Search This Blog

Wednesday, January 30, 2019

Petroleum (updated)

From Wikipedia, the free encyclopedia

Pumpjack pumping an oil well near Lubbock, Texas.
 
An oil refinery in Mina Al Ahmadi, Kuwait.
 
Petroleum (/pəˈtrliəm/) is a naturally occurring, yellowish-black liquid found in geological formations beneath the Earth's surface. It is commonly refined into various types of fuels. Components of petroleum are separated using a technique called fractional distillation, i.e. separation of a liquid mixture into fractions differing in boiling point by means of distillation, typically using a fractionating column.

It consists of hydrocarbons of various molecular weights and other organic compounds. The name petroleum covers both naturally occurring unprocessed crude oil and petroleum products that are made up of refined crude oil. A fossil fuel, petroleum is formed when large quantities of dead organisms, mostly zooplankton and algae, are buried underneath sedimentary rock and subjected to both intense heat and pressure.

Petroleum has mostly been recovered by oil drilling (natural petroleum springs are rare). Drilling is carried out after studies of structural geology (at the reservoir scale), sedimentary basin analysis, and reservoir characterisation (mainly in terms of the porosity and permeability of geologic reservoir structures) have been completed. It is refined and separated, most easily by distillation, into a large number of consumer products, from gasoline (petrol) and kerosene to asphalt and chemical reagents used to make plastics, pesticides and pharmaceuticals. Petroleum is used in manufacturing a wide variety of materials, and it is estimated that the world consumes about 95 million barrels each day.

Etymology

Fractional distillation apparatus.

The word petroleum comes from Medieval Latin petroleum (literally "rock oil"), which comes from Latin petra', "rock", (from Ancient Greek: πέτρα, translit. petra, "rock") and Latin oleum, "oil".
 
The term was used in the treatise De Natura Fossilium, published in 1546 by the German mineralogist Georg Bauer, also known as Georgius Agricola. In the 19th century, the term petroleum was often used to refer to mineral oils produced by distillation from mined organic solids such as cannel coal (and later oil shale), and refined oils produced from them; in the United Kingdom, storage (and later transport) of these oils were regulated by a series of Petroleum Acts, from the Petroleum Act 1863 onwards.

History

Early history

Oil derrick in Okemah, Oklahoma, 1922.
 
Petroleum, in one form or another, has been used since ancient times, and is now important across society, including in economy, politics and technology. The rise in importance was due to the invention of the internal combustion engine, the rise in commercial aviation, and the importance of petroleum to industrial organic chemistry, particularly the synthesis of plastics, fertilizers, solvents, adhesives and pesticides. 

More than 4000 years ago, according to Herodotus and Diodorus Siculus, asphalt was used in the construction of the walls and towers of Babylon; there were oil pits near Ardericca (near Babylon), and a pitch spring on Zacynthus. Great quantities of it were found on the banks of the river Issus, one of the tributaries of the Euphrates. Ancient Persian tablets indicate the medicinal and lighting uses of petroleum in the upper levels of their society.

The use of petroleum in ancient China dates back to more than 2000 years ago. In I Ching, one of the earliest Chinese writings cites that oil in its raw state, without refining, was first discovered, extracted, and used in China in the first century BCE. In addition, the Chinese were the first to use petroleum as fuel as early as the fourth century BCE.

By 347 AD, oil was produced from bamboo-drilled wells in China. Early British explorers to Myanmar documented a flourishing oil extraction industry based in Yenangyaung that, in 1795, had hundreds of hand-dug wells under production.

Pechelbronn (Pitch fountain) is said to be the first European site where petroleum has been explored and used. The still active Erdpechquelle, a spring where petroleum appears mixed with water has been used since 1498, notably for medical purposes. Oil sands have been mined since the 18th century.

In Wietze in lower Saxony, natural asphalt/bitumen has been explored since the 18th century. Both in Pechelbronn as in Wietze, the coal industry dominated the petroleum technologies.

Modern history

Proven world oil reserves, 2013. Unconventional reservoirs such as natural heavy oil and oil sands are included.
 
Chemist James Young noticed a natural petroleum seepage in the Riddings colliery at Alfreton, Derbyshire from which he distilled a light thin oil suitable for use as lamp oil, at the same time obtaining a more viscous oil suitable for lubricating machinery. In 1848 Young set up a small business refining the crude oil.

Young eventually succeeded, by distilling cannel coal at a low heat, in creating a fluid resembling petroleum, which when treated in the same way as the seep oil gave similar products. Young found that by slow distillation he could obtain a number of useful liquids from it, one of which he named "paraffine oil" because at low temperatures it congealed into a substance resembling paraffin wax.

The production of these oils and solid paraffin wax from coal formed the subject of his patent dated 17 October 1850. In 1850 Young & Meldrum and Edward William Binney entered into partnership under the title of E.W. Binney & Co. at Bathgate in West Lothian and E. Meldrum & Co. at Glasgow; their works at Bathgate were completed in 1851 and became the first truly commercial oil-works in the world with the first modern oil refinery.

Shale bings near Broxburn, 3 of a total of 19 in West Lothian.
 
The world's first oil refinery was built in 1856 by Ignacy Łukasiewicz. His achievements also included the discovery of how to distill kerosene from seep oil, the invention of the modern kerosene lamp (1853), the introduction of the first modern street lamp in Europe (1853), and the construction of the world's first modern oil well (1854).

The demand for petroleum as a fuel for lighting in North America and around the world quickly grew. Edwin Drake's 1859 well near Titusville, Pennsylvania, is popularly considered the first modern well. Already 1858 Georg Christian Konrad Hunäus had found a significant amount of petroleum while drilling for lignite 1858 in Wietze, Germany. Wietze later provided about 80% of the German consumption in the Wilhelminian Era. The production stopped in 1963, but Wietze has hosted a Petroleum Museum since 1970.

Drake's well is probably singled out because it was drilled, not dug; because it used a steam engine; because there was a company associated with it; and because it touched off a major boom. However, there was considerable activity before Drake in various parts of the world in the mid-19th century. A group directed by Major Alexeyev of the Bakinskii Corps of Mining Engineers hand-drilled a well in the Baku region in 1848. There were engine-drilled wells in West Virginia in the same year as Drake's well. An early commercial well was hand dug in Poland in 1853, and another in nearby Romania in 1857. At around the same time the world's first, small, oil refinery was opened at Jasło in Poland, with a larger one opened at Ploiești in Romania shortly after. Romania is the first country in the world to have had its annual crude oil output officially recorded in international statistics: 275 tonnes for 1857.

The first commercial oil well in Canada became operational in 1858 at Oil Springs, Ontario (then Canada West). Businessman James Miller Williams dug several wells between 1855 and 1858 before discovering a rich reserve of oil four metres below ground. Williams extracted 1.5 million litres of crude oil by 1860, refining much of it into kerosene lamp oil. Williams's well became commercially viable a year before Drake's Pennsylvania operation and could be argued to be the first commercial oil well in North America. The discovery at Oil Springs touched off an oil boom which brought hundreds of speculators and workers to the area. Advances in drilling continued into 1862 when local driller Shaw reached a depth of 62 metres using the spring-pole drilling method. On January 16, 1862, after an explosion of natural gas Canada's first oil gusher came into production, shooting into the air at a recorded rate of 3,000 barrels per day. By the end of the 19th century the Russian Empire, particularly the Branobel company in Azerbaijan, had taken the lead in production.

A poster used to promote carpooling as a way to ration gasoline during World War II.
 
Access to oil was and still is a major factor in several military conflicts of the twentieth century, including World War II, during which oil facilities were a major strategic asset and were extensively bombed. The German invasion of the Soviet Union included the goal to capture the Baku oilfields, as it would provide much needed oil-supplies for the German military which was suffering from blockades. Oil exploration in North America during the early 20th century later led to the US becoming the leading producer by mid-century. As petroleum production in the US peaked during the 1960s, however, the United States was surpassed by Saudi Arabia and the Soviet Union.

Today, about 90 percent of vehicular fuel needs are met by oil. Petroleum also makes up 40 percent of total energy consumption in the United States, but is responsible for only 1 percent of electricity generation. Petroleum's worth as a portable, dense energy source powering the vast majority of vehicles and as the base of many industrial chemicals makes it one of the world's most important commodities. Viability of the oil commodity is controlled by several key parameters, number of vehicles in the world competing for fuel, quantity of oil exported to the world market, net energy gain (economically useful energy provided minus energy consumed), political stability of oil exporting nations and ability to defend oil supply lines.

The top three oil producing countries are Russia, Saudi Arabia and the United States. In 2018, due in part to developments in hydraulic fracturing and horizonal drilling, the United States became the world's largest producer. About 80 percent of the world's readily accessible reserves are located in the Middle East, with 62.5 percent coming from the Arab 5: Saudi Arabia, United Arab Emirates, Iraq, Qatar and Kuwait. A large portion of the world's total oil exists as unconventional sources, such as bitumen in Athabasca oil sands and extra heavy oil in the Orinoco Belt. While significant volumes of oil are extracted from oil sands, particularly in Canada, logistical and technical hurdles remain, as oil extraction requires large amounts of heat and water, making its net energy content quite low relative to conventional crude oil. Thus, Canada's oil sands are not expected to provide more than a few million barrels per day in the foreseeable future.

Composition

In its strictest sense, petroleum includes only crude oil, but in common usage it includes all liquid, gaseous and solid hydrocarbons. Under surface pressure and temperature conditions, lighter hydrocarbons methane, ethane, propane and butane exist as gases, while pentane and heavier hydrocarbons are in the form of liquids or solids. However, in an underground oil reservoir the proportions of gas, liquid, and solid depend on subsurface conditions and on the phase diagram of the petroleum mixture.

