Search This Blog

Saturday, December 22, 2018

Asteroid impact avoidance

From Wikipedia, the free encyclopedia

Artist's impression of a major impact event. The collision between Earth and an asteroid a few kilometres in diameter would release as much energy as the simultaneous detonation of several million nuclear weapons.

Asteroid impact avoidance comprises a number of methods by which near-Earth objects (NEO) could be diverted, preventing destructive impact events. A sufficiently large impact by an asteroid or other NEOs would cause, depending on its impact location, massive tsunamis, multiple firestorms and an impact winter caused by the sunlight-blocking effect of placing large quantities of pulverized rock dust, and other debris, into the stratosphere

A collision between the Earth and an approximately 10 kilometres (6.2 miles)-wide object 66 million years ago is thought to have produced the Chicxulub crater and the Cretaceous–Paleogene extinction event, widely held responsible for the extinction of most dinosaurs.

While the chances of a major collision are low in the near term, there is a high probability that one will happen eventually unless defensive actions are taken. Recent astronomical events—such as the Shoemaker-Levy 9 impacts on Jupiter and the 2013 Chelyabinsk meteor, along with the growing number of objects on the Sentry Risk Table—have drawn renewed attention to such threats. NASA warns that the Earth is unprepared for such an event.

In April 2018, the B612 Foundation reported "It's 100 per cent certain we'll be hit [by a devastating asteroid], but we're not 100 per cent sure when." Also in 2018, physicist Stephen Hawking, in his final book Brief Answers to the Big Questions, considered an asteroid collision to be the biggest threat to the planet. In June 2018, the US National Science and Technology Council warned that America is unprepared for an asteroid impact event, and has developed and released the "National Near-Earth Object Preparedness Strategy Action Plan" to better prepare. According to expert testimony in the United States Congress in 2013, NASA would require at least five years of preparation before a mission to intercept an asteroid could be launched.

Deflection efforts

Known Near-Earth objects – as of January 2018
Video (0:55; July 23, 2018)

Most deflection efforts for a large object require from a year to decades of warning, allowing time to prepare and carry out a collision avoidance project, as no known planetary defense hardware has yet been developed. It has been estimated that a velocity change of just 3.5/t × 10−2 m·s−1 (where t is the number of years until potential impact) is needed to successfully deflect a body on a direct collision trajectory. In addition, under certain circumstances, much smaller velocity changes are needed. For example, it was estimated there was a high chance of 99942 Apophis swinging by Earth in 2029 with a 10−4 probability of passing through a 'keyhole' and returning on an impact trajectory in 2035 or 2036. It was then determined that a deflection from this potential return trajectory, several years before the swing-by, could be achieved with a velocity change on the order of 10−6 ms−1.

An impact by a 10 kilometres (6.2 mi) asteroid on the Earth has historically caused an extinction-level event due to catastrophic damage to the biosphere. There is also the threat from comets entering the inner Solar System. The impact speed of a long-period comet would likely be several times greater than that of a near-Earth asteroid, making its impact much more destructive; in addition, the warning time is unlikely to be more than a few months. Impacts from objects as small as 50 metres (160 ft) in diameter, which are far more common, are historically extremely destructive regionally.

Finding out the material composition of the object is also helpful before deciding which strategy is appropriate. Missions like the 2005 Deep Impact probe have provided valuable information on what to expect. 


Frequency of small asteroids roughly 1 to 20 meters in diameter impacting Earth's atmosphere.

History of government mandates

The 1992 NASA-sponsored Near-Earth-Object Interception Workshop hosted by Los Alamos National Laboratory evaluated issues involved in intercepting celestial objects that could hit Earth. In a 1992 report to NASA, a coordinated Spaceguard Survey was recommended to discover, verify and provide follow-up observations for Earth-crossing asteroids. This survey was expected to discover 90% of these objects larger than one kilometer within 25 years. Three years later, another NASA report recommended search surveys that would discover 60–70% of short-period, near-Earth objects larger than one kilometer within ten years and obtain 90% completeness within five more years. 

In 1998, NASA formally embraced the goal of finding and cataloging, by 2008, 90% of all near-Earth objects (NEOs) with diameters of 1 km or larger that could represent a collision risk to Earth. The 1 km diameter metric was chosen after considerable study indicated that an impact of an object smaller than 1 km could cause significant local or regional damage but is unlikely to cause a worldwide catastrophe. The impact of an object much larger than 1 km diameter could well result in worldwide damage up to, and potentially including, extinction of the human species. The NASA commitment has resulted in the funding of a number of NEO search efforts, which made considerable progress toward the 90% goal by 2008. However the 2009 discovery of several NEOs approximately 2 to 3 kilometers in diameter (e.g. 2009 CR2, 2009 HC82, 2009 KJ, 2009 MS and 2009 OG) demonstrated there were still large objects to be detected.

United States Representative George E. Brown, Jr. (D-CA) was quoted as voicing his support for planetary defense projects in Air & Space Power Chronicles, saying "If some day in the future we discover well in advance that an asteroid that is big enough to cause a mass extinction is going to hit the Earth, and then we alter the course of that asteroid so that it does not hit us, it will be one of the most important accomplishments in all of human history." 

Because of Congressman Brown's long-standing commitment to planetary defense, a U.S. House of Representatives' bill, H.R. 1022, was named in his honor: The George E. Brown, Jr. Near-Earth Object Survey Act. This bill "to provide for a Near-Earth Object Survey program to detect, track, catalogue, and characterize certain near-Earth asteroids and comets" was introduced in March 2005 by Rep. Dana Rohrabacher (R-CA). It was eventually rolled into S.1281, the NASA Authorization Act of 2005, passed by Congress on December 22, 2005, subsequently signed by the President, and stating in part:
The U.S. Congress has declared that the general welfare and security of the United States require that the unique competence of NASA be directed to detecting, tracking, cataloguing, and characterizing near-Earth asteroids and comets in order to provide warning and mitigation of the potential hazard of such near-Earth objects to the Earth. The NASA Administrator shall plan, develop, and implement a Near-Earth Object Survey program to detect, track, catalogue, and characterize the physical characteristics of near- Earth objects equal to or greater than 140 meters in diameter in order to assess the threat of such near-Earth objects to the Earth. It shall be the goal of the Survey program to achieve 90% completion of its near-Earth object catalogue (based on statistically predicted populations of near-Earth objects) within 15 years after the date of enactment of this Act. The NASA Administrator shall transmit to Congress not later than 1 year after the date of enactment of this Act an initial report that provides the following: (A) An analysis of possible alternatives that NASA may employ to carry out the Survey program, including ground-based and space-based alternatives with technical descriptions. (B) A recommended option and proposed budget to carry out the Survey program pursuant to the recommended option. (C) Analysis of possible alternatives that NASA could employ to divert an object on a likely collision course with Earth.
The result of this directive was a report presented to Congress in early March 2007. This was an Analysis of Alternatives (AoA) study led by NASA's Program Analysis and Evaluation (PA&E) office with support from outside consultants, the Aerospace Corporation, NASA Langley Research Center (LaRC), and SAIC (amongst others).

Ongoing projects

Number of NEOs detected by various projects.
 
NEOWISE – first four years of data starting in December 2013 (animated; April 20, 2018)

The Minor Planet Center in Cambridge, Massachusetts has been cataloging the orbits of asteroids and comets since 1947. It has recently been joined by surveys which specialize in locating the near-Earth objects (NEO), many (as of early 2007) funded by NASA's Near Earth Object program office as part of their Spaceguard program. One of the best-known is LINEAR that began in 1996. By 2004 LINEAR was discovering tens of thousands of objects each year and accounting for 65% of all new asteroid detections. LINEAR uses two one-meter telescopes and one half-meter telescope based in New Mexico.

Spacewatch, which uses a 90 centimeter telescope sited at the Kitt Peak Observatory in Arizona, updated with automatic pointing, imaging, and analysis equipment to search the skies for intruders, was set up in 1980 by Tom Gehrels and Robert S. McMillan of the Lunar and Planetary Laboratory of the University of Arizona in Tucson, and is now being operated by McMillan. The Spacewatch project has acquired a 1.8 meter telescope, also at Kitt Peak, to hunt for NEOs, and has provided the old 90 centimeter telescope with an improved electronic imaging system with much greater resolution, improving its search capability.

Other near-Earth object tracking programs include Near-Earth Asteroid Tracking (NEAT), Lowell Observatory Near-Earth-Object Search (LONEOS), Catalina Sky Survey, Campo Imperatore Near-Earth Object Survey (CINEOS), Japanese Spaceguard Association, and Asiago-DLR Asteroid Survey. Pan-STARRS completed telescope construction in 2010, and it is now actively observing. 

The Asteroid Terrestrial-impact Last Alert System, now in operation, conducts frequent scans of the sky with a view to later-stage detection on the collision stretch of the asteroid orbit. Those would be much too late for deflection, but still in time for evacuation and preparation of the affected Earth region. 

Another project, supported by the European Union, is NEOShield, which analyses realistic options for preventing the collision of a NEO with Earth. Their aim is to provide test mission designs for feasible NEO mitigation concepts.The project particularly emphasises on two aspects.
  1. The first one is the focus on technological development on essential techniques and instruments needed for guidance, navigation and control (GNC) in close vicinity of asteroids and comets. This will, for example, allow hitting such bodies with a high-velocity kinetic impactor spacecraft and observing them before, during and after a mitigation attempt, e.g., for orbit determination and monitoring.
  2. The second one focuses on refining Near Earth Object (NEO) characterisation. Moreover, NEOShield-2 will carry out astronomical observations of NEOs, to improve the understanding of their physical properties, concentrating on the smaller sizes of most concern for mitigation purposes, and to identify further objects suitable for missions for physical characterisation and NEO deflection demonstration.
"Spaceguard" is the name for these loosely affiliated programs, some of which receive NASA funding to meet a U.S. Congressional requirement to detect 90% of near-Earth asteroids over 1 km diameter by 2008. A 2003 NASA study of a follow-on program suggests spending US$250–450 million to detect 90% of all near-Earth asteroids 140 meters and larger by 2028.

