or obese individuals can lower blood cholesterol by losing weight – on average a kilogram of weight loss can reduce LDL cholesterol by 0.8 mg/dl.

Diet

Eating a diet with a high proportion of vegetables, fruit, dietary fibre, and low in fats results in a modest decrease in total cholesterol.

Eating dietary cholesterol causes a small but significant rise in serum cholesterol, the magnitude of which can be predicted using the Keys and Hegsted equations. Dietary limits for cholesterol were proposed in United States, but not in Canada, United Kingdom, and Australia. Consequently, in 2015 the Dietary Guidelines Advisory Committee in the United States removed its recommendation of limiting cholesterol intake.

A 2020 Cochrane review found replacing saturated fat with polyunsaturated fat resulted in a small decrease in cardiovascular disease by decreasing blood cholesterol. Other reviews have not found an effect from saturated fats on cardiovascular disease. Trans fats are recognized as a potential risk factor for cholesterol-related cardiovascular disease, and avoiding them in an adult diet is recommended.

The National Lipid Association recommends that people with familial hypercholesterolemia restrict intakes of total fat to 25–35% of energy intake, saturated fat to less than 7% of energy intake, and cholesterol to less than 200 mg per day. Changes in total fat intake in low calorie diets do not appear to affect blood cholesterol.

Increasing soluble fiber consumption has been shown to reduce levels of LDL cholesterol, with each additional gram of soluble fiber reducing LDL by an average of 2.2 mg/dL (0.057 mmol/L). Increasing consumption of whole grains also reduces LDL cholesterol, with whole grain oats being particularly effective. Inclusion of 2 g per day of phytosterols and phytostanols and 10 to 20 g per day of soluble fiber decreases dietary cholesterol absorption. A diet high in fructose can raise LDL cholesterol levels in the blood.

Medication

Statins are the typically used medications, in addition to healthy lifestyle interventions. Statins can reduce total cholesterol by about 50% in the majority of people, and are effective in reducing the risk of cardiovascular disease in both people with and without pre-existing cardiovascular disease. In people without cardiovascular disease, statins have been shown to reduce all-cause mortality, fatal and non-fatal coronary heart disease, and strokes. Greater benefit is observed with the use of high-intensity statin therapy. Statins may improve quality of life when used in people without existing cardiovascular disease (i.e. for primary prevention). Statins decrease cholesterol in children with hypercholesterolemia, but no studies as of 2010 show improved outcomes and diet is the mainstay of therapy in childhood.

Other agents that may be used include fibrates, nicotinic acid, and cholestyramine. These, however, are only recommended if statins are not tolerated or in pregnant women. Injectable antibodies against the protein PCSK9 (evolocumab, bococizumab, alirocumab) can reduce LDL cholesterol and have been shown to reduce mortality.

Guidelines

In the USA, guidelines exist from the National Cholesterol Education Program (2004) and a joint body of professional societies led by the American Heart Association.

In the UK, the National Institute for Health and Clinical Excellence has made recommendations for the treatment of elevated cholesterol levels, published in 2008, and a new guideline appeared in 2014 that covers the prevention of cardiovascular disease in general.

The Task Force for the management of dyslipidaemias of the European Society of Cardiology and the European Atherosclerosis Society published guidelines for the management of dyslipidaemias in 2011.

Specific populations

Among people whose life expectancy is relatively short, hypercholesterolemia is not a risk factor for death by any cause including coronary heart disease. Among people older than 70, hypercholesterolemia is not a risk factor for being hospitalized with myocardial infarction or angina. There are also increased risks in people older than 85 in the use of statin drugs. Because of this, medications which lower lipid levels should not be routinely used among people with limited life expectancy.

The American College of Physicians recommends for hypercholesterolemia in people with diabetes:

  1. Lipid-lowering therapy should be used for secondary prevention of cardiovascular mortality and morbidity for all adults with known coronary artery disease and type 2 diabetes.
  2. Statins should be used for primary prevention against macrovascular complications in adults with type 2 diabetes and other cardiovascular risk factors.
  3. Once lipid-lowering therapy is initiated, people with type 2 diabetes mellitus should be taking at least moderate doses of a statin.
  4. For those people with type 2 diabetes who are taking statins, routine monitoring of liver function tests or muscle enzymes is not recommended except in specific circumstances.

Alternative medicine

According to a survey in 2002, alternative medicine was used in an attempt to treat cholesterol by 1.1% of U.S. adults. Consistent with previous surveys, this one found the majority of individuals (55%) used it in conjunction with conventional medicine. A systematic review of the effectiveness of herbal medicines utilized in traditional chinese medicine had inconclusive results due to the poor methodological quality of the included studies. A review of trials of phytosterols and/or phytostanols, average dose 2.15 g/day, reported an average of 9% lowering of LDL-cholesterol. In 2000, the Food and Drug Administration approved the labeling of foods containing specified amounts of phytosterol esters or phytostanol esters as cholesterol-lowering; in 2003, an FDA Interim Health Claim Rule extended that label claim to foods or dietary supplements delivering more than 0.8 g/day of phytosterols or phytostanols. Some researchers, however, are concerned about diet supplementation with plant sterol esters and draw attention to lack of long-term safety data.

Epidemiology

Rates of high total cholesterol in the United States in 2010 are just over 13%, down from 17% in 2000.

Average total cholesterol in the United Kingdom is 5.9 mmol/L, while in rural China and Japan, average total cholesterol is 4 mmol/L. Rates of coronary artery disease are high in Great Britain, but low in rural China and Japan.

Research directions

Gene therapy is being studied as a potential treatment.

 

Self-awareness

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Self-awareness The Painter and the...