An oil well produces predominantly crude oil, with some natural gas dissolved in it. Because the pressure is lower at the surface than underground, some of the gas will come out of solution and be recovered (or burned) as associated gas or solution gas. A gas well produces predominantly natural gas. However, because the underground temperature and pressure are higher than at the surface, the gas may contain heavier hydrocarbons such as pentane, hexane, and heptane in the gaseous state. At surface conditions these will condense out of the gas to form "natural gas condensate", often shortened to condensate. Condensate resembles gasoline in appearance and is similar in composition to some volatile light crude oils.

The proportion of light hydrocarbons in the petroleum mixture varies greatly among different oil fields, ranging from as much as 97 percent by weight in the lighter oils to as little as 50 percent in the heavier oils and bitumens.

The hydrocarbons in crude oil are mostly alkanes, cycloalkanes and various aromatic hydrocarbons, while the other organic compounds contain nitrogen, oxygen and sulfur, and trace amounts of metals such as iron, nickel, copper and vanadium. Many oil reservoirs contain live bacteria. The exact molecular composition of crude oil varies widely from formation to formation but the proportion of chemical elements varies over fairly narrow limits as follows:

Composition by weight
Element Percent range
Carbon 83 to 85%
Hydrogen 10 to 14%
Nitrogen 0.1 to 2%
Oxygen 0.05 to 1.5%
Sulfur 0.05 to 6.0%
Metals less than 0.1%

Four different types of hydrocarbon molecules appear in crude oil. The relative percentage of each varies from oil to oil, determining the properties of each oil.

Composition by weight
Hydrocarbon Average Range
Alkanes (paraffins) 30% 15 to 60%
Naphthenes 49% 30 to 60%
Aromatics 15% 3 to 30%
Asphaltics 6% remainder

Unconventional resources are much larger than conventional ones.
 
Crude oil varies greatly in appearance depending on its composition. It is usually black or dark brown (although it may be yellowish, reddish, or even greenish). In the reservoir it is usually found in association with natural gas, which being lighter forms a "gas cap" over the petroleum, and saline water which, being heavier than most forms of crude oil, generally sinks beneath it. Crude oil may also be found in a semi-solid form mixed with sand and water, as in the Athabasca oil sands in Canada, where it is usually referred to as crude bitumen. In Canada, bitumen is considered a sticky, black, tar-like form of crude oil which is so thick and heavy that it must be heated or diluted before it will flow. Venezuela also has large amounts of oil in the Orinoco oil sands, although the hydrocarbons trapped in them are more fluid than in Canada and are usually called extra heavy oil. These oil sands resources are called unconventional oil to distinguish them from oil which can be extracted using traditional oil well methods. Between them, Canada and Venezuela contain an estimated 3.6 trillion barrels (570×109 m3) of bitumen and extra-heavy oil, about twice the volume of the world's reserves of conventional oil.

Petroleum is used mostly, by volume, for refining into fuel oil and gasoline, both important "primary energy" sources. 84 percent by volume of the hydrocarbons present in petroleum is converted into energy-rich fuels (petroleum-based fuels), including gasoline, diesel, jet, heating, and other fuel oils, and liquefied petroleum gas. The lighter grades of crude oil produce the best yields of these products, but as the world's reserves of light and medium oil are depleted, oil refineries are increasingly having to process heavy oil and bitumen, and use more complex and expensive methods to produce the products required. Because heavier crude oils have too much carbon and not enough hydrogen, these processes generally involve removing carbon from or adding hydrogen to the molecules, and using fluid catalytic cracking to convert the longer, more complex molecules in the oil to the shorter, simpler ones in the fuels.

Due to its high energy density, easy transportability and relative abundance, oil has become the world's most important source of energy since the mid-1950s. Petroleum is also the raw material for many chemical products, including pharmaceuticals, solvents, fertilizers, pesticides, and plastics; the 16 percent not used for energy production is converted into these other materials. Petroleum is found in porous rock formations in the upper strata of some areas of the Earth's crust. There is also petroleum in oil sands (tar sands). Known oil reserves are typically estimated at around 190 km3 (1.2 trillion (short scale) barrels) without oil sands, or 595 km3 (3.74 trillion barrels) with oil sands. Consumption is currently around 84 million barrels (13.4×106 m3) per day, or 4.9 km3 per year, yielding a remaining oil supply of only about 120 years, if current demand remains static.

Chemistry

Octane, a hydrocarbon found in petroleum. Lines represent single bonds; black spheres represent carbon; white spheres represent hydrogen.
 
Petroleum is a mixture of a very large number of different hydrocarbons; the most commonly found molecules are alkanes (paraffins), cycloalkanes (naphthenes), aromatic hydrocarbons, or more complicated chemicals like asphaltenes. Each petroleum variety has a unique mix of molecules, which define its physical and chemical properties, like color and viscosity

The alkanes, also known as paraffins, are saturated hydrocarbons with straight or branched chains which contain only carbon and hydrogen and have the general formula CnH2n+2. They generally have from 5 to 40 carbon atoms per molecule, although trace amounts of shorter or longer molecules may be present in the mixture. 

The alkanes from pentane (C5H12) to octane (C8H18) are refined into gasoline, the ones from nonane (C9H20) to hexadecane (C16H34) into diesel fuel, kerosene and jet fuel. Alkanes with more than 16 carbon atoms can be refined into fuel oil and lubricating oil. At the heavier end of the range, paraffin wax is an alkane with approximately 25 carbon atoms, while asphalt has 35 and up, although these are usually cracked by modern refineries into more valuable products. The shortest molecules, those with four or fewer carbon atoms, are in a gaseous state at room temperature. They are the petroleum gases. Depending on demand and the cost of recovery, these gases are either flared off, sold as liquefied petroleum gas under pressure, or used to power the refinery's own burners. During the winter, butane (C4H10), is blended into the gasoline pool at high rates, because its high vapor pressure assists with cold starts. Liquified under pressure slightly above atmospheric, it is best known for powering cigarette lighters, but it is also a main fuel source for many developing countries. Propane can be liquified under modest pressure, and is consumed for just about every application relying on petroleum for energy, from cooking to heating to transportation.

The cycloalkanes, also known as naphthenes, are saturated hydrocarbons which have one or more carbon rings to which hydrogen atoms are attached according to the formula CnH2n. Cycloalkanes have similar properties to alkanes but have higher boiling points.

The aromatic hydrocarbons are unsaturated hydrocarbons which have one or more planar six-carbon rings called benzene rings, to which hydrogen atoms are attached with the formula CnH2n-6. They tend to burn with a sooty flame, and many have a sweet aroma. Some are carcinogenic.

These different molecules are separated by fractional distillation at an oil refinery to produce gasoline, jet fuel, kerosene, and other hydrocarbons. For example, 2,2,4-trimethylpentane (isooctane), widely used in gasoline, has a chemical formula of C8H18 and it reacts with oxygen exothermically:

C
8
H
18
(l) + 25 O
2
(g) → 16 CO
2
(g) + 18 H
2
O
(g) 
(ΔH = −5.51 MJ/mol of octane)

The number of various molecules in an oil sample can be determined by laboratory analysis. The molecules are typically extracted in a solvent, then separated in a gas chromatograph, and finally determined with a suitable detector, such as a flame ionization detector or a mass spectrometer. Due to the large number of co-eluted hydrocarbons within oil, many cannot be resolved by traditional gas chromatography and typically appear as a hump in the chromatogram. This unresolved complex mixture (UCM) of hydrocarbons is particularly apparent when analyzing weathered oils and extracts from tissues of organisms exposed to oil. Some of the component of oil will mix with water: the water associated fraction of the oil.

Incomplete combustion of petroleum or gasoline results in production of toxic byproducts. Too little oxygen during combustion results in the formation of carbon monoxide. Due to the high temperatures and high pressures involved, exhaust gases from gasoline combustion in car engines usually include nitrogen oxides which are responsible for creation of photochemical smog.

Empirical equations for thermal properties

Heat of combustion

At a constant volume, the heat of combustion of a petroleum product can be approximated as follows:
,
where is measured in calories per gram and is the specific gravity at 60 °F (16 °C).

Thermal conductivity

The thermal conductivity of petroleum based liquids can be modeled as follows:
where is measured in BTU · °F−1hr−1ft−1 , is measured in °F and is degrees API gravity.

Specific heat

The specific heat of petroleum oils can be modeled as follows:
,
where is measured in BTU/(lb °F), is the temperature in Fahrenheit and is the specific gravity at 60 °F (16 °C). 

In units of kcal/(kg·°C), the formula is:
,
where the temperature is in Celsius and is the specific gravity at 15 °C.

Latent heat of vaporization

The latent heat of vaporization can be modeled under atmospheric conditions as follows:
,
where is measured in BTU/lb, is measured in °F and is the specific gravity at 60 °F (16 °C).
In units of kcal/kg, the formula is:
,
where the temperature is in Celsius and is the specific gravity at 15 °C.

Formation

Structure of a vanadium porphyrin compound (left) extracted from petroleum by Alfred E. Treibs, father of organic geochemistry. Treibs noted the close structural similarity of this molecule and chlorophyll a (right).
 
Petroleum is a fossil fuel derived from ancient fossilized organic materials, such as zooplankton and algae. Vast amounts of these remains settled to sea or lake bottoms where they were covered in stagnant water (water with no dissolved oxygen) or sediments such as mud and silt faster than they could decompose aerobically. Approximately 1 m below this sediment or water oxygen concentration was low, below 0.1 mg/l, and anoxic conditions existed. Temperatures also remained constant.

As further layers settled to the sea or lake bed, intense heat and pressure built up in the lower regions. This process caused the organic matter to change, first into a waxy material known as kerogen, found in various oil shales around the world, and then with more heat into liquid and gaseous hydrocarbons via a process known as catagenesis. Formation of petroleum occurs from hydrocarbon pyrolysis in a variety of mainly endothermic reactions at high temperature or pressure, or both. These phases are described in detail below.