NEODyS is an online database of known NEOs.

Sentinel Mission

The B612 Foundation is a private nonprofit foundation with headquarters in the United States, dedicated to protecting the Earth from asteroid strikes. It is led mainly by scientists, former astronauts and engineers from the Institute for Advanced Study, Southwest Research Institute, Stanford University, NASA and the space industry

As a non-governmental organization it has conducted two lines of related research to help detect NEOs that could one day strike the Earth, and find the technological means to divert their path to avoid such collisions. The foundation's current goal is to design and build a privately financed asteroid-finding space telescope, Sentinel, to be launched in 2017–2018. The Sentinel's infrared telescope, once parked in an orbit similar to that of Venus, will help identify threatening NEOs by cataloging 90% of those with diameters larger than 140 metres (460 ft), as well as surveying smaller Solar System objects.

Data gathered by Sentinel will help identify asteroids and other NEOs that pose a risk of collision with Earth, by being forwarded to scientific data-sharing networks, including NASA and academic institutions such as the Minor Planet Center. The foundation also proposes asteroid deflection of potentially dangerous NEOs by the use of gravity tractors to divert their trajectories away from Earth, a concept co-invented by the organization's CEO, physicist and former NASA astronaut Ed Lu.

Prospective projects

Orbit@home intends to provide distributed computing resources to optimize search strategy. On February 16, 2013, the project was halted due to lack of grant funding. However, on July 23, 2013, the orbit@home project was selected for funding by NASA's Near Earth Object Observation program and was to resume operations sometime in early 2014. As of July 13, 2018, the project is offline according to its website.

The Large Synoptic Survey Telescope, currently under construction, is expected to perform a comprehensive, high-resolution survey starting in the early 2020s.

Detection from space

On November 8, 2007, the House Committee on Science and Technology's Subcommittee on Space and Aeronautics held a hearing to examine the status of NASA's Near-Earth Object survey program. The prospect of using the Wide-field Infrared Survey Explorer was proposed by NASA officials.

WISE surveyed the sky in the infrared band at a very high sensitivity. Asteroids that absorb solar radiation can be observed through the infrared band. It was used to detect NEOs, in addition to performing its science goals. It is projected that WISE could detect 400 NEOs (roughly two percent of the estimated NEO population of interest) within the one-year mission. 

NEOSSat, the Near Earth Object Surveillance Satellite, is a microsatellite launched in February 2013 by the Canadian Space Agency (CSA) that will hunt for NEOs in space. Further, Near-Earth Object WISE (NEOWISE), an extension of the WISE mission, started in September 2013, to hunt asteroids and comets close to the orbit of Earth.

Deep Impact

Research published in the March 26, 2009 issue of the journal Nature, describes how scientists were able to identify an asteroid in space before it entered Earth's atmosphere, enabling computers to determine its area of origin in the Solar System as well as predict the arrival time and location on Earth of its shattered surviving parts. The four-meter-diameter asteroid, called 2008 TC3, was initially sighted by the automated Catalina Sky Survey telescope, on October 6, 2008. Computations correctly predicted that it would impact 19 hours after discovery and in the Nubian Desert of northern Sudan.

A number of potential threats have been identified, such as 99942 Apophis (previously known by its provisional designation 2004 MN4), which in 2009 temporarily had an impact probability of about 3% for the year 2029. Additional observations revised this probability down to zero.

Impact probability calculation pattern

Why asteroid impact probability often goes up, then down.

The ellipses in the diagram on the right show the predicted position of an example asteroid at closest Earth approach. At first, with only a few asteroid observations, the error ellipse is very large and includes the Earth. Further observations shrink the error ellipse, but it still includes the Earth. This raises the predicted impact probability, since the Earth now covers a larger fraction of the error region. Finally, yet more observations (often radar observations, or discovery of a previous sighting of the same asteroid on archival images) shrink the ellipse revealing that the Earth is outside the error region, and the impact probability is near zero.

For asteroids that are actually on track to hit Earth the predicted probability of impact continues to increase as more observations are made. This very similar pattern makes it difficult to differentiate between asteroids which will only come close to Earth and those which will actually hit it. This in turn makes it difficult to decide when to raise an alarm as gaining more certainty takes time, which reduces the time available to react to a predicted impact. However raising the alarm too soon has the danger of causing a false alarm and creating a Boy Who Cried Wolf effect if the asteroid in fact misses Earth.

Collision avoidance strategies

Various collision avoidance techniques have different trade-offs with respect to metrics such as overall performance, cost, operations, and technology readiness. There are various methods for changing the course of an asteroid/comet. These can be differentiated by various types of attributes such as the type of mitigation (deflection or fragmentation), energy source (kinetic, electromagnetic, gravitational, solar/thermal, or nuclear), and approach strategy (interception, rendezvous, or remote station). 

Strategies fall into two basic sets: destruction and delay. Fragmentation concentrates on rendering the impactor harmless by fragmenting it and scattering the fragments so that they miss the Earth or burn up in the atmosphere. Delay exploits the fact that both the Earth and the impactor are in orbit. An impact occurs when both reach the same point in space at the same time, or more correctly when some point on Earth's surface intersects the impactor's orbit when the impactor arrives. Since the Earth is approximately 12,750 km in diameter and moves at approx. 30 km per second in its orbit, it travels a distance of one planetary diameter in about 425 seconds, or slightly over seven minutes. Delaying, or advancing the impactor's arrival by times of this magnitude can, depending on the exact geometry of the impact, cause it to miss the Earth.

Collision avoidance strategies can also be seen as either direct, or indirect and in how rapidly they transfer energy to the object. The direct methods, such as nuclear explosives, or kinetic impactors, rapidly intercept the bolide's path. Direct methods are preferred because they are generally less costly in time and money. Their effects may be immediate, thus saving precious time. These methods would work for short-notice, and long-notice threats, and are most effective against solid objects that can be directly pushed, but in the case of kinetic impactors, they are not very effective against large loosely aggregated rubble piles. The indirect methods, such as gravity tractors, attaching rockets or mass drivers, are much slower and require traveling to the object, time to change course up to 180 degrees to fly alongside it, and then take much more time to change the asteroid's path just enough so it will miss Earth. 

Many NEOs are thought to be "flying rubble piles" only loosely held together by gravity, and a typical spacecraft sized kinetic-impactor deflection attempt might just break up the object or fragment it without sufficiently adjusting its course. If an asteroid breaks into fragments, any fragment larger than 35 meters across would not burn up in the atmosphere and itself could impact Earth. Tracking the thousands of buckshot-like fragments that could result from such an explosion would be a very daunting task, although fragmentation would be preferable to doing nothing and allowing the originally larger rubble body, which is analogous to a shot and wax slug, to impact the Earth. 

In Cielo simulations conducted in 2011–2012, in which the rate and quantity of energy delivery were sufficiently high and matched to the size of the rubble pile, such as following a tailored nuclear explosion, results indicated that any asteroid fragments, created after the pulse of energy is delivered, would not pose a threat of re-coalescing (including for those with the shape of asteroid Itokawa) but instead would rapidly achieve escape velocity from their parent body (which for Itokawa is about 0.2 m/s) and therefore move out of an earth-impact trajectory.

Nuclear explosive device

In a similar manner to the earlier pipes filled with a partial pressure of helium, as used in the Ivy Mike test of 1952, the 1954 Castle Bravo test was likewise heavily instrumented with Line-of-Sight(LOS) pipes, to better define and quantify the timing and energies of the x-rays and neutrons produced by these early thermonuclear devices. One of the outcomes of this diagnostic work resulted in this graphic depiction of the transport of energetic x-ray and neutrons through a vacuum line, some 2.3 km long, whereupon it heated solid matter at the "station 1200" blockhouse and thus generated a secondary fireball.
 
Initiating a nuclear explosive device above, on, or slightly beneath, the surface of a threatening celestial body is a potential deflection option, with the optimal detonation height dependent upon the composition and size of the object. It does not require the entire NEO to be vaporized to mitigate an impact threat. In the case of an inbound threat from a "rubble pile," the stand off, or detonation height above the surface configuration, has been put forth as a means to prevent the potential fracturing of the rubble pile. The energetic neutrons and soft X-rays released by the detonation, which do not appreciably penetrate matter, are converted into thermal heat upon encountering the object's surface matter, ablatively vaporizing all line of sight exposed surface areas of the object to a shallow depth, turning the surface material it heats up into ejecta, and, analogous to the ejecta from a chemical rocket engine exhaust, changing the velocity, or "nudging", the object off course by the reaction, following Newton's third law, with ejecta going one way and the object being propelled in the other. Depending on the energy of the explosive device, the resulting rocket exhaust effect, created by the high velocity of the asteroid's vaporized mass ejecta, coupled with the object's small reduction in mass, would produce enough of a change in the object's orbit in order to avoid hitting the Earth.

A Hypervelocity Asteroid Mitigation Mission for Emergency Response (HAMMER) has been proposed.

Stand-off approach

If the object is very large but is still a loosely held together rubble pile, a solution is to detonate one or a series of nuclear explosive devices alongside the asteroid, at a 20-meter or greater stand-off height above its surface, so as not to fracture the potentially loosely held together object. Providing this stand-off strategy was done far enough in advance, the force from a sufficient number of nuclear blasts would be enough to alter the object's trajectory to avoid an impact, according to computer simulations and experimental evidence from meteorites exposed to the thermal X-ray pulses of the Z-machine.

The 1964 book Islands in Space calculates that the nuclear megatonnage necessary for several deflection scenarios exists. In 1967, graduate students under Professor Paul Sandorff at the Massachusetts Institute of Technology were tasked with designing a method to prevent a hypothetical 18 month distant impact on Earth by the 1.4 kilometer wide asteroid 1566 Icarus, an object which makes regular close approaches to Earth, sometimes as close as 16 lunar distances. To achieve the task within the timeframe and with limited material knowledge of the asteroid's composition, a variable stand-off system was conceived. This would have used a number of modified Saturn V rockets sent on interception courses and the creation of a handful of nuclear explosive devices in the 100 megaton energy range—coincidentally, the maximum yield of the Soviets' 27 metric-tonne mass, 1961 Tsar Bomba if a uranium tamper had been used—as each rocket vehicle's payload. The design study was later published as Project Icarus which served as the inspiration for the 1979 film Meteor.

A NASA analysis of deflection alternatives, conducted in 2007, stated:
Nuclear standoff explosions are assessed to be 10–100 times more effective than the non-nuclear alternatives analyzed in this study. Other techniques involving the surface or subsurface use of nuclear explosives may be more efficient, but they run an increased risk of fracturing the target NEO. They also carry higher development and operations risks.
In the same year NASA released a study where the asteroid Apophis (with a diameter ~300 m) was assumed to have a much lower rubble pile density (1,500 kg/m3) and therefore mass than is now known, and in the study, it is assumed to be on an impact trajectory with Earth for the year 2029. Under these hypothetical conditions, the report determines that a "Cradle spacecraft" would be sufficient to deflect it from Earth impact. This conceptual spacecraft contains six B83 physics packages, each set for their maximum 1.2 megatonne yield that are bundled together and lofted by an Ares V vehicle sometime in the 2020s, with each B83 being fuzed to detonate over the asteroid's surface at a height of 100 m ("1/3 of the objects diameter" as its stand-off), one after the other, with hour long intervals between each successive detonation. The results of this study indicated that a single employment of this "option can deflect NEOs of [100-500m diameter] two years before impact, and larger NEOs with at least five years warning". These effectiveness figures are considered to be "conservative" by its authors and only the thermal X-ray output of the B83 devices was considered, while neutron heating was neglected for ease of calculation purposes.

Surface and subsurface use

The director of the Asteroid Deflection Research Center at Iowa State University, Wie, who had published kinetic impactor deflection studies in the past, began in 2011 to study strategies that could deal with 50 to 500 meter diameter objects when the time to Earth impact was under a year or so. He concluded that to provide the required energy, a nuclear explosion or other events that could deliver the same power, are the only methods that can work against a very large asteroid within these time constraints. 

This work resulted in the creation of a conceptual Hypervelocity Asteroid Intercept Vehicle (HAIV), which combines a kinetic impactor to create an initial crater for a follow-up subsurface nuclear detonation within that initial crater, which would generate a high degree of efficiency in the conversion of the nuclear energy that is released in the detonation into propulsion energy to the asteroid.

Another proposed approach along similar lines is the use of a surface detonating nuclear device, in place of the prior mentioned kinetic impactor, in order to create the initial crater, with the resulting crater that forms then again being used as a rocket nozzle to channel succeeding nuclear detonations.
At the 2014 NASA Innovative Advanced Concepts (NIAC) conference, Wie and his colleagues stated that, "We have the solution, using our baseline concept, to be able to mitigate the asteroid-impact threat, with any range of warning." For example, according to their computer models, with a warning time of 30 days a 1,000-foot-wide (300 m) asteroid would be neutralized by using a single HAIV, with less than 0.1 percent of the destroyed object's mass potentially striking Earth, which by comparison would be more than acceptable.

As of 2015 Wie has collaborated with the Danish Emergency Asteroid Defence Project (EADP), which ultimately intends to crowdsource sufficient funds to design, build and store a non-nuclear HAIV spacecraft as planetary insurance. For threatening asteroids too large and/or too close to Earth impact to effectively be deflected by the non-nuclear HAIV approach, nuclear explosive devices with 5% of the explosive yield in this configuration than when compared to the stand-off strategy are intended to be swapped-in, under international oversight, when conditions arise that necessitate it.

Comet deflection possibility

Following the 1994 Shoemaker-Levy 9 comet impacts with Jupiter, Edward Teller proposed to a collective of U.S. and Russian ex-Cold War weapons designers in a 1995 planetary defense workshop meeting at Lawrence Livermore National Laboratory (LLNL), that they collaborate to design a 1 gigaton nuclear explosive device, which would be equivalent to the kinetic energy of a 1 km diameter asteroid. The theoretical 1 Gt device would weigh about 25–30 tons, light enough to be lifted on the Energia rocket and it could be used to instantaneously vaporize a 1 km asteroid, divert the paths of extinction event class asteroids (greater than 10 km in diameter) within a few months of short notice, while with 1-year notice, at an interception location no closer than Jupiter, it would also be capable of dealing with the even rarer short period comets which can come out of the Kuiper belt and transit past Earth orbit within 2 years. For comets of this class, with a maximum estimated 100 km diameter, Charon served as the hypothetical threat.

In 2013, the related National Laboratories of the US and Russia signed a deal that includes an intent to cooperate on defense from asteroids.

Present capability

An April 2014 GAO report notes that the NNSA is retaining canned subassemblies (CSAs) " in an indeterminate state pending a senior-level government evaluation of their use in planetary defense against earthbound asteroids." In its FY2015 budget request, the NNSA noted that the 9 Mt B53 component disassembly was "delayed", leading some observers to conclude they might be the warhead CSAs being retained for potential planetary defense purposes. Following the total disassembly of all 25 Mt high yield B41s in 1976, the B53 is the highest yielding US device presently in the Enduring Stockpile.

Law

The use of nuclear explosive devices is an international issue and will need to be addressed by the United Nations Committee on the Peaceful Uses of Outer Space. The 1996 Comprehensive Nuclear-Test-Ban Treaty technically bans nuclear weapons in space. However it is unlikely that a nuclear explosive device, fuzed to be detonated only upon interception with a threatening celestial object, with the sole intent of preventing that celestial body from impacting Earth would be regarded as an un-peaceful use of space, or that the explosive device sent to mitigate an Earth impact, explicitly designed to prevent harm to come to life would fall under the classification of a "weapon".

Kinetic impact

The Deep Impact collision encounter with comet Tempel 1 (8 x 5 km in dimensions). The impact flash and resulting ejecta are clearly visible. The impactor delivered 19 gigajoules (the equivalent of 4.8 tons of TNT) upon impact. It generated a predicted 0.0001 mm/s velocity change in the comet's orbital motion and decreased its perihelion distance by 10 meters. After the impact, a newspaper reported that the orbit of comet Tempel 1 was changed by 10 cm (3.9 in)."
 
The impact of a massive object, such as a spacecraft or even another near-Earth object, is another possible solution to a pending NEO impact. An object with a high mass close to the Earth could be sent out into a collision course with the asteroid, knocking it off course. 

When the asteroid is still far from the Earth, a means of deflecting the asteroid is to directly alter its momentum by colliding a spacecraft with the asteroid. 

A NASA analysis of deflection alternatives, conducted in 2007, stated:
Non-nuclear kinetic impactors are the most mature approach and could be used in some deflection/mitigation scenarios, especially for NEOs that consist of a single small, solid body.
The European Space Agency (ESA) is studying the preliminary design of two space missions for ~2020, named AIDA (formerly Don Quijote), and if flown, they would be the first intentional asteroid deflection mission ever designed. ESA's Advanced Concepts Team has also demonstrated theoretically that a deflection of 99942 Apophis could be achieved by sending a simple spacecraft weighing less than one ton to impact against the asteroid. During a trade-off study one of the leading researchers argued that a strategy called 'kinetic impactor deflection' was more efficient than others.

The European Union's NEOShield-2 Mission is also primarily studying the Kinetic Impactor mitigation method. The principle of the kinetic impactor mitigation method is that the NEO or Asteroid is deflected following an impact from an impactor spacecraft. The principle of momentum transfer is used, as the impactor crashes into the NEO at a very high velocity of 10 km/s or more. The mass and velocity of the impactor (the momentum) are transferred to the NEO, causing a change in velocity and therefore making it deviate from its course slightly.

As of mid-2018, the AIDA mission has been partly approved. The NASA Double Asteroid Redirection Test (DART) kinetic impactor spacecraft has entered phase C (detailed definition). The goal os to impact the 180-m asteroidal moon of Near-Earth Asteroid 65803 Didymos, nicknamed Didymoon. The impact will occur in October 2022 when Didymos is relatively close to Earth, allowing Earth-based telescopes and planetary radar to observe the event. The result of the impact will be to change the orbital velocity and hence orbital period of Didymoon, by a large enough amount that it can be measured from Earth. This will show for the first time that it is possible to change the orbit of a small ~200m diameter asteroid, around the size most likely to require active mitigation in the future. The second part of the AIDA mission - the ESA HERA spacecraft - has entered phase B (Preliminary Definition) and requires approval by ESA member states in October 2019. If approved, it would reach the Didymos system in 2024 and measure both the mass of Didymoon and the precise effect of the impact on that body, allowing much better extrapolation of the AIDA mission to other targets.