First phase of diagenesis: anaerobic decay

In the absence of plentiful oxygen, aerobic bacteria were prevented from decaying the organic matter after it was buried under a layer of sediment or water. However, anaerobic bacteria were able to reduce sulfates and nitrates among the matter to H2S and N2 respectively by using the matter as a source for other reactants. Due to such anaerobic bacteria, at first this matter began to break apart mostly via hydrolysis: polysaccharides and proteins were hydrolyzed to simple sugars and amino acids respectively. These were further anaerobically oxidized at an accelerated rate by the enzymes of the bacteria: e.g. amino acids went through oxidative deamination to imino acids, which in turn reacted further to ammonia and α-keto acids. Monosaccharides in turn ultimately decayed to CO2 and methane. The anaerobic decay products of amino acids, monosaccharides, phenols and aldehydes combined to fulvic acids. Fats and waxes were not extensively hydrolyzed under these mild conditions.

Second phase of diagenesis: kerogen formation

Some phenolic compounds produced from previous reactions worked as bactericides and actinomycetales order of bacteria produced antibiotic compounds (e.g. streptomycin). Thus the action of anaerobic bacteria ceased at about 10 m below the water or sediment. The mixture at this depth contained fulvic acids, unreacted and partially reacted fats and waxes, slightly modified lignin, resins and other hydrocarbons. As more layers of organic matter settled to the sea or lake bed, intense heat and pressure built up in the lower regions. As a consequence, compounds of this mixture the began to combine in poorly understood ways to kerogen. Combination happened in a similar fashion as phenol and formaldehyde molecules react to urea-formaldehyde resins, but kerogen formation occurred in a more complex manner due to a bigger variety of reactants. The total process of kerogen formation from the beginning of anaerobic decay is called diagenesis, a word that means a transformation of materials by dissolution and recombination of their constituents.

Catagenesis: transformation of kerogen into fossil fuels

Kerogen formation continued to the depth of about 1 km from the Earth's surface where temperatures may reach around 50 °C. Kerogen formation represents a halfway point between organic matter and fossil fuels: kerogen can be exposed to oxygen, oxidize and thus be lost or it could be buried deeper inside the Earth's crust and be subjected to conditions which allow it to slowly transform into fossil fuels like petroleum. The latter happened through catagenesis in which the reactions were mostly radical rearrangements of kerogen. These reactions took thousands to millions of years and no external reactants were involved. Due to radical nature of these reactions, kerogen reacted towards two classes of products: those with low H/C ratio (anthracene or products similar to it) and those with high H/C ratio (methane or products similar to it); i.e. carbon-rich or hydrogen-rich products. Because catagenesis was closed off from external reactants, the resulting composition of the fuel mixture was dependent on the composition of the kerogen via reaction stoichiometry. 3 main types of kerogen exist: type I (algal), II (liptinic) and III (humic), which were formed mainly from algae, plankton and woody plants (this term includes trees, shrubs and lianas) respectively.

Catagenesis was pyrolytic despite of the fact that it happened at relatively low temperatures (when compared to commercial pyrolysis plants) of 60 to several hundred °C. Pyrolysis was possible because of the long reaction times involved. Heat for catagenesis came from the decomposition of radioactive materials of the crust, especially 40K, 232Th, 235U and 238U. The heat varied with geothermal gradient and was typically 10-30 °C per km of depth from the Earth's surface. Unusual magma intrusions, however, could have created greater localized heating.

Geologists often refer to the temperature range in which oil forms as an "oil window". Below the minimum temperature oil remains trapped in the form of kerogen. Above the maximum temperature the oil is converted to natural gas through the process of thermal cracking. Sometimes, oil formed at extreme depths may migrate and become trapped at a much shallower level. The Athabasca Oil Sands are one example of this.

Abiogenic petroleum

An alternative mechanism to the one described above was proposed by Russian scientists in the mid-1850s, the hypothesis of abiogenic petroleum origin (petroleum formed by inorganic means), but this is contradicted by geological and geochemical evidence. Abiogenic sources of oil have been found, but never in commercially profitable amounts. "The controversy isn't over whether abiogenic oil reserves exist," said Larry Nation of the American Association of Petroleum Geologists. "The controversy is over how much they contribute to Earth's overall reserves and how much time and effort geologists should devote to seeking them out."

Reservoirs

Hydrocarbon trap.

Three conditions must be present for oil reservoirs to form:
  • a source rock rich in hydrocarbon material buried deeply enough for subterranean heat to cook it into oil,
  • a porous and permeable reservoir rock where it can accumulate,
  • a caprock (seal) or other mechanism to prevent the oil from escaping to the surface. Within these reservoirs, fluids will typically organize themselves like a three-layer cake with a layer of water below the oil layer and a layer of gas above it, although the different layers vary in size between reservoirs. Because most hydrocarbons are less dense than rock or water, they often migrate upward through adjacent rock layers until either reaching the surface or becoming trapped within porous rocks (known as reservoirs) by impermeable rocks above. However, the process is influenced by underground water flows, causing oil to migrate hundreds of kilometres horizontally or even short distances downward before becoming trapped in a reservoir. When hydrocarbons are concentrated in a trap, an oil field forms, from which the liquid can be extracted by drilling and pumping.
The reactions that produce oil and natural gas are often modeled as first order breakdown reactions, where hydrocarbons are broken down to oil and natural gas by a set of parallel reactions, and oil eventually breaks down to natural gas by another set of reactions. The latter set is regularly used in petrochemical plants and oil refineries.

Wells are drilled into oil reservoirs to extract the crude oil. "Natural lift" production methods that rely on the natural reservoir pressure to force the oil to the surface are usually sufficient for a while after reservoirs are first tapped. In some reservoirs, such as in the Middle East, the natural pressure is sufficient over a long time. The natural pressure in most reservoirs, however, eventually dissipates. Then the oil must be extracted using "artificial lift" means. Over time, these "primary" methods become less effective and "secondary" production methods may be used. A common secondary method is "waterflood" or injection of water into the reservoir to increase pressure and force the oil to the drilled shaft or "wellbore." Eventually "tertiary" or "enhanced" oil recovery methods may be used to increase the oil's flow characteristics by injecting steam, carbon dioxide and other gases or chemicals into the reservoir. In the United States, primary production methods account for less than 40 percent of the oil produced on a daily basis, secondary methods account for about half, and tertiary recovery the remaining 10 percent. Extracting oil (or "bitumen") from oil/tar sand and oil shale deposits requires mining the sand or shale and heating it in a vessel or retort, or using "in-situ" methods of injecting heated liquids into the deposit and then pumping the liquid back out saturated with oil.

Unconventional oil reservoirs

Oil-eating bacteria biodegrade oil that has escaped to the surface. Oil sands are reservoirs of partially biodegraded oil still in the process of escaping and being biodegraded, but they contain so much migrating oil that, although most of it has escaped, vast amounts are still present—more than can be found in conventional oil reservoirs. The lighter fractions of the crude oil are destroyed first, resulting in reservoirs containing an extremely heavy form of crude oil, called crude bitumen in Canada, or extra-heavy crude oil in Venezuela. These two countries have the world's largest deposits of oil sands.

On the other hand, oil shales are source rocks that have not been exposed to heat or pressure long enough to convert their trapped hydrocarbons into crude oil. Technically speaking, oil shales are not always shales and do not contain oil, but are fined-grain sedimentary rocks containing an insoluble organic solid called kerogen. The kerogen in the rock can be converted into crude oil using heat and pressure to simulate natural processes. The method has been known for centuries and was patented in 1694 under British Crown Patent No. 330 covering, "A way to extract and make great quantities of pitch, tar, and oil out of a sort of stone." Although oil shales are found in many countries, the United States has the world's largest deposits.

Classification

Some marker crudes with their sulfur content (horizontal) and API gravity (vertical) and relative production quantity.

The petroleum industry generally classifies crude oil by the geographic location it is produced in (e.g. West Texas Intermediate, Brent, or Oman), its API gravity (an oil industry measure of density), and its sulfur content. Crude oil may be considered light if it has low density or heavy if it has high density; and it may be referred to as sweet if it contains relatively little sulfur or sour if it contains substantial amounts of sulfur.

The geographic location is important because it affects transportation costs to the refinery. Light crude oil is more desirable than heavy oil since it produces a higher yield of gasoline, while sweet oil commands a higher price than sour oil because it has fewer environmental problems and requires less refining to meet sulfur standards imposed on fuels in consuming countries. Each crude oil has unique molecular characteristics which are revealed by the use of Crude oil assay analysis in petroleum laboratories.

Barrels from an area in which the crude oil's molecular characteristics have been determined and the oil has been classified are used as pricing references throughout the world. Some of the common reference crudes are:
There are declining amounts of these benchmark oils being produced each year, so other oils are more commonly what is actually delivered. While the reference price may be for West Texas Intermediate delivered at Cushing, the actual oil being traded may be a discounted Canadian heavy oil—Western Canadian Select— delivered at Hardisty, Alberta, and for a Brent Blend delivered at Shetland, it may be a discounted Russian Export Blend delivered at the port of Primorsk.

Petroleum industry

Crude oil export treemap (2012) from Harvard Atlas of Economic Complexity.
 
New York Mercantile Exchange prices ($/bbl) for West Texas Intermediate 2000 through Oct 2014.
 
The petroleum industry is involved in the global processes of exploration, extraction, refining, transporting (often with oil tankers and pipelines), and marketing petroleum products. The largest volume products of the industry are fuel oil and gasoline. Petroleum is also the raw material for many chemical products, including pharmaceuticals, solvents, fertilizers, pesticides, and plastics. The industry is usually divided into three major components: upstream, midstream and downstream. Midstream operations are usually included in the downstream category.

Petroleum is vital to many industries, and is of importance to the maintenance of industrialized civilization itself, and thus is a critical concern to many nations. Oil accounts for a large percentage of the world's energy consumption, ranging from a low of 32 percent for Europe and Asia, up to a high of 53 percent for the Middle East, South and Central America (44%), Africa (41%), and North America (40%). The world at large consumes 30 billion barrels (4.8 km3) of oil per year, and the top oil consumers largely consist of developed nations. In fact, 24 percent of the oil consumed in 2004 went to the United States alone, though by 2007 this had dropped to 21 percent of world oil consumed.

In the US, in the states of Arizona, California, Hawaii, Nevada, Oregon and Washington, the Western States Petroleum Association (WSPA) represents companies responsible for producing, distributing, refining, transporting and marketing petroleum. This non-profit trade association was founded in 1907, and is the oldest petroleum trade association in the United States.

Shipping

In the 1950s, shipping costs made up 33 percent of the price of oil transported from the Persian Gulf to the United States, but due to the development of supertankers in the 1970s, the cost of shipping dropped to only 5 percent of the price of Persian oil in the US. Due to the increase of the value of the crude oil during the last 30 years, the share of the shipping cost on the final cost of the delivered commodity was less than 3% in 2010. For example, in 2010 the shipping cost from the Persian Gulf to the US was in the range of 20 $/t and the cost of the delivered crude oil around 800 $/t.

Price

Nominal and inflation-adjusted US dollar price of crude oil, 1861–2015.

After the collapse of the OPEC-administered pricing system in 1985, and a short-lived experiment with netback pricing, oil-exporting countries adopted a market-linked pricing mechanism. First adopted by PEMEX in 1986, market-linked pricing was widely accepted, and by 1988 became and still is the main method for pricing crude oil in international trade. The current reference, or pricing markers, are Brent, WTI, and Dubai/Oman.

Uses

The chemical structure of petroleum is heterogeneous, composed of hydrocarbon chains of different lengths. Because of this, petroleum may be taken to oil refineries and the hydrocarbon chemicals separated by distillation and treated by other chemical processes, to be used for a variety of purposes. The total cost per plant is about 9 billion dollars.

Fuels

The most common distillation fractions of petroleum are fuels. Fuels include (by increasing boiling temperature range):

Common fractions of petroleum as fuels
Fraction Boiling range oC
Liquefied petroleum gas (LPG) −40
Butane −12 to −1
Gasoline/Petrol −1 to 110
Jet fuel 150 to 205
Kerosene 205 to 260
Fuel oil 205 to 290
Diesel fuel 260 to 315

Petroleum classification according to chemical composition. 

Class of petroleum Composition of 250–300 °C fraction,
wt. %
Par. Napth Arom. Wax Asph.
Paraffinic 46—61 22–32 12–25 1.5–10 0–6
Paraffinic-naphtenic 42–45 38–39 16–20 1–6 0–6
Naphthenic 15–26 61–76 8–13 Trace 0–6
Paraffinic-naphtenic-aromatic 27–35 36–47 26–33 0.5–1 0–10
Aromatic 0–8 57–78 20–25 0–0.5 0–20

Other derivatives

Certain types of resultant hydrocarbons may be mixed with other non-hydrocarbons, to create other end products:

Agriculture

Since the 1940s, agricultural productivity has increased dramatically, due largely to the increased use of energy-intensive mechanization, fertilizers and pesticides.

Petroleum by country

Consumption statistics

Consumption

According to the US Energy Information Administration (EIA) estimate for 2011, the world consumes 87.421 million barrels of oil each day. 

Oil consumption per capita (darker colors represent more consumption, gray represents no data) (source: see file description).
   > 0.07
  0.07–0.05
  0.05–0.035
  0.035–0.025
  0.025–0.02
  0.02–0.015
  0.015–0.01
  0.01–0.005
  0.005–0.0015
   < 0.0015

This table orders the amount of petroleum consumed in 2011 in thousand barrels (1000 bbl) per day and in thousand cubic meters (1000 m3) per day:

Consuming nation 2011 (1000 bbl/
day)
(1000 m3/
day)
Population
in millions
bbl/year
per capita
m3/year
per capita
National production/
consumption
United States 1 18,835.5 2,994.6 314 21.8 3.47 0.51
China 9,790.0 1,556.5 1345 2.7 0.43 0.41
Japan 2 4,464.1 709.7 127 12.8 2.04 0.03
India 2 3,292.2 523.4 1198 1 0.16 0.26
Russia 1 3,145.1 500.0 140 8.1 1.29 3.35
Saudi Arabia (OPEC) 2,817.5 447.9 27 40 6.4 3.64
Brazil 2,594.2 412.4 193 4.9 0.78 0.99
Germany 2 2,400.1 381.6 82 10.7 1.70 0.06
Canada 2,259.1 359.2 33 24.6 3.91 1.54
South Korea 2 2,230.2 354.6 48 16.8 2.67 0.02
Mexico 1 2,132.7 339.1 109 7.1 1.13 1.39
France 2 1,791.5 284.8 62 10.5 1.67 0.03
Iran (OPEC) 1,694.4 269.4 74 8.3 1.32 2.54
United Kingdom 1 1,607.9 255.6 61 9.5 1.51 0.93
Italy 2 1,453.6 231.1 60 8.9 1.41 0.10
1 peak production of oil already passed in this state
2 This country is not a major oil producer

Production

 
Top oil-producing countries (million barrels per day).
 
World map with countries by oil production (information from 2006–2012).

In petroleum industry parlance, production refers to the quantity of crude extracted from reserves, not the literal creation of the product. 

Country Oil Production (bbl/day, 2016)
1  Russia 10,551,497
2  Saudi Arabia (OPEC) 10,460,710
3  United States 8,875,817
4  Iraq (OPEC) 4,451,516
5  Iran (OPEC) 3,990,956
6  China, People's Republic of 3,980,650
7  Canada 3,662,694
8  United Arab Emirates (OPEC) 3,106,077
9  Kuwait (OPEC) 2,923,825
10  Brazil 2,515,459
11  Venezuela (OPEC) 2,276,967
12  Mexico 2,186,877
13  Nigeria (OPEC) 1,999,885
14  Angola (OPEC) 1,769,615
15  Norway 1,647,975
16  Kazakhstan 1,595,199
17  Qatar (OPEC) 1,522,902
18  Algeria (OPEC) 1,348,361
19  Oman 1,006,841
20  United Kingdom 939,760

Export

 
Petroleum Exports by Country (2014) from Harvard Atlas of Economic Complexity.
 
Oil exports by country (barrels per day, 2006).

In order of net exports in 2011, 2009 and 2006 in thousand bbl/d and thousand m3/d:

# Exporting nation 103bbl/d (2011) 103m3/d (2011) 103bbl/d (2009) 103m3/d (2009) 103bbl/d (2006) 103m3/d (2006)
1 Saudi Arabia (OPEC) 8,336 1,325 7,322 1,164 8,651 1,376
2 Russia 1 7,083 1,126 7,194 1,144 6,565 1,044
3 Iran (OPEC) 2,540 403 2,486 395 2,519 401
4 United Arab Emirates (OPEC) 2,524 401 2,303 366 2,515 400
5 Kuwait (OPEC) 2,343 373 2,124 338 2,150 342
6 Nigeria (OPEC) 2,257 359 1,939 308 2,146 341
7 Iraq (OPEC) 1,915 304 1,764 280 1,438 229
8 Angola (OPEC) 1,760 280 1,878 299 1,363 217
9 Norway 1 1,752 279 2,132 339 2,542 404
10 Venezuela (OPEC) 1 1,715 273 1,748 278 2,203 350
11 Algeria (OPEC) 1 1,568 249 1,767 281 1,847 297
12 Qatar (OPEC) 1,468 233 1,066 169
13 Canada 2 1,405 223 1,168 187 1,071 170
14 Kazakhstan 1,396 222 1,299 207 1,114 177
15 Azerbaijan 1 836 133 912 145 532 85
16 Trinidad and Tobago 1 177 112 167 160 155 199
1 peak production already passed in this state
2 Canadian statistics are complicated by the fact it is both an importer and exporter of crude oil, and refines large amounts of oil for the U.S. market. It is the leading source of U.S. imports of oil and products, averaging 2,500,000 bbl/d (400,000 m3/d) in August 2007.

Total world production/consumption (as of 2005) is approximately 84 million barrels per day (13,400,000 m3/d).

Import

Oil imports by country (barrels per day, 2006).
 
In order of net imports in 2011, 2009 and 2006 in thousand bbl/d and thousand m3/d: 

# Importing nation 103bbl/day (2011) 103m3/day (2011) 103bbl/day (2009) 103m3/day (2009) 103bbl/day (2006) 103m3/day (2006)
1 United States 1 8,728 1,388 9,631 1,531 12,220 1,943
2 China 2 5,487 872 4,328 688 3,438 547
3 Japan 4,329 688 4,235 673 5,097 810
4 India 2,349 373 2,233 355 1,687 268
5 Germany 2,235 355 2,323 369 2,483 395
6 South Korea 2,170 345 2,139 340 2,150 342
7 France 1,697 270 1,749 278 1,893 301
8 Spain 1,346 214 1,439 229 1,555 247
9 Italy 1,292 205 1,381 220 1,558 248
10 Singapore 1,172 186 916 146 787 125
11 Republic of China (Taiwan) 1,009 160 944 150 942 150
12 Netherlands 948 151 973 155 936 149
13 Turkey 650 103 650 103 576 92
14 Belgium 634 101 597 95 546 87
15 Thailand 592 94 538 86 606 96
1 peak production of oil expected in 2020
2 Major oil producer whose production is still increasing

Oil imports to the United States by country 2010

Oil imports to US, 2010.

Non-producing consumers

Countries whose oil production is 10% or less of their consumption. 