Asteroid gravity tractor

One more alternative to explosive deflection is to move the asteroid slowly over a time. Tiny constant thrust accumulates to deviate an object sufficiently from its predicted course. Edward T. Lu and Stanley G. Love have proposed using a large heavy unmanned spacecraft hovering over an asteroid to gravitationally pull the latter into a non-threatening orbit. The spacecraft and the asteroid mutually attract one another. If the spacecraft counters the force towards the asteroid by, e.g., an ion thruster, the net effect is that the asteroid is accelerated towards the spacecraft and thus slightly deflected from its orbit. While slow, this method has the advantage of working irrespective of the asteroid composition or spin rate – rubble pile asteroids would be difficult to deflect by means of nuclear detonations while a pushing device would be hard or inefficient to mount on a fast rotating asteroid. A gravity tractor would likely have to spend several years beside the asteroid to be effective. 

A NASA analysis of deflection alternatives, conducted in 2007, stated:
"Slow push" mitigation techniques are the most expensive, have the lowest level of technical readiness, and their ability to both travel to and divert a threatening NEO would be limited unless mission durations of many years to decades are possible.
The Asteroid Redirect Mission vehicle was to demonstrate the "gravity tractor" planetary defense technique on a hazardous-size asteroid. The gravity tractor method leverages the mass of the spacecraft to impart a gravitational force on the asteroid, slowly altering the asteroid's trajectory.

Ion beam shepherd

Another "contactless" asteroid deflection technique has been recently proposed by C.Bombardelli and J.Peláez from the Technical University of Madrid. The method involves the use of a low divergence ion thruster pointed at the asteroid from a nearby hovering spacecraft. The momentum transmitted by the ions reaching the asteroid surface produces a slow but continuous force that can deflect the asteroid in a similar way as done by the gravity tractor but with a lighter spacecraft.

Use of focused solar energy

NASA study of a solar sail. The sail would be 0.5 km wide.

H. Jay Melosh proposed deflecting an asteroid or comet by focusing solar energy onto its surface to create thrust from the resulting vaporization of material, or to amplify the Yarkovsky effect. Over a span of months or years enough solar radiation can be directed onto the object to deflect it.

This method would first require the construction of a space station with a system of gigantic lenses. Then the station would be transported toward the Sun.

Mass driver

A mass driver is an (automated) system on the asteroid to eject material into space thus giving the object a slow steady push and decreasing its mass. A mass driver is designed to work as a very low specific impulse system, which in general uses a lot of propellant, but very little power. 

The idea is that when using local material as propellant, the amount of propellant is not as important as the amount of power, which is likely to be limited. 

Another possibility is to use a mass driver on the Moon aimed at the NEO to take advantage of the Moon's orbital velocity and inexhaustible supply of "rock bullets".

Conventional rocket engine

Attaching any spacecraft propulsion device would have a similar effect of giving a push, possibly forcing the asteroid onto a trajectory that takes it away from Earth. An in-space rocket engine that is capable of imparting an impulse of 106 N·s (E.g. adding 1 km/s to a 1000 kg vehicle), will have a relatively small effect on a relatively small asteroid that has a mass of roughly a million times more. Chapman, Durda, and Gold's white paper calculates deflections using existing chemical rockets delivered to the asteroid. 

Such direct force rocket engines are typically proposed to use highly-efficient electrically powered spacecraft propulsion, such as ion thrusters or VASIMR.

Asteroid laser ablation

This early Asteroid Redirect Mission artist's impression is suggestive of another method of changing a large threatening celestial body's orbit by capturing relatively smaller celestial objects and using those, and not the usually proposed small bits of spacecraft, as the means of creating a powerful kinetic impact, or alternatively, a stronger faster acting gravitational tractor, as some low-density asteroids such as 253 Mathilde can dissipate impact energy.

Similar to the effects of a nuclear device, it is thought possible to focus sufficient laser energy on the surface of an asteroid to cause flash vaporization / ablation to create either in impulse or to ablate away the asteroid mass. This concept, called asteroid laser ablation was articulated in the 1995 SpaceCast 2020 white paper "Preparing for Planetary Defense", and the 1996 Air Force 2025 white paper "Planetary Defense: Catastrophic Health Insurance for Planet Earth". Early publications include C. R. Phipps "ORION" concept from 1996, Colonel Jonathan W. Campbell's 2000 monograph "Using Lasers in Space: Laser Orbital Debris Removal and Asteroid Deflection", and NASA's 2005 concept Comet Asteroid Protection System (CAPS). Typically such systems require a significant amount of power, such as would be available from a Space-Based Solar Power Satellite

The 1984 Strategic Defense Initiative concept of a generic space based Nuclear reactor pumped laser or a hydrogen fluoride laser satellite, firing on a target, causing a momentum change in the target object by laser ablation. With the proposed Space Station Freedom(ISS) in the background.
 
Another proposal is the Phillip Lubin's DE-STAR proposal.
  • The DE-STAR project, proposed by researchers at the University of California, Santa Barbara, is a concept modular solar powered 1 µm, near infrared wavelength, laser array. The design calls for the array to eventually be approximately 1 km squared in size, with the modular design meaning that it could be launched in increments and assembled in space. In its early stages as a small array it could deal with smaller targets, assist solar sail probes and would also be useful in cleaning up space debris.

Other proposals

  • Wrapping the asteroid in a sheet of reflective plastic such as aluminized PET film as a solar sail
  • "Painting" or dusting the object with titanium dioxide (white) to alter its trajectory via increased reflected radiation pressure or with soot (black) to alter its trajectory via the Yarkovsky effect.
  • Planetary scientist Eugene Shoemaker in 1996 proposed deflecting a potential impactor by releasing a cloud of steam in the path of the object, hopefully gently slowing it. Nick Szabo in 1990 sketched a similar idea, "cometary aerobraking", the targeting of a comet or ice construct at an asteroid, then vaporizing the ice with nuclear explosives to form a temporary atmosphere in the path of the asteroid.
  • Coherent digger array multiple 1 ton flat tractors able to dig and expel asteroid soil mass as a coherent fountain array, coordinated fountain activity may propel and deflect over years.
  • Attaching a tether and ballast mass to the asteroid to alter its trajectory by changing its center of mass.
  • Magnetic Flux Compression to magnetically brake and or capture objects that contain a high percentage of meteoric iron by deploying a wide coil of wire in its orbital path and when it passes through, Inductance creates an electromagnet solenoid to be generated.

Deflection technology concerns

Carl Sagan, in his book Pale Blue Dot, expressed concern about deflection technology that any method capable of deflecting impactors away from Earth could also be abused to divert non-threatening bodies toward the planet. Considering the history of genocidal political leaders and the possibility of the bureaucratic obscuring of any such project's true goals to most of its scientific participants, he judged the Earth at greater risk from a man-made impact than a natural one. Sagan instead suggested that deflection technology be developed only in an actual emergency situation.

All low-energy delivery deflection technologies have inherent fine control and steering capability, making it possible to add just the right amount of energy to steer an asteroid originally destined for a mere close approach toward a specific Earth target. 

According to Rusty Schweickart, the gravitational tractor method is controversial because, during the process of changing an asteroid's trajectory, the point on the Earth where it could most likely hit would be slowly shifted across different countries. Thus, the threat for the entire planet would be minimized at the cost of some specific states' security. In Schweickart's opinion, choosing the way the asteroid should be "dragged" would be a tough diplomatic decision.

Analysis of the uncertainty involved in nuclear deflection shows that the ability to protect the planet does not imply the ability to target the planet. A nuclear explosion that changes an asteroid's velocity by 10 meters/second (plus or minus 20%) would be adequate to push it out of an Earth-impacting orbit. However, if the uncertainty of the velocity change was more than a few percent, there would be no chance of directing the asteroid to a particular target.

Planetary defense timeline

  • In their 1964 book, Islands in Space, Dandridge M. Cole and Donald W. Cox noted the dangers of planetoid impacts, both those occurring naturally and those that might be brought about with hostile intent. They argued for cataloging the minor planets and developing the technologies to land on, deflect, or even capture planetoids.
  • In 1967, students in the Aeronautics and Astronautics department at MIT did a design study, "Project Icarus," of a mission to prevent a hypothetical impact on Earth by asteroid 1566 Icarus. The design project was later published in a book by the MIT Press and received considerable publicity, for the first time bringing asteroid impact into the public eye.
  • In the 1980s NASA studied evidence of past strikes on planet Earth, and the risk of this happening at the current level of civilization. This led to a program that maps which objects in the Solar System both cross Earth's orbit and are large enough to cause serious damage if they ever hit.
  • In the 1990s, US Congress held hearings to consider the risks and what needed to be done about them. This led to a US$3 million annual budget for programs like Spaceguard and the near-Earth object program, as managed by NASA and USAF.
  • In 2005 a number of astronauts published an open letter through the Association of Space Explorers calling for a united push to develop strategies to protect Earth from the risk of a cosmic collision.
  • It is currently (as of late 2007) estimated that there are approximately 20,000 objects capable of crossing Earth's orbit and large enough (140 meters or larger) to warrant concern. On the average, one of these will collide with Earth every 5,000 years, unless preventative measures are undertaken. It is now anticipated that by year 2008, 90% of such objects that are 1 km or more in diameter will have been identified and will be monitored. The further task of identifying and monitoring all such objects of 140m or greater is expected to be complete around 2020.
  • The Catalina Sky Survey (CSS) is one of NASA´s four funded surveys to carry out a 1998 U.S. Congress mandate to find and catalog by the end of 2008, at least 90 percent of all near-Earth objects (NEOs) larger than 1 kilometer across. CSS discovered over 1150 NEOs in years 2005 to 2007. In doing this survey they discovered on November 20, 2007, an asteroid, designated 2007 WD5, which initially was estimated to have a chance of hitting Mars on January 30, 2008, but further observations during the following weeks allowed NASA to rule out an impact. NASA estimated a near miss by 26,000 kilometres (16,000 mi).
  • In January 2012, after a near pass-by of object 2012 BX34, a paper entitled "A Global Approach to Near-Earth Object Impact Threat Mitigation," is released by researchers from Russia, Germany, the United States, France, Britain and Spain which discusses the "NEOShield" project.