# Consuming nation (bbl/day) (m3/day)
1 Japan 5,578,000 886,831
2 Germany 2,677,000 425,609
3 South Korea 2,061,000 327,673
4 France 2,060,000 327,514
5 Italy 1,874,000 297,942
6 Spain 1,537,000 244,363
7 Netherlands 946,700 150,513
8 Turkey 575,011 91,663

Environmental effects

Diesel fuel spill on a road.
 
Because petroleum is a naturally occurring substance, its presence in the environment need not be the result of human causes such as accidents and routine activities (seismic exploration, drilling, extraction, refining and combustion). Phenomena such as seeps and tar pits are examples of areas that petroleum affects without man's involvement. Regardless of source, petroleum's effects when released into the environment are similar.

Ocean acidification

Seawater acidification.
 
Ocean acidification is the increase in the acidity of the Earth's oceans caused by the uptake of carbon dioxide (CO2) from the atmosphere. This increase in acidity inhibits all marine life – having a greater impact on smaller organisms as well as shelled organisms.

Global warming

When burned, petroleum releases carbon dioxide, a greenhouse gas. Along with the burning of coal, petroleum combustion may be the largest contributor to the increase in atmospheric CO2. Atmospheric CO2 has risen over the last 150 years to current levels of over 400 ppmv, from the 180 – 300 ppmv of the prior 800 thousand years This rise in temperature may have reduced the Arctic ice cap to 1,100,000 sq mi (2,800,000 km2), smaller than ever recorded. Because of this melt, more oil reserves have been revealed. About 13 percent of the world's undiscovered oil resides in the Arctic.

Extraction

Oil extraction is simply the removal of oil from the reservoir (oil pool). Oil is often recovered as a water-in-oil emulsion, and specialty chemicals called demulsifiers are used to separate the oil from water. Oil extraction is costly and sometimes environmentally damaging. Offshore exploration and extraction of oil disturbs the surrounding marine environment.

Oil spills

Kelp after an oil spill.
 
Oil slick from the Montara oil spill in the Timor Sea, September, 2009.
 
Volunteers cleaning up the aftermath of the Prestige oil spill.
 
Crude oil and refined fuel spills from tanker ship accidents have damaged natural ecosystems in Alaska, the Gulf of Mexico, the Galápagos Islands, France and many other places

The quantity of oil spilled during accidents has ranged from a few hundred tons to several hundred thousand tons (e.g., Deepwater Horizon oil spill, SS Atlantic Empress, Amoco Cadiz). Smaller spills have already proven to have a great impact on ecosystems, such as the Exxon Valdez oil spill.

Oil spills at sea are generally much more damaging than those on land, since they can spread for hundreds of nautical miles in a thin oil slick which can cover beaches with a thin coating of oil. This can kill sea birds, mammals, shellfish and other organisms it coats. Oil spills on land are more readily containable if a makeshift earth dam can be rapidly bulldozed around the spill site before most of the oil escapes, and land animals can avoid the oil more easily. 

Control of oil spills is difficult, requires ad hoc methods, and often a large amount of manpower. The dropping of bombs and incendiary devices from aircraft on the SS Torrey Canyon wreck produced poor results; modern techniques would include pumping the oil from the wreck, like in the Prestige oil spill or the Erika oil spill.

Though crude oil is predominantly composed of various hydrocarbons, certain nitrogen heterocylic compounds, such as pyridine, picoline, and quinoline are reported as contaminants associated with crude oil, as well as facilities processing oil shale or coal, and have also been found at legacy wood treatment sites. These compounds have a very high water solubility, and thus tend to dissolve and move with water. Certain naturally occurring bacteria, such as Micrococcus, Arthrobacter, and Rhodococcus have been shown to degrade these contaminants.

Tarballs

A tarball is a blob of crude oil (not to be confused with tar, which is a man-made product derived from pine trees or refined from petroleum) which has been weathered after floating in the ocean. Tarballs are an aquatic pollutant in most environments, although they can occur naturally, for example in the Santa Barbara Channel of California or in the Gulf of Mexico off Texas. Their concentration and features have been used to assess the extent of oil spills. Their composition can be used to identify their sources of origin, and tarballs themselves may be dispersed over long distances by deep sea currents. They are slowly decomposed by bacteria, including Chromobacterium violaceum, Cladosporium resinae, Bacillus submarinus, Micrococcus varians, Pseudomonas aeruginosa, Candida marina and Saccharomyces estuari.

Whales

James S. Robbins has argued that the advent of petroleum-refined kerosene saved some species of great whales from extinction by providing an inexpensive substitute for whale oil, thus eliminating the economic imperative for open-boat whaling.

Alternatives to petroleum

In the United States in 2007 about 70 percent of petroleum was used for transportation (e.g. gasoline, diesel, jet fuel), 24 percent by industry (e.g. production of plastics), 5 percent for residential and commercial uses, and 2 percent for electricity production. Outside of the US, a higher proportion of petroleum tends to be used for electricity.

Alternatives to petroleum-based vehicle fuels

Brazilian fuel station with four alternative fuels for sale: diesel (B3), gasohol (E25), neat ethanol (E100), and compressed natural gas (CNG).
 
Alternative fuel vehicles refers to both:

Alternatives to using oil in industry

Biological feedstocks do exist for industrial uses such as Bioplastic production.

Alternatives to burning petroleum for electricity

In oil producing countries with little refinery capacity, oil is sometimes burned to produce electricity. Renewable energy technologies such as solar power, wind power, micro hydro, biomass and biofuels are used, but the primary alternatives remain large-scale hydroelectricity, nuclear and coal-fired generation.

Future of petroleum production

US oil production and imports, 1910-2012.
 
Consumption in the twentieth and twenty-first centuries has been abundantly pushed by automobile sector growth. The 1985–2003 oil glut even fueled the sales of low fuel economy vehicles in OECD countries. The 2008 economic crisis seems to have had some impact on the sales of such vehicles; still, in 2008 oil consumption showed a small increase. 

In 2016 Goldman Sachs predicted lower demand for oil due to emerging economies concerns, especially China. The BRICS (Brasil, Russia, India, China, South Africa) countries might also kick in, as China briefly was the first automobile market in December 2009. The immediate outlook still hints upwards. In the long term, uncertainties linger; the OPEC believes that the OECD countries will push low consumption policies at some point in the future; when that happens, it will definitely curb oil sales, and both OPEC and the Energy Information Administration (EIA) kept lowering their 2020 consumption estimates during the past five years. A detailed review of International Energy Agency oil projections have revealed that revisions of world oil production, price and investments have been motivated by a combination of demand and supply factors. All together, Non-OPEC conventional projections have been fairly stable the last 15 years, while downward revisions were mainly allocated to OPEC. Recent upward revisions are primarily a result of US tight oil

Production will also face an increasingly complex situation; while OPEC countries still have large reserves at low production prices, newly found reservoirs often lead to higher prices; offshore giants such as Tupi, Guara and Tiber demand high investments and ever-increasing technological abilities. Subsalt reservoirs such as Tupi were unknown in the twentieth century, mainly because the industry was unable to probe them. Enhanced Oil Recovery (EOR) techniques (example: DaQing, China ) will continue to play a major role in increasing the world's recoverable oil.

The expected availability of petroleum resources has always been around 35 years or even less since the start of the modern exploration. The oil constant, an insider pun in the German industry, refers to that effect.

Peak oil

Global peak oil forecast.
 
Peak oil is a term applied to the projection that future petroleum production (whether for individual oil wells, entire oil fields, whole countries, or worldwide production) will eventually peak and then decline at a similar rate to the rate of increase before the peak as these reserves are exhausted. The peak of oil discoveries was in 1965, and oil production per year has surpassed oil discoveries every year since 1980. However, this does not mean that potential oil production has surpassed oil demand. 

Hubbert applied his theory to accurately predict the peak of U.S. conventional oil production at a date between 1966 and 1970. This prediction was based on data available at the time of his publication in 1956. In the same paper, Hubbert predicts world peak oil in "half a century" after his publication, which would be 2006.

It is difficult to predict the oil peak in any given region, due to the lack of knowledge and/or transparency in accounting of global oil reserves. Based on available production data, proponents have previously predicted the peak for the world to be in years 1989, 1995, or 1995–2000. Some of these predictions date from before the recession of the early 1980s, and the consequent reduction in global consumption, the effect of which was to delay the date of any peak by several years. Just as the 1971 U.S. peak in oil production was only clearly recognized after the fact, a peak in world production will be difficult to discern until production clearly drops off. The peak is also a moving target as it is now measured as "liquids", which includes synthetic fuels, instead of just conventional oil.

The International Energy Agency (IEA) said in 2010 that production of conventional crude oil had peaked in 2006 at 70 MBBL/d, then flattened at 68 or 69 thereafter. Since virtually all economic sectors rely heavily on petroleum, peak oil, if it were to occur, could lead to a "partial or complete failure of markets". In the mid-2000s, widespread fears of an imminent peak led to the "peak oil movement," in which over one hundred thousand Americans prepared, individually and collectively, for the "post-carbon" future.

Unconventional production

Unconventional oil is petroleum produced or extracted using techniques other than the conventional methods. The calculus for peak oil has changed with the introduction of unconventional production methods. In particular, the combination of horizontal drilling and hydraulic fracturing has resulted in a significant increase in production from previously uneconomic plays. Analysts expected that $150 billion would be spent on further developing North American tight oil fields in 2015. The large increase in tight oil production is one of the reasons behind the price drop in late 2014. Certain rock strata contain hydrocarbons but have low permeability and are not thick from a vertical perspective. Conventional vertical wells would be unable to economically retrieve these hydrocarbons. Horizontal drilling, extending horizontally through the strata, permits the well to access a much greater volume of the strata. Hydraulic fracturing creates greater permeability and increases hydrocarbon flow to the wellbore.