Fictional representations

Asteroid or comet impacts are a common subgenre of disaster fiction, and such stories typically feature some attempt—successful or unsuccessful—to prevent the catastrophe. Most involve trying to destroy or explosively redirect an object.

Film

  • When Worlds Collide (1951): A science fiction film based on the 1933 novel; shot in Technicolor, directed by Rudolph Maté and the winner of the 1952 Academy Awards for special effects.
  • 1979 film Meteor, based on the MIT Project Icarus study.
  • Armageddon (1998): A pair of modified Space Shuttle orbiters, called "X-71s", and the Mir are used to drill a hole in an asteroid and plant a nuclear bomb.
  • Deep Impact (1998): A manned spacecraft, the Messiah, based on Project Orion, plants a number of nuclear bombs on a comet.
  • Melancholia (2011): The film's story revolves around two sisters, one of whom is preparing to marry, as a rogue planet is about to collide with Earth.
  • Seeking A Friend For The End Of The World (2012): After several unsuccessful attempts to stop an asteroid, humanity is given only three weeks to live, sending the world into sheer chaos, and bringing two unlikely people together in the wake of annihilation.
  • These Final Hours (2013): Two lovers and the inhabitants of Perth, Australia await a cataclysmic firestorm caused by the impact of an asteroid in the North Atlantic.
  • Tik Tik Tik (2018): There is space station with a nuclear missile that can destroy the rogue asteroid. The in-charge of that space station seems to be in a quarrel with India. So, they enlist the service of a local magician to go into space and save the lives of millions of Indians

Literature

  • Lucifer's Hammer (1977): A comet, which was initially thought unlikely to strike, hits the Earth, resulting in the end of civilization and a decline into tribal warfare over food and resources. Written by Larry Niven and Jerry Pournelle.
  • The Hammer of God (1993): A spacecraft is sent to divert a massive asteroid by using thrusters. Written by Arthur C. Clarke.
  • Titan (1997): The Chinese, to retaliate for biological attacks by the US, cause a huge explosion next to an asteroid (2002OA), with the aim of deflecting it into Earth orbit and threatening the world with targeted precision strikes in the future. Unfortunately, their calculations are wrong as they didn't take into account the size of the asteroid which could cause a Cretaceous–Paleogene extinction event. The asteroid strikes Earth, critically damaging the planetary ecosystem. Written by Stephen Baxter.
  • Moonfall (1998): A comet is in collision course with the Moon. After the collision, the debris start falling on Earth. Written by Jack McDevitt.
  • Nemesis (1998): The US government gathers a small team, including a British astronomer, with instructions to find and deflect an asteroid already targeted at North America by the Russians. Written by British astronomer Bill Napier.

Television

  • Star Trek: In "The Paradise Syndrome" (1968), an amnesiac Kirk finds a centuries-old obelisk which has a deflector beam built in to deflect an asteroid coming to wipe out a primitive race.
  • Horizon: Hunt for the Doomsday Asteroid (1994), a BBC documentary, part of the Horizon science series, Season 30, Episode 7.
  • NOVA: Doomsday Asteroid (1995), a PBS NOVA science documentary, Series 23, Episode 4.
  • Futurama: The episode "A Big Piece of Garbage" (1999), features a large space object on a collision course with Earth which turns out to be a giant ball of garbage launched into space by New York City around 2052. Residents of New New York first try blowing up the ball to destroy it but fail as the rocket is absorbed by the ball. They then deflect it using a newly created near-identical garbage ball.
  • Defenders of the Planet (2001), a three-part British TV mini-series discussing the individuals and organizations working to defend the Earth against killer asteroids and other extraterrestrial threats; broadcast on The Learning Channel.[127]
  • Danny Phantom: In the series finale episodes "Phantom Planet" an asteroid is on a collision course with Earth. Danny convinces Earth's ghosts to turn the Earth intangible, avoiding disaster.
  • The Sarah Jane Adventures: In "Whatever Happened to Sarah Jane?" (2007), a meteor on a collision course with the Earth is ultimately deflected back into space by Sarah Jane's alien computer, Mr. Smith.
  • You, Me and the Apocalypse: In this series, a comet is on a collision course with the Earth and collides after a failed attempt to deflect said comet.
  • One-Punch Man: The episode "The Ultimate Disciple" features the superheroes Genos and Metal Knight attempting to destroy a meteor on a collision course with a city. After failing to do so, the titular superhero Saitama destroys the meteor in one punch, inadvertently causing the meteor to shatter in smaller pieces, devastating the city.
  • Salvation (2017) centers on the ramifications of the discovery of an asteroid that will impact the Earth in just six months and the attempts to prevent it.

Video games

  • Ace Combat 04: Shattered Skies (2001): In this combat flight simulator for the PlayStation 2 by Namco, a railgun battery is used in an attempt to destroy a massive asteroid with limited success.
  • Mass Effect (2007): The "Bring Down the Sky" expansion features an alien extremist group that attempts to hijack an asteroid station and set it on a collision course with a human colony.
  • Outpost (1994): The game's plot mentions how an attempt to divert the path of the asteroid Vulcan's Hammer, in collision course with Earth, using a nuclear weapon fails and instead causes it to break in two large pieces that strike Earth.
  • In Terminal Velocity, the aggressors install an ion drive on Ceres to direct it towards Earth.

Beyond Einstein: Physicists find surprising connections in the cosmos

Dec. 17, 2018 noon



Gravity, the force that brings baseballs back to Earth and governs the growth of black holes, is mathematically relatable to the peculiar antics of the subatomic particles that make up all the matter around us.

Albert Einstein’s desk can still be found on the second floor of Princeton’s physics department. Positioned in front of a floor-to-ceiling blackboard covered with equations, the desk seems to embody the spirit of the frizzy-haired genius as he asks the department’s current occupants, “So, have you solved it yet?”

Einstein never achieved his goal of a unified theory to explain the natural world in a single, coherent framework. Over the last century, researchers have pieced together links between three of the four known physical forces in a “standard model,” but the fourth force, gravity, has always stood alone.

No longer. Thanks to insights made by Princeton faculty members and others who trained here, gravity is being brought in from the cold — although in a manner not remotely close to how Einstein had imagined it.

Though not yet a “theory of everything,” this framework, laid down over 20 years ago and still being filled in, reveals surprising ways in which Einstein’s theory of gravity relates to other areas of physics, giving researchers new tools with which to tackle elusive questions.

The key insight is that gravity, the force that brings baseballs back to Earth and governs the growth of black holes, is mathematically relatable to the peculiar antics of the subatomic particles that make up all the matter around us.

This revelation allows scientists to use one branch of physics to understand other seemingly unrelated areas of physics. So far, this concept has been applied to topics ranging from why black holes run a temperature to how a butterfly’s beating wings can cause a storm on the other side of the world. 

This relatability between gravity and subatomic particles provides a sort of Rosetta stone for physics. Ask a question about gravity, and you’ll get an explanation couched in the terms of subatomic particles. And vice versa.

“This has turned out to be an incredibly rich area,” said Igor Klebanov, Princeton’s Eugene Higgins Professor of Physics, who generated some of the initial inklings in this field in the 1990s. “It lies at the intersection of many fields of physics.”

From tiny bits of string

The seeds of this correspondence were sprinkled in the 1970s, when researchers were exploring tiny subatomic particles called quarks. These entities nest like Russian dolls inside protons, which in turn occupy the atoms that make up all matter. At the time, physicists found it odd that no matter how hard you smash two protons together, you cannot release the quarks — they stay confined inside the protons.

One person working on quark confinement was Alexander Polyakov, Princeton’s Joseph Henry Professor of Physics. It turns out that quarks are “glued together” by other particles, called gluons. For a while, researchers thought gluons could assemble into strings that tie quarks to each other. Polyakov glimpsed a link between the theory of particles and the theory of strings, but the work was, in Polyakov’s words, “hand-wavy” and he didn’t have precise examples.

Meanwhile, the idea that fundamental particles are actually tiny bits of vibrating string was taking off, and by the mid-1980s, “string theory” had lassoed the imaginations of many leading physicists. The idea is simple: just as a vibrating violin string gives rise to different notes, each string’s vibration foretells a particle’s mass and behavior. The mathematical beauty was irresistible and led to a swell of enthusiasm for string theory as a way to explain not only particles but the universe itself. 

One of Polyakov’s colleagues was Klebanov, who in 1996 was an associate professor at Princeton, having earned his Ph.D. at Princeton a decade earlier. That year, Klebanov, with graduate student Steven Gubser and postdoctoral research associate Amanda Peet, used string theory to make calculations about gluons, and then compared their findings to a string-theory approach to understanding a black hole. They were surprised to find that both approaches yielded a very similar answer. A year later, Klebanov studied absorption rates by black holes and found that this time they agreed exactly.

 That work was limited to the example of gluons and black holes. It took an insight by Juan Maldacena in 1997 to pull the pieces into a more general relationship. At that time, Maldacena, who had earned his Ph.D. at Princeton one year earlier, was an assistant professor at Harvard. He detected a correspondence between a special form of gravity and the theory that describes particles. Seeing the importance of Maldacena’s conjecture, a Princeton team consisting of Gubser, Klebanov and Polyakov followed up with a related paper formulating the idea in more precise terms.

Another physicist who was immediately taken with the idea was Edward Witten of the Institute for Advanced Study (IAS), an independent research center located about a mile from the University campus. He wrote a paper that further formulated the idea, and the combination of the three papers in late 1997 and early 1998 opened the floodgates.