Natural rubber

From Wikipedia, the free encyclopedia

Latex being collected from a tapped rubber tree, Cameroon
 
Rubber tree plantation in Thailand
 
Natural rubber, also called India rubber or caoutchouc, as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds, plus water. Malaysia and Indonesia are two of the leading rubber producers. Forms of polyisoprene that are used as natural rubbers are classified as elastomers

Currently, rubber is harvested mainly in the form of the latex from the rubber tree or others. The latex is a sticky, milky colloid drawn off by making incisions in the bark and collecting the fluid in vessels in a process called "tapping". The latex then is refined into rubber ready for commercial processing. In major areas, latex is allowed to coagulate in the collection cup. The coagulated lumps are collected and processed into dry forms for marketing.

Natural rubber is used extensively in many applications and products, either alone or in combination with other materials. In most of its useful forms, it has a large stretch ratio and high resilience, and is extremely waterproof.

Varieties

Hevea brasiliensis

The major commercial source of natural rubber latex is the Pará rubber tree (Hevea brasiliensis), a member of the spurge family, Euphorbiaceae. This species is preferred because it grows well under cultivation. A properly managed tree responds to wounding by producing more latex for several years.

Congo rubber

Congo rubber, formerly a major source of rubber, came from vines in the genus Landolphia (L. kirkii, L. heudelotis, and L. owariensis).

Dandelion

Dandelion milk contains latex. The latex exhibits the same quality as the natural rubber from rubber trees. In the wild types of dandelion, latex content is low and varies greatly. In Nazi Germany, research projects tried to use dandelions as a base for rubber production, but failed. In 2013, by inhibiting one key enzyme and using modern cultivation methods and optimization techniques, scientists in the Fraunhofer Institute for Molecular Biology and Applied Ecology (IME) in Germany developed a cultivar that is suitable for commercial production of natural rubber. In collaboration with Continental Tires, IME began a pilot facility.

Other

Many other plants produce forms of latex rich in isoprene polymers, though not all produce usable forms of polymer as easily as the Pará. Some of them require more elaborate processing to produce anything like usable rubber, and most are more difficult to tap. Some produce other desirable materials, for example gutta-percha (Palaquium gutta) and chicle from Manilkara species. Others that have been commercially exploited, or at least showed promise as rubber sources, include the rubber fig (Ficus elastica), Panama rubber tree (Castilla elastica), various spurges (Euphorbia spp.), lettuce (Lactuca species), the related Scorzonera tau-saghyz, various Taraxacum species, including common dandelion (Taraxacum officinale) and Russian dandelion (Taraxacum kok-saghyz), and perhaps most importantly for its hypoallergenic properties, guayule (Parthenium argentatum). The term gum rubber is sometimes applied to the tree-obtained version of natural rubber in order to distinguish it from the synthetic version.

History

The first use of rubber was by the indigenous cultures of Mesoamerica. The earliest archeological evidence of the use of natural latex from the Hevea tree comes from the Olmec culture, in which rubber was first used for making balls for the Mesoamerican ballgame. Rubber was later used by the Maya and Aztec cultures – in addition to making balls Aztecs used rubber for other purposes such as making containers and to make textiles waterproof by impregnating them with the latex sap.

The Pará rubber tree is indigenous to South America. Charles Marie de La Condamine is credited with introducing samples of rubber to the Académie Royale des Sciences of France in 1736. In 1751, he presented a paper by François Fresneau to the Académie (published in 1755) that described many of rubber's properties. This has been referred to as the first scientific paper on rubber. In England, Joseph Priestley, in 1770, observed that a piece of the material was extremely good for rubbing off pencil marks on paper, hence the name "rubber". It slowly made its way around England. In 1764 François Fresnau discovered that turpentine was a rubber solvent. Giovanni Fabbroni is credited with the discovery of naphtha as a rubber solvent in 1779. 

South America remained the main source of the limited amounts of latex rubber used during much of the 19th century. The trade was heavily protected and exporting seeds from Brazil was a capital offense, although no law prohibited it. Nevertheless, in 1876, Henry Wickham smuggled 70,000 Pará rubber tree seeds from Brazil and delivered them to Kew Gardens, England. Only 2,400 of these germinated. Seedlings were then sent to India, British Ceylon (Sri Lanka), Dutch East Indies (Indonesia), Singapore, and British Malaya. Malaya (now Peninsular Malaysia) was later to become the biggest producer of rubber. 

In the early 1900s, the Congo Free State in Africa was also a significant source of natural rubber latex, mostly gathered by forced labor. King Leopold II's colonial state brutally enforced production quotas. Tactics to enforce the rubber quotas included removing the hands of victims to prove they had been killed. Soldiers often came back from raids with baskets full of chopped-off hands. Villages that resisted were razed to encourage better compliance locally. Liberia and Nigeria started production. 

In India, commercial cultivation was introduced by British planters, although the experimental efforts to grow rubber on a commercial scale were initiated as early as 1873 at the Calcutta Botanical Gardens. The first commercial Hevea plantations were established at Thattekadu in Kerala in 1902. In later years the plantation expanded to Karnataka, Tamil Nadu and the Andaman and Nicobar Islands of India. India today is the world's 3rd largest producer and 4th largest consumer.

In Singapore and Malaya, commercial production was heavily promoted by Sir Henry Nicholas Ridley, who served as the first Scientific Director of the Singapore Botanic Gardens from 1888 to 1911. He distributed rubber seeds to many planters and developed the first technique for tapping trees for latex without causing serious harm to the tree. Because of his fervent promotion of this crop, he is popularly remembered by the nickname "Mad Ridley".

Pre-World War II

Charles Goodyear developed vulcanization in 1839, although Mesoamericans used stabilized rubber for balls and other objects as early as 1600 BC.

Before World War II significant uses included door and window profiles, hoses, belts, gaskets, matting, flooring and dampeners (antivibration mounts) for the automotive industry. The use of rubber in car tires (initially solid rather than pneumatic) in particular consumed a significant amount of rubber. Gloves (medical, household and industrial) and toy balloons were large consumers of rubber, although the type of rubber used is concentrated latex. Significant tonnage of rubber was used as adhesives in many manufacturing industries and products, although the two most noticeable were the paper and the carpet industries. Rubber was commonly used to make rubber bands and pencil erasers

Rubber produced as a fiber, sometimes called 'elastic', had significant value to the textile industry because of its excellent elongation and recovery properties. For these purposes, manufactured rubber fiber was made as either an extruded round fiber or rectangular fibers cut into strips from extruded film. Because of its low dye acceptance, feel and appearance, the rubber fiber was either covered by yarn of another fiber or directly woven with other yarns into the fabric. Rubber yarns were used in foundation garments. While rubber is still used in textile manufacturing, its low tenacity limits its use in lightweight garments because latex lacks resistance to oxidizing agents and is damaged by aging, sunlight, oil and perspiration. The textile industry turned to neoprene (polymer of chloroprene), a type of synthetic rubber, as well as another more commonly used elastomer fiber, spandex (also known as elastane), because of their superiority to rubber in both strength and durability.

Properties

Rubber latex
 
Rubber exhibits unique physical and chemical properties. Rubber's stress–strain behavior exhibits the Mullins effect and the Payne effect and is often modeled as hyperelastic. Rubber strain crystallizes.
Due to the presence of weakened allylic C-H bonds in each repeat unit, natural rubber is susceptible to vulcanisation as well as being sensitive to ozone cracking

The two main solvents for rubber are turpentine and naphtha (petroleum). Because rubber does not dissolve easily, the material is finely divided by shredding prior to its immersion.

An ammonia solution can be used to prevent the coagulation of raw latex. 

Rubber begins to melt at approximately 180 °C (356 °F).

Elasticity

On a microscopic scale, relaxed rubber is a disorganized cluster of erratically changing wrinkled chains. In stretched rubber, the chains are almost linear. The restoring force is due to the preponderance of wrinkled conformations over more linear ones. For the quantitative treatment see ideal chain, for more examples see entropic force.

Cooling below the glass transition temperature permits local conformational changes but a reordering is practically impossible because of the larger energy barrier for the concerted movement of longer chains. "Frozen" rubber's elasticity is low and strain results from small changes of bond lengths and angles: this caused the Challenger disaster, when the American Space Shuttle's flattened o-rings failed to relax to fill a widening gap. The glass transition is fast and reversible: the force resumes on heating. 

The parallel chains of stretched rubber are susceptible to crystallization. This takes some time because turns of twisted chains have to move out of the way of the growing crystallites. Crystallization has occurred, for example, when, after days, an inflated toy balloon is found withered at a relatively large remaining volume. Where it is touched, it shrinks because the temperature of the hand is enough to melt the crystals.

Vulcanization of rubber creates di- and polysulfide bonds between chains, which limits the degrees of freedom and results in chains that tighten more quickly for a given strain, thereby increasing the elastic force constant and making the rubber harder and less extensible.

Malodour

Raw rubber storage depots and rubber processing can produce malodour that is serious enough to become a source of complaints and protest to those living in the vicinity.

Microbial impurities originate during the processing of block rubber. These impurities break down during storage or thermal degradation and produce volatile organic compounds. Examination of these compounds using gas chromatography/mass spectrometry (GC/MS) and gas chromatography (GC) indicates that they contain sulphur, ammonia, alkenes, ketones, esters, hydrogen sulphite, nitrogen, and low molecular weight fatty acids (C2-C5).

When latex concentrate is produced from rubber, sulphuric acid is used for coagulation. This produces malodourous hydrogen sulphide.

The industry can mitigate these bad odours with scrubber systems.

Chemical makeup

Chemical structure of cis-polyisoprene, the main constituent of natural rubber. Synthetic cis-polyisoprene and natural cis-polyisoprene are derived from different precursors, isopentenyl pyrophosphate and isoprene.
 
Latex is the polymer cis-1,4-polyisoprene – with a molecular weight of 100,000 to 1,000,000 daltons. Typically, a small percentage (up to 5% of dry mass) of other materials, such as proteins, fatty acids, resins, and inorganic materials (salts) are found in natural rubber. Polyisoprene can also be created synthetically, producing what is sometimes referred to as "synthetic natural rubber", but the synthetic and natural routes are different. Some natural rubber sources, such as gutta-percha, are composed of trans-1,4-polyisoprene, a structural isomer that has similar properties.

Natural rubber is an elastomer and a thermoplastic. Once the rubber is vulcanized, it is a thermoset. Most rubber in everyday use is vulcanized to a point where it shares properties of both; i.e., if it is heated and cooled, it is degraded but not destroyed.

The final properties of a rubber item depend not just on the polymer, but also on modifiers and fillers, such as carbon black, factice, whiting and others.

Biosynthesis

Rubber particles are formed in the cytoplasm of specialized latex-producing cells called laticifers within rubber plants. Rubber particles are surrounded by a single phospholipid membrane with hydrophobic tails pointed inward. The membrane allows biosynthetic proteins to be sequestered at the surface of the growing rubber particle, which allows new monomeric units to be added from outside the biomembrane, but within the lacticifer. The rubber particle is an enzymatically active entity that contains three layers of material, the rubber particle, a biomembrane and free monomeric units. The biomembrane is held tightly to the rubber core due to the high negative charge along the double bonds of the rubber polymer backbone. Free monomeric units and conjugated proteins make up the outer layer. The rubber precursor is isopentenyl pyrophosphate (an allylic compound), which elongates by Mg2+-dependent condensation by the action of rubber transferase. The monomer adds to the pyrophosphate end of the growing polymer. The process displaces the terminal high-energy pyrophosphate. The reaction produces a cis polymer. The initiation step is catalyzed by prenyltransferase, which converts three monomers of isopentenyl pyrophosphate into farnesyl pyrophosphate. The farnesyl pyrophosphate can bind to rubber transferase to elongate a new rubber polymer. 

The required isopentenyl pyrophosphate is obtained from the mevalonate pathway, which derives from acetyl-CoA in the cytosol. In plants, isoprene pyrophosphate can also be obtained from the 1-deox-D-xyulose-5-phosphate/2-C-methyl-D-erythritol-4-phosphate pathway within plasmids. The relative ratio of the farnesyl pyrophosphate initiator unit and isoprenyl pyrophosphate elongation monomer determines the rate of new particle synthesis versus elongation of existing particles. Though rubber is known to be produced by only one enzyme, extracts of latex host numerous small molecular weight proteins with unknown function. The proteins possibly serve as cofactors, as the synthetic rate decreases with complete removal.

Production

Rubber is generally cultivated in large plantations. The image shows a coconut shell used in collecting latex, in plantations in Kerala, India.
 
Close to 28 million tons of rubber were produced in 2013, of which approximately 44% was natural. Since the bulk is synthetic, which is derived from petroleum, the price of natural rubber is determined, to a large extent, by the prevailing global price of crude oil. Asia was the main source of natural rubber, accounting for about 94% of output in 2005. The three largest producers, Thailand, Indonesia (2.4 million tons) and Malaysia, together account for around 72% of all natural rubber production. Natural rubber is not cultivated widely in its native continent of South America due to the existence of South American leaf blight, and other natural predators.

Cultivation

Rubber latex is extracted from rubber trees. The economic life period of rubber trees in plantations is around 32 years — up to 7 years of immature phase and about 25 years of productive phase. 

The soil requirement is well-drained, weathered soil consisting of laterite, lateritic types, sedimentary types, nonlateritic red or alluvial soils.

The climatic conditions for optimum growth of rubber trees are:
  • Rainfall of around 250 centimeters (98 in) evenly distributed without any marked dry season and with at least 100 rainy days per year
  • Temperature range of about 20 to 34 °C, with a monthly mean of 25 to 28 °C
  • Atmospheric humidity of around 80%
  • About 2000 hours sunshine per year at the rate of six hours per day throughout the year
  • Absence of strong winds
Many high-yielding clones have been developed for commercial planting. These clones yield more than 2,000 kg of dry rubber per hectare per year, under ideal conditions.

Collection

A woman in Sri Lanka harvesting rubber, circa 1920
 
In places such as Kerala and Sri Lanka where coconuts are in abundance, the half shell of coconut was used as the latex collection container. Glazed pottery or aluminium or plastic cups became more common in Kerala and other countries. The cups are supported by a wire that encircles the tree. This wire incorporates a spring so it can stretch as the tree grows. The latex is led into the cup by a galvanised "spout" knocked into the bark. Tapping normally takes place early in the morning, when the internal pressure of the tree is highest. A good tapper can tap a tree every 20 seconds on a standard half-spiral system, and a common daily "task" size is between 450 and 650 trees. Trees are usually tapped on alternate or third days, although many variations in timing, length and number of cuts are used. "Tappers would make a slash in the bark with a small hatchet. These slanting cuts allowed latex to flow from ducts located on the exterior or the inner layer of bark (cambium) of the tree. Since the cambium controls the growth of the tree, growth stops if it is cut. Thus, rubber tapping demanded accuracy, so that the incisions would not be too many given the size of the tree, or too deep, which could stunt its growth or kill it."

It is usual to tap a pannel at least twice, sometimes three times, during the tree's life. The economic life of the tree depends on how well the tapping is carried out, as the critical factor is bark consumption. A standard in Malaysia for alternate daily tapping is 25 cm (vertical) bark consumption per year. The latex-containing tubes in the bark ascend in a spiral to the right. For this reason, tapping cuts usually ascend to the left to cut more tubes.

The trees drip latex for about four hours, stopping as latex coagulates naturally on the tapping cut, thus blocking the latex tubes in the bark. Tappers usually rest and have a meal after finishing their tapping work, then start collecting the liquid "field latex" at about midday.

Field coagula

Mixed field coagula.
 
Smallholder's lump at a remilling factory
 
The four types of field coagula are "cuplump", "treelace", "smallholders' lump" and "earth scrap". Each has significantly different properties. Some trees continue to drip after the collection leading to a small amount of "cup lump" that is collected at the next tapping. The latex that coagulates on the cut is also collected as "tree lace". Tree lace and cup lump together account for 10–20% of the dry rubber produced. Latex that drips onto the ground, "earth scrap", is also collected periodically for processing of low-grade product.
Cup lump
Cup lump is the coagulated material found in the collection cup when the tapper next visits the tree to tap it again. It arises from latex clinging to the walls of the cup after the latex was last poured into the bucket, and from late-dripping latex exuded before the latex-carrying vessels of the tree become blocked. It is of higher purity and of greater value than the other three types.
Tree lace
Tree lace is the coagulum strip that the tapper peels off the previous cut before making a new cut. It usually has higher copper and manganese contents than cup lump. Both copper and manganese are pro-oxidants and can damage the physical properties of the dry rubber.
Smallholders' lump
Smallholders' lump is produced by smallholders who collect rubber from trees far from the nearest factory. Many Indonesian smallholders, who farm paddies in remote areas, tap dispersed trees on their way to work in the paddy fields and collect the latex (or the coagulated latex) on their way home. As it is often impossible to preserve the latex sufficiently to get it to a factory that processes latex in time for it to be used to make high quality products, and as the latex would anyway have coagulated by the time it reached the factory, the smallholder will coagulate it by any means available, in any container available. Some smallholders use small containers, buckets etc., but often the latex is coagulated in holes in the ground, which are usually lined with plastic sheeting. Acidic materials and fermented fruit juices are used to coagulate the latex — a form of assisted biological coagulation. Little care is taken to exclude twigs, leaves, and even bark from the lumps that are formed, which may also include tree lace.
Earth scrap
Earth scrap is material that gathers around the base of the tree. It arises from latex overflowing from the cut and running down the bark, from rain flooding a collection cup containing latex, and from spillage from tappers' buckets during collection. It contains soil and other contaminants, and has variable rubber content, depending on the amount of contaminants. Earth scrap is collected by field workers two or three times a year and may be cleaned in a scrap-washer to recover the rubber, or sold to a contractor who cleans it and recovers the rubber. It is of low quality.

Processing

Removing coagulum from coagulating troughs.
 
Latex coagulates in the cups if kept for long and must be collected before this happens. The collected latex, "field latex", is transferred into coagulation tanks for the preparation of dry rubber or transferred into air-tight containers with sieving for ammoniation. Ammoniation preserves the latex in a colloidal state for longer periods of time.

Latex is generally processed into either latex concentrate for manufacture of dipped goods or coagulated under controlled, clean conditions using formic acid. The coagulated latex can then be processed into the higher-grade, technically specified block rubbers such as SVR 3L or SVR CV or used to produce Ribbed Smoke Sheet grades.

Naturally coagulated rubber (cup lump) is used in the manufacture of TSR10 and TSR20 grade rubbers. Processing for these grades is a size reduction and cleaning process to remove contamination and prepare the material for the final stage of drying.

The dried material is then baled and palletized for storage and shipment.

Vulcanized rubber

Torn latex rubber dry suit wrist seal
 
Natural rubber is often vulcanized, a process by which the rubber is heated and sulfur, peroxide or bisphenol are added to improve resistance and elasticity and to prevent it from perishing. Carbon black is often used as an additive to rubber to improve its strength, especially in vehicle tires, which account for about 70% (~9 million tons) of carbon black production.

Transportation

Natural rubber latex is shipped from factories in south-west Asia, South America, and West and Center Africa to destinations around the world. As the cost of natural rubber has risen significantly and rubber products are dense, the shipping methods offering the lowest cost per unit weight are preferred. Depending on destination, warehouse availability, and transportation conditions, some methods are preferred by certain buyers. In international trade, latex rubber is mostly shipped in 20-foot ocean containers. Inside the container, smaller containers are used to store the latex.