“It was a fundamentally new kind of connection,” said Witten, a leader in the field of string theory who had earned his Ph.D. at Princeton in 1976 and is a visiting lecturer with the rank of professor in physics at Princeton. “Twenty years later, we haven’t fully come to grips with it.”



Conceptual art with a quote from Steven Gubser, Professor of Physics: “It is a tremendously successful idea. It compels one’s attention. It ropes you in,   it ropes in other fields, and it gives you a vantage point on theoretical physics that is very compelling.”

Two sides of the same coin

This relationship means that gravity and subatomic particle interactions are like two sides of the same coin. On one side is an extended version of gravity derived from Einstein’s 1915 theory of general relativity. On the other side is the theory that roughly describes the behavior of subatomic particles and their interactions.

The latter theory includes the catalogue of particles and forces in the “standard model” (see sidebar), a framework to explain matter and its interactions that has survived rigorous testing in numerous experiments, including at the Large Hadron Collider.

In the standard model, quantum behaviors are baked in. Our world, when we get down to the level of particles, is a quantum world.

Notably absent from the standard model is gravity. Yet quantum behavior is at the basis of the other three forces, so why should gravity be immune?

The new framework brings gravity into the discussion. It is not exactly the gravity we know, but a slightly warped version that includes an extra dimension. The universe we know has four dimensions, the three that pinpoint an object in space — the height, width and depth of Einstein’s desk, for example — plus the fourth dimension of time. The gravitational description adds a fifth dimension that causes spacetime to curve into a universe that includes copies of familiar four-dimensional flat space rescaled according to where they are found in the fifth dimension. This strange, curved spacetime is called anti-de Sitter (AdS) space after Einstein’s collaborator, Dutch
astronomer Willem de Sitter.

The breakthrough in the late 1990s was that mathematical calculations of the edge, or boundary, of this anti-de Sitter space can be applied to problems involving quantum behaviors of subatomic particles described by a mathematical relationship called conformal field theory (CFT). This relationship provides the link, which Polyakov had glimpsed earlier, between the theory of particles in four space-time dimensions and string theory in five dimensions. The relationship now goes by several names that relate gravity to particles, but most researchers call it the AdS/CFT (pronounced A-D-S-C-F-T) correspondence.



Conceptual art with a quote from Edward Witten, the Charles Simonyi Professor at the Institute for Advanced Study and Visiting Lecturer with the Rank of Professor in Physics at Princeton: "The relationship between gravity and strings “was a  fundamentally new kind of connection. Twenty years  later, we haven’t fully come to grips with it.”

Tackling the big questions

This correspondence, it turns out, has many practical uses. Take black holes, for example. The late physicist Stephen Hawking startled the physics community by discovering that black holes have a temperature that arises because each particle that falls into a black hole has an entangled particle that can escape as heat.

Using AdS/CFT, Tadashi Takayanagi and Shinsei Ryu, then at the University of California-Santa Barbara, discovered a new way to study entanglement in terms of geometry, extending Hawking’s insights in a fashion that experts consider quite remarkable.

In another example, researchers are using AdS/CFT to pin down chaos theory, which says that a random and insignificant event such as the flapping of a butterfly’s wings could result in massive changes to a large-scale system such as a faraway hurricane. It is difficult to calculate chaos, but black holes — which are some of the most chaotic quantum systems possible — could help. Work by Stephen Shenker and Douglas Stanford at Stanford University, along with Maldacena, demonstrates how, through AdS/CFT, black holes can model quantum chaos.

One open question Maldacena hopes the AdS/CFT correspondence will answer is the question of what it is like inside a black hole, where an infinitely dense region called a singularity resides. So far, the relationship gives us a picture of the black hole as seen from the outside, said Maldacena, who is now the Carl P. Feinberg Professor at IAS. 

“We hope to understand the singularity inside the black hole,” Maldacena said. “Understanding this would probably lead to interesting lessons for the Big Bang.”

The relationship between gravity and strings has also shed new light on quark confinement, initially through work by Polyakov and Witten, and later by Klebanov and Matt Strassler, who was then at IAS.

Those are just a few examples of how the relationship can be used. “It is a tremendously successful idea,” said Gubser, who today is a professor of physics at Princeton. “It compels one’s attention. It ropes you in, it ropes in other fields, and it gives you a vantage point on theoretical physics that is very compelling.”

The relationship may even unlock the quantum nature of gravity. “It is among our best clues to understand gravity from a quantum perspective,” said Witten. “Since we don’t know what is still missing, I cannot tell you how big a piece of the picture it ultimately will be.”



Discovery magazine cover


Still, the AdS/CFT correspondence, while powerful, relies on a simplified version of spacetime that is not exactly like the real universe. Researchers are working to find ways to make the theory more broadly applicable to the everyday world, including Gubser’s research on modeling the collisions of heavy ions, as well as high-temperature superconductors.

Also on the to-do list is developing a proof of this correspondence that draws on underlying physical principles. It is unlikely that Einstein would be satisfied without a proof, said Herman Verlinde, Princeton’s Class of 1909 Professor of Physics, the chair of the Department of Physics and an expert in string theory, who shares office space with Einstein’s desk.

“Sometimes I imagine he is still sitting there,” Verlinde said, “and I wonder what he would think of our progress.”

This article was originally published in the University’s annual research magazine Discovery: Research at Princeton.

Asteroid Redirect Mission

From Wikipedia, the free encyclopedia

Grippers on the end of the robotic arms are used to grasp and secure a boulder from a large asteroid. Once the boulder is secured, the legs would push off and provide an initial ascent without the use of thrusters.

The Asteroid Redirect Mission (ARM), also known as the Asteroid Retrieval and Utilization (ARU) mission and the Asteroid Initiative, was a space mission proposed by NASA in 2013. The Asteroid Retrieval Robotic Mission (ARRM) spacecraft would rendezvous with a large near-Earth asteroid and use robotic arms with anchoring grippers to retrieve a 4-meter boulder from the asteroid.

The spacecraft would characterize the asteroid and demonstrate at least one planetary defense technique before transporting the boulder to a stable lunar orbit, where it could be further analyzed both by robotic probes and by a future manned mission, ARCM (Asteroid Redirect Crewed Mission). If funded, the mission would have launched in December 2021, with the additional objectives to test a number of new capabilities needed for future human expeditions to deep space, including advanced ion thrusters.

The proposed 2018 NASA budget called for its cancellation, the mission was given its notice of defunding in April 2017, and NASA announced the "close out" in June 13, 2017. Key technologies being developed for ARM will continue, especially the ion thruster propulsion system that would have been flown on the robotic mission.

Objectives

Astronaut on EVA to take asteroid samples, Orion in the background

The main objective of the Asteroid Redirect Mission was to develop deep space exploration capabilities needed in preparation for a human mission to Mars and other Solar System destinations per NASA's Journey to Mars flexible pathways.

Mars precursor

Space tug missions, to disaggregate non-time-critical Mars logistics from crew, can reduce the costs by as much as 60% (if using advanced solar electric propulsion (ion engines)) and reduces overall mission risk by enabling on-site check-out of critical systems before the crew departs.

Not only would the solar electric propulsion (SEP) technologies and designs be applied to future missions, but the ARRM spacecraft would be left in a stable orbit for reuse. The project has baselined any of multiple refueling capabilities; the asteroid-specific payload is at one end of the bus, for possible removal and replacement via future servicing, or as a separable spacecraft, leaving a qualified space tug in cislunar space.

Expanded and sustainable deep space operations

The robotic and crewed missions would demonstrate capabilities past Earth orbit, yet within a few days' return contingency. Lunar Distant Retrograde Orbit (DRO), encompassing Earth-Moon L1 and L2, is essentially a node for Earth system escape and capture. This is more so if an Exploration Augmentation Module (EAM) is brought for extended human stays, possibly by an ARRM-like SEP module. On its return leg from Mars, a human mission may save tons of mass by capturing into DRO, and transferring to a parked Orion for Earth return and reentry.

Additional objectives

A secondary objective was to develop the required technology to bring a small near-Earth asteroid into lunar orbit – "the asteroid was a bonus." There, it could be analyzed by the crew of the Orion EM-5 or EM-6 ARCM mission in 2026.

Additional mission aims included demonstrating planetary defense techniques able to protect the Earth in the future - such as using robotic spacecraft to deflect potentially hazardous asteroids. Under consideration for deflecting an asteroid are: grabbing the asteroid and directly moving it, as well as employing gravity tractor techniques after collecting a boulder from its surface to increase mass ("enhanced gravity tractor").

The mission would also test the performance of advanced solar electric propulsion (ion engines) and broad-band laser communication in space. These new technologies would help send the large amounts of cargo, habitats, and propellant to Mars in advance of a human mission to Mars and/or Phobos.

NASA Asteroid Redirect Mission
File:NASA Asteroid Redirect Mission gravity tractor animation.ogv
Play media
The asteroid redirect vehicle would demonstrate the "gravity tractor" planetary defense technique on a hazardous-size asteroid. This method leverages the mass of the spacecraft (18 tons) and its 6m boulder cargo (at least 20 tons) to impart a gravitational force on the asteroid, slowly altering the asteroid's trajectory.

Spacecraft overview

Asteroid grippers on the end of the robotic arms are used to grasp and secure a 6 m boulder from a large asteroid. An integrated drill would be used to provide final anchoring of the boulder to the capture mechanism.
 
Rendering of the Asteroid Redirect Vehicle departing the asteroid after capturing a boulder from its surface.

The vehicle would land on a large asteroid and grippers on the end of the robotic arms would grasp and secure a boulder from the surface of a large asteroid. The grippers would dig into the boulder and create a strong grip. An integrated drill would be used to provide final anchoring of the boulder to the capture mechanism. Once the boulder is secured, the legs would push off and provide an initial ascent without the use of thrusters.

Propulsion

The spacecraft would be propelled by advanced solar electric propulsion (SEP) (possibly a Hall effect thruster, see Ion thruster). Electricity would be provided by high efficiency UltraFlex-style solar panels (50 kW).

The advanced ion engine uses 10% of the propellant required by equivalent chemical rockets, it can process three times the power of previous designs, and increase efficiency by 50%. It would use the Hall-effect, which provides low acceleration but can fire continuously for many years to thrust a large mass to high speed. Hall effect thrusters trap electrons in a magnetic field and use them to ionize the onboard xenon gas propellant. The magnetic field also generates an electric field that accelerates the charged ions creating an exhaust plume of plasma that pushes the spacecraft forward. The spacecraft concept would have a dry mass of 5.5 tons, and could store up to 13 tons of xenon propellant.

Each thruster would have a 30- to 50-kilowatt power level, and several thrusters can be combined to increase the power of an SEP spacecraft. This engine, which is scalable to 300 kilowatts and beyond, is being researched and developed by Northrop Grumman with Sandia National Laboratories and the University of Michigan.[51] NASA Glenn Research Center is managing the project.

Even at a destination, the SEP system can be configured to provide power to maintain the systems or prevent propellant boil-off before the crew arrives. However, existing flight-qualified solar-electric propulsion is at levels of 1-5 kW. A Mars cargo mission would require ~100 kW, and a crewed flight ~150-300 kW.

Proposed timeline

Originally planned for 2017, then 2020, and then for December 2021. The mission was given its notice of defunding in April 2017. The launch vehicle would have been either a Delta IV Heavy, SLS or Falcon Heavy. The boulder would have arrived in lunar orbit by late 2025.

Target asteroid

As of October 29, 2017, 16,950 near-Earth asteroids are known, having been discovered by various search teams and catalogued as potentially hazardous objects. By early 2017 NASA had yet to select a target for ARM, but for planning and simulation purposes it used a near Earth asteroid named (341843) 2008 EV5 of about 400 m (1,300 ft) in diameter to pick up a single 4 m (13 ft) boulder from it. Other candidate parent asteroids were Itokawa, Bennu, and Ryugu.

The carbonaceous boulder that would have been captured by the mission (maximum 6 meter diameter, 20 tons) is too small to harm the Earth because it would burn up in the atmosphere. Redirecting the asteroid mass to a distant retrograde orbit around the Moon would ensure it could not hit Earth and also leave it in a stable orbit for future studies.

History

NASA Administrator Robert Frosch testified to Congress on "asteroid retrieval to Earth" in July 1980. However, he stated that it was infeasible at the time.

The ARU mission, excluding any manned missions to an asteroid which it may enable, was the subject of a feasibility study in 2012 by the Keck Institute for Space Studies. The mission cost was estimated by the Glenn Research Center at about $2.6 billion, of which $105 million was funded in 2014 to mature the concept. NASA officials emphasized that ARM was intended as one step in the long-term plans for a human mission to Mars.

The 'Option A' was to deploy a container large enough to capture a free-flying asteroid up to 8 m (26 ft) in diameter.
 
The two options studied to retrieve a small asteroid were Option A and Option B. Option A would deploy a large 15-metre (50 ft) capture bag capable of holding a small asteroid up to 8 m (26 ft) in diameter, and a mass of up to 500 tons. Option B, which was selected in March 2015, would have the vehicle land on a large asteroid and deploy robotic arms to lift up a boulder up to 4 m (13 ft) in diameter from the surface, transport it and place it into lunar orbit. This option was identified as more relevant to future rendezvous, autonomous docking, lander, sampler, planetary defense, mining, and spacecraft servicing technologies.

The crewed portion to retrieve asteroid samples from the Moon orbit (Orion EM-3) was criticized as an unnecessary part of the mission with claims that thousands of meteorites have already been analyzed and that the technology used to retrieve one boulder does not help develop a crewed mission to Mars. The plans were not changed despite the NASA Advisory Council suggested on 10 April 2015 that NASA should not carry out its plans for ARM, and should instead develop solar electric propulsion and use it to power a spacecraft on a round-trip flight to Mars.

In January 2016 contracts were awarded by NASA's Jet Propulsion Laboratory (JPL) for design studies for a solar electric propulsion-based spacecraft. The robotic ARRM mission would have been the first phase of ARM. The contracts were won by Lockheed Martin Space Systems, Littleton, Colorado; Boeing Phantom Works, Huntington Beach, California; Orbital ATK, Dulles, Virginia; and Space Systems/Loral, Palo Alto, California.

In May 2016, ASI (the Italian Space Agency) agreed to a joint study, and possible Italian participation.

Under the 2018 NASA budget proposed by the Trump administration in March 2017, this mission was cancelled. In June 13, 2017 NASA announced a "closeout phase" following the defund. NASA has emphasized that key technologies being developed for ARM will continue, especially the solar electric propulsion system that would have been flown on the robotic mission.

Friday, December 21, 2018

Quantum vacuum thruster (??)

From Wikipedia, the free encyclopedia

A Venn diagram illustrating the set of Q thrusters tested at NASA, as per page 40 of Harold White's NASA's 2013 report titled "Warp Field Physics". The set of Q-Thrusters has as subsets RF resonant cavity thrusters and Mach Lorentz thrusters
 
A diagram illustrating the theory of Q thruster operation
 
A quantum vacuum thruster (QVT or Q-thruster) is a theoretical system that uses the same principles and equations of motion that a conventional plasma thruster would use, namely magnetohydrodynamics (MHD), to make predictions about the behavior of the propellant. However, rather than using a conventional plasma as a propellant, a QVT uses the quantum vacuum fluctuations of the zero-point field. If QVT systems were to truly work they would eliminate the need to carry any propellant, as the system uses the quantum vacuum to assist with thrust. It would also allow for much higher specific impulses for QVT systems compared to other spacecraft as they would be limited only by their power supply’s energy storage densities. Harold White's Advanced Propulsion Physics Laboratory (NASA Eagleworks) suggests that their RF cavity may be an example of a quantum vacuum thruster (QVT or Q-thruster).

History and controversy

The name and concept is controversial. In 2008, Yu Zhu and others at China's Northwestern Polytechnical University claimed to measure thrust from such a thruster, but called it a "microwave thruster without propellant" working on quantum principles. In 2011 it was mentioned as something to be studied by Harold G. White and his team at NASA's Eagleworks Laboratories, who were working with a prototype of such a thruster. Other physicists, such as Sean M. Carroll and John Baez, dismiss it because the quantum vacuum as currently understood is not a plasma and does not possess plasma-like characteristics.

Theory of operation

Prototype resonant cavity thruster built by NASA Eagleworks

A vacuum can be viewed not as empty space but as the combination of all zero-point fields. According to quantum field theory the universe is made up of matter fields whose quanta are fermions (e.g. electrons and quarks) and force fields, whose quanta are bosons (i.e. photons and gluons). All these fields have some intrinsic zero-point energy. Describing the quantum vacuum, a Physics Today article cited by the NASA team describes this ensemble of fields as "a turbulent sea, roiling with waves associated with a panoply of force-mediating fields such as the photon and Higgs fields". Given the equivalence of mass and energy expressed by Einstein's E = mc2, any point in space that contains energy can be thought of as having mass to create particles. Virtual particles spontaneously flash into existence and annihilate each other at every point in space due to the energy of quantum fluctuations. Many real physical effects attributed to these vacuum fluctuations have been experimentally verified, such as spontaneous emission, Casimir force, Lamb shift, magnetic moment of the electron and Delbrück scattering; these effects are usually called "radiative corrections".

Casimir forces on parallel plates due to vacuum fluctuations

The Casimir effect is a weak force between two uncharged conductive plates caused by the zero-point energy of the vacuum. It was first observed experimentally by Lamoreaux (1997) and results showing the force have been repeatedly replicated. Several scientists including White have highlighted that a net thrust can indeed be induced on a spacecraft via the related "dynamical Casimir effect". The dynamic Casimir effect was observed experimentally for the first time in 2011 by Wilson et al. In the dynamical Casimir effect electromagnetic radiation is emitted when a mirror is accelerated through space at relativistic speeds. When the speed of the mirror begins to match the speed of the photons, some photons become separated from their virtual pair and so do not get annihilated. Virtual photons become real and the mirror begins to produce light. This is an example of Unruh radiation. A publication by Feigel (2004) raised the possibility of a Casimir-like effect that transfers momentum from zero-point quantum fluctuations to matter, controlled by applied electric and magnetic fields. These results were debated in a number of follow up papers in particular van Tiggelen et al. (2006) found no momentum transfer for homogeneous fields, but predict a very small transfer for a Casimir-like field geometry. This cumulated with Birkeland & Brevik (2007) who showed that electromagnetic vacuum fields can cause broken symmetries (anisotropy) in the transfer of momentum or, put another way, that the extraction of momentum from electromagnetic zero-point fluctuations is possible in an analogous way that the extraction of energy is possible from the Casimir effect. Birkeland & Brevik highlight that momentum asymmetries exist throughout nature and that the artificial stimulation of these by electric and magnetic fields have already been experimentally observed in complex liquids. This relates to the Abraham–Minkowski controversy, a long theoretical and experimental debate that continues to the current time. It is widely recognized that this controversy is an argument about definition of the interaction between matter and fields. It has been argued that momentum transfer between matter and electromagnetic fields relating to the Abraham-Minikowski issue would allow for propellant-less drives.

A QVT system seeks to make use of this predicted Casimir-like momentum transfer. It is argued that when the vacuum is exposed to crossed electric and magnetic fields (i.e. E and B-fields), it will induce a drift of the entire vacuum plasma which is orthogonal to that of the applied E x B fields. In a 2015 paper White highlighted that the presence of ordinary matter is predicted to cause an energy perturbation in the surrounding quantum vacuum such that the local vacuum state has a different energy density when compared with the "empty" cosmological vacuum energy state. This suggests the possibility of modelling the vacuum as a dynamic entity as opposed to it being an immutable and non-degradable state. White models of the perturbed quantum vacuum around a hydrogen atom as a Dirac vacuum consisting of virtual electron-positron pairs. Given the nontrivial variability in local energy densities resulting from virtual pair production, he suggests the tools of magnetohydrodynamics (MHD) can be used to model the quasiclassical behavior of the quantum vacuum as a plasma. 

White compares changes in vacuum energy density induced by matter to the hypothetical chameleon field or quintessence currently being discussed in the scientific literature. It is claimed the existence of a “chameleon” field whose mass is dependent on the local matter density may be an explanation for dark energy. A number of notable physicists, such as Sean Carroll, see the idea of a dynamical vacuum energy as the simplest and best explanation for dark energy. Evidence for quintessence would come from violations of Einstein's equivalence principle and variation of the fundamental constants ideas which are due to be tested by the Euclid telescope which is set to launch in 2020.

Systems utilizing Casimir effects have thus far been shown to only create very small forces and are generally considered one-shot devices that would require a subsequent energy to recharge them (i.e. Forward's "vacuum fluctuation battery"). The ability of systems to use the zero-point field continuously as a source of energy or propellant is much more contentious (though peer-reviewed models have been proposed). There is debate over which formalisms of quantum mechanics apply to propulsion physics under such circumstances, the more refined Quantum Electrodynamics (QED), or the relatively undeveloped and controversial Stochastical Quantum Electrodynamics (SED). SED describes electromagnetic energy at absolute zero as a stochastic, fluctuating zero-point field. In SED the motion of a particle immersed in the stochastic zero-point radiation field generally results in highly nonlinear behaviour. Quantum effects emerge as a result of permanent matter-field interactions not possible to describe in QED The typical mathematical models used in classical electromagnetism, quantum electrodynamics (QED) and the standard model view electromagnetism as a U(1) gauge theory, which topologically restricts any complex nonlinear interaction. The electromagnetic vacuum in these theories is generally viewed as a linear system with no overall observable consequence. For many practical calculations zero-point energy is dismissed by fiat in the mathematical model as a constant that may be canceled or as a term that has no physical effect.

The 2016 NASA paper highlights that stochastic electrodynamics (SED) allows for a pilot-wave interpretation of quantum mechanics. Pilot-wave interpretations of quantum mechanics are a family of deterministic nonlocal theories distinct from other more mainstream interpretations such as the Copenhagen interpretation and Everett's many-worlds interpretation. Pioneering experiments by Couder and Fort beginning in 2006 have shown that macroscopic classical pilot-waves can exhibit characteristics previously thought to be restricted to the quantum realm. Hydrodynamic pilot-wave analogs have been able to duplicate the double slit experiment, tunneling, quantized orbits, and numerous other quantum phenomena and as such pilot-wave theories are experiencing a resurgence in interest. Coulder and Fort note in their 2006 paper that pilot-waves are nonlinear dissipative systems sustained by external forces. A dissipative system is characterized by the spontaneous appearance of symmetry breaking (anisotropy) and the formation of complex, sometimes chaotic or emergent, dynamics where interacting fields can exhibit long range correlations. In SED the zero point field (ZPF) plays the role of the pilot wave that guides real particles on their way. Modern approaches to SED consider wave and particle-like quantum effects as well-coordinated emergent systems that are the result of speculated sub-quantum interactions with the zero-point field

Controversy and criticism

Some notable physicists have found the Q-thruster concept to be implausible. For example, mathematical physicist John Baez has criticized the reference to "quantum vacuum virtual plasma" noting that: "There's no such thing as 'virtual plasma' ". Noted Caltech theoretical physicist Sean M. Carroll has also affirmed this statement, writing "[t]here is no such thing as a ‘quantum vacuum virtual plasma,’...". In addition, Lafleur found that quantum field theory predicts no net force, implying that the measured thrusts are unlikely to be due to quantum effects. However, Lafleur noted that this conclusion was based on the assumption that the electric and magnetic fields were homogeneous, whereas certain theories posit a small net force in inhomogeneous vacuums.

Notably, the violation of energy and momentum conservation laws have been heavily criticized. In a presentation at Nasa Ames Research Centre in November 2014, Harold White addressed the issue of conservation of momentum by stating that the Q-thruster conserves momentum by creating a wake or anisotropic state in the quantum vacuum. White indicated that once false positives were ruled out, Eagleworks would explore the momentum distribution and divergence angle of the quantum vacuum wake using a second Q-thruster to measure the quantum vacuum wake. In a paper published in January 2014, White proposed to address the conservation of momentum issue by stating that the Q-thruster pushes quantum particles (electrons/positrons) in one direction, whereas the Q-thruster recoils to conserve momentum in the other direction. White stated that this principle was similar to how a submarine uses its propeller to push water in one direction, while the submarine recoils to conserve momentum. Hence, the violations of fundamental laws of physics can be avoided.

Other hypothesized quantum vacuum thrusters

A number of physicists have suggested that a spacecraft or object may generate thrust through its interaction with the quantum vacuum. For example, Fabrizio Pinto in a 2006 paper published in the Journal of the British Interplanetary Society noted it may be possible to bring a cluster of polarisable vacuum particles to a hover in the laboratory and then to transfer thrust to a macroscopic accelerating vehicle. Similarly, Jordan Maclay in a 2004 paper titled "A Gedanken Spacecraft that Operates Using the Quantum Vacuum (Dynamic Casimir Effect)" published in the scientific journal Foundations of Physics noted that it is possible to accelerate a spacecraft based on the dynamic Casimir effect, in which electromagnetic radiation is emitted when an uncharged mirror is properly accelerated in vacuum. Similarly, Puthoff noted in a 2010 paper titled "Engineering the Zero-Point Field and Polarizable Vacuum For Interstellar Flight" published in the Journal of the British Interplanetary Society noted that it may be possible that the quantum vacuum might be manipulated so as to provide energy/thrust for future space vehicles. Likewise, researcher Yoshinari Minami in a 2008 paper titled "Preliminary Theoretical Considerations for Getting Thrust via Squeezed Vacuum" published in the Journal of the British Interplanetary Society noted the theoretical possibility of extracting thrust from the excited vacuum induced by controlling squeezed light. In addition, Alexander Feigel in a 2009 paper noted that propulsion in quantum vacuum may be achieved by rotating or aggregating magneto-electric nano-particles in strong perpendicular electrical and magnetic fields.

However, according to Puthoff, although this method can produce angular momentum causing a static disk (known as a Feynman disk) to begin to rotate, it cannot induce linear momentum due to a phenomenon known as "hidden momentum" that cancels the ability of the proposed E×B propulsion method to generate linear momentum. However, some recent experimental and theoretical work by van Tiggelen and colleagues suggests that linear momentum may be transferred from the quantum vacuum in the presence of an external magnetic field.

Experiments

In 2013, the Eagleworks team tested a device called the Serrano Field Effect Thruster, built by Gravitec Inc. at the request of Boeing and DARPA. The Eagleworks team has theorized that this device is a Q-thruster. The thruster consists of a set of circular dielectrics sandwiched between electrodes; its inventor describes it device as producing thrust through a preselected shaping of an electric field. Gravitec Inc. alleges that in 2011 they tested the "asymmetrical capacitor" device in a high vacuum several times and have ruled out ion wind or electrostatic forces as an explanation for the thrust produced. In February through June 2013, the Eagleworks team evaluated the SFE test article in and out of a Faraday Shield and at various vacuum conditions. Thrust was observed in the ~1–20 N/kW range. The magnitude of the thrust scaled approximately with the cube of the input voltage (20–110 μN). As of 2015, the researchers have not published a peer-reviewed paper detailing the results of this experiment. 

Using a torsion pendulum, White's team claimed to have measured 30–50 μN of thrust from a microwave cavity resonator designed by Guido Fetta in an attempt at propellant-less propulsion. Using the same measurement equipment, a non-zero force was also measured on a "null" resonator that was not designed to experience any such force, which they suggest hints at "interaction with the quantum vacuum virtual plasma". All measurements were performed at atmospheric pressure, presumably in contact with air, and with no analysis of systematic errors, except for the use of an RF load without the resonant cavity interior as a control device. In early 2015, Paul March from that team made new results public, claiming positive experimental force measurements with a torsional pendulum in a hard vacuum: about 50 µN with 50 W of input power at 5.0×10−6 torr, and new null-thrust tests. The claims of the team have not yet been published in a peer-reviewed journal, only as a conference paper in 2013.

Yu Zhu previously claimed to have measured anomalous thrust arising from a similar device, using power levels roughly 100 times greater, and measuring thrust roughly 1000 times greater.

Current experiments

The 2006 Woodward effect test article
 
Plot diagram of the 2006 Woodward effect test results

As of 2015, Eagleworks is attempting to gather performance data to support the development of a Q-thruster engineering prototype for reaction-control-system applications in the force range of 0.1–1 N with a corresponding input electrical power range of 0.3–3 kW. The group plans to begin by testing a refurbished test article to improve the historical performance of a 2006 experiment that attempted to demonstrate the Woodward effect. The photograph shows the test article and the plot diagram shows the thrust trace from a 500g load cell in experiments performed in 2006.

The group hopes that testing the device on a high-fidelity torsion pendulum (1–4 μN at 10–40 W) will unambiguously demonstrate the feasibility of this concept. The team is maintaining a dialogue with the ISS national labs office for an on-orbit detailed test objective (DTO) to test the Q-thrusters operation in the vacuum and weightlessness of outer space.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...