Uses

Compression molded (cured) rubber boots before the flashes are removed

Uncured rubber is used for cements; for adhesive, insulating, and friction tapes; and for crepe rubber used in insulating blankets and footwear. Vulcanized rubber has many more applications. Resistance to abrasion makes softer kinds of rubber valuable for the treads of vehicle tires and conveyor belts, and makes hard rubber valuable for pump housings and piping used in the handling of abrasive sludge. 

The flexibility of rubber is appealing in hoses, tires and rollers for devices ranging from domestic clothes wringers to printing presses; its elasticity makes it suitable for various kinds of shock absorbers and for specialized machinery mountings designed to reduce vibration. Its relative gas impermeability makes it useful in the manufacture of articles such as air hoses, balloons, balls and cushions. The resistance of rubber to water and to the action of most fluid chemicals has led to its use in rainwear, diving gear, and chemical and medicinal tubing, and as a lining for storage tanks, processing equipment and railroad tank cars. Because of their electrical resistance, soft rubber goods are used as insulation and for protective gloves, shoes and blankets; hard rubber is used for articles such as telephone housings, parts for radio sets, meters and other electrical instruments. The coefficient of friction of rubber, which is high on dry surfaces and low on wet surfaces, leads to its use for power-transmission belting and for water-lubricated bearings in deep-well pumps. Indian rubber balls or lacrosse balls are made of rubber. 

Around 25 million tonnes of rubber are produced each year, of which 30 percent is natural. The remainder is synthetic rubber derived from petrochemical sources. The top end of latex production results in latex products such as surgeons' gloves, condoms, balloons and other relatively high-value products. The mid-range which comes from the technically specified natural rubber materials ends up largely in tires but also in conveyor belts, marine products, windshield wipers and miscellaneous goods. Natural rubber offers good elasticity, while synthetic materials tend to offer better resistance to environmental factors such as oils, temperature, chemicals and ultraviolet light. "Cured rubber" is rubber that has been compounded and subjected to the vulcanisation process to create cross-links within the rubber matrix.

Allergic reactions

Some people have a serious latex allergy, and exposure to natural latex rubber products such as latex gloves can cause anaphylactic shock. The antigenic proteins found in Hevea latex may be deliberately reduced (though not eliminated) through processing. 

Latex from non-Hevea sources, such as Guayule, can be used without allergic reaction by persons with an allergy to Hevea latex.

Some allergic reactions are not to the latex itself, but from residues of chemicals used to accelerate the cross-linking process. Although this may be confused with an allergy to latex, it is distinct from it, typically taking the form of Type IV hypersensitivity in the presence of traces of specific processing chemicals.

Microbial degradation

Natural rubber is susceptible to degradation by a wide range of bacteria. The bacteria Streptomyces coelicolor, Pseudomonas citronellolis, and Nocardia spp. are capable of degrading vulcanized natural rubber.

Size-exclusion chromatography

From Wikipedia, the free encyclopedia

Size-exclusion chromatography
Size exclusion.jpg
Equipment for running size-exclusion chromatography. The buffer is pumped through the column (right) by a computer-controlled device
AcronymSEC
ClassificationChromatography
Analytesmacromolecules
synthetic polymers
biomolecules
ManufacturersGE, Bio-Rad, Knauer, emp Biotech
Other techniques
RelatedHigh-performance liquid chromatography
Aqueous normal-phase chromatography
Ion exchange chromatography
Micellar liquid chromatography

Size-exclusion chromatography (SEC), also known as molecular sieve chromatography, is a chromatographic method in which molecules in solution are separated by their size, and in some cases molecular weight. It is usually applied to large molecules or macromolecular complexes such as proteins and industrial polymers. Typically, when an aqueous solution is used to transport the sample through the column, the technique is known as gel-filtration chromatography, versus the name gel permeation chromatography, which is used when an organic solvent is used as a mobile phase. The chromatography column is packed with fine, porous beads which are composed of dextran polymers (Sephadex), agarose (Sepharose), or polyacrylamide (Sephacryl or BioGel P). The pore sizes of these beads are used to estimate the dimensions of macromolecules. SEC is a widely used polymer characterization method because of its ability to provide good molar mass distribution (Mw) results for polymers.

Applications

The main application of gel-filtration chromatography is the fractionation of proteins and other water-soluble polymers, while gel permeation chromatography is used to analyze the molecular weight distribution of organic-soluble polymers. Either technique should not be confused with gel electrophoresis, where an electric field is used to "pull" or "push" molecules through the gel depending on their electrical charges. The amount of time a solute remains within a pore is dependent on the size of the pore. Larger solutes will have access to a smaller volume and vice versa. Therefore, a smaller solute will remain within the pore for a longer period of time compared to a larger solute.

Another use of size exclusion chromatography is to examine the stability and characteristics of natural organic matter in water. In this method, Margit B. Muller, Daniel Schmitt, and Fritz H. Frimmel tested water sources from different places in the world to determine how stable the natural organic matter is over a period of time. Even though, size exclusion chromatography is widely utilized to study natural organic material, there are limitations. One of these limitations include that there is no standard molecular weight marker; thus, there is nothing to compare the results back to. If precise molecular weight is required, other methods should be used.

Advantages

The advantages of this method include good separation of large molecules from the small molecules with a minimal volume of eluate, and that various solutions can be applied without interfering with the filtration process, all while preserving the biological activity of the particles to separate. The technique is generally combined with others that further separate molecules by other characteristics, such as acidity, basicity, charge, and affinity for certain compounds. With size exclusion chromatography, there are short and well-defined separation times and narrow bands, which lead to good sensitivity. There is also no sample loss because solutes do not interact with the stationary phase. 

The other advantage to this experimental method is that in certain cases, it is feasible to determine the approximate molecular weight of a compound. The shape and size of the compound (eluent) determine how the compound interacts with the gel (stationary phase). To determine approximate molecular weight, the elution volumes of compounds with their corresponding molecular weights are obtained and then a plot of “Kav” vs “log(Mw)” is made, where and Mw is the molecular mass. This plot acts as a calibration curve, which is used to approximate the desired compound’s molecular weight. The Ve component represents the volume at which the intermediate molecules elute such as molecules that have partial access to the beads of the column. In addition, Vt is the sum of the total volume between the beads and the volume within the beads. The Vo component represents the volume at which the larger molecules elute, which elute in the beginning. Disadvantages are, for example, that only a limited number of bands can be accommodated because the time scale of the chromatogram is short, and, in general, there must be a 10% difference in molecular mass to have a good resolution.

Discovery

The technique was invented by Grant Henry Lathe and Colin R Ruthven, working at Queen Charlotte’s Hospital, London. They later received the John Scott Award for this invention. While Lathe and Ruthven used starch gels as the matrix, Jerker Porath and Per Flodin later introduced dextran gels; other gels with size fractionation properties include agarose and polyacrylamide. A short review of these developments has appeared.

There were also attempts to fractionate synthetic high polymers; however, it was not until 1964, when J. C. Moore of the Dow Chemical Company published his work on the preparation of gel permeation chromatography (GPC) columns based on cross-linked polystyrene with controlled pore size, that a rapid increase of research activity in this field began. It was recognized almost immediately that with proper calibration, GPC was capable to provide molar mass and molar mass distribution information for synthetic polymers. Because the latter information was difficult to obtain by other methods, GPC came rapidly into extensive use.

Theory and method

Agarose-based SEC columns used for protein purification on an AKTA FPLC machine.
 
SEC is used primarily for the analysis of large molecules such as proteins or polymers. SEC works by trapping smaller molecules in the pores of the adsorbent ("stationary phase"). This process is usually performed within a column, which typically consists of a hollow tube tightly packed with micron-scale polymer beads containing pores of different sizes. These pores may be depressions on the surface or channels through the bead. As the solution travels down the column some particles enter into the pores. Larger particles cannot enter into as many pores. The larger the particles, the faster the elution. The larger molecules simply pass by the pores because those molecules are too large to enter the pores. Larger molecules therefore flow through the column more quickly than smaller molecules, that is, the smaller the molecule, the longer the retention time.

One requirement for SEC is that the analyte does not interact with the surface of the stationary phases, with differences in elution time between analytes ideally being based solely on the solute volume the analytes can enter, rather than chemical or electrostatic interactions with the stationary phases. Thus, a small molecule that can penetrate every region of the stationary phase pore system can enter a total volume equal to the sum of the entire pore volume and the interparticle volume. This small molecule elutes late (after the molecule has penetrated all of the pore- and interparticle volume—approximately 80% of the column volume). At the other extreme, a very large molecule that cannot penetrate any the smaller pores can enter only the interparticle volume (~35% of the column volume) and elutes earlier when this volume of mobile phase has passed through the column. The underlying principle of SEC is that particles of different sizes elute (filter) through a stationary phase at different rates. This results in the separation of a solution of particles based on size. Provided that all the particles are loaded simultaneously or near-simultaneously, particles of the same size should elute together.

However, as there are various measures of the size of a macromolecule (for instance, the radius of gyration and the hydrodynamic radius), a fundamental problem in the theory of SEC has been the choice of a proper molecular size parameter by which molecules of different kinds are separated. Experimentally, Benoit and co-workers found an excellent correlation between elution volume and a dynamically based molecular size, the hydrodynamic volume, for several different chain architecture and chemical compositions. The observed correlation based on the hydrodynamic volume became accepted as the basis of universal SEC calibration.

Still, the use of the hydrodynamic volume, a size based on dynamical properties, in the interpretation of SEC data is not fully understood. This is because SEC is typically run under low flow rate conditions where hydrodynamic factor should have little effect on the separation. In fact, both theory and computer simulations assume a thermodynamic separation principle: the separation process is determined by the equilibrium distribution (partitioning) of solute macromolecules between two phases — a dilute bulk solution phase located at the interstitial space and confined solution phases within the pores of column packing material. Based on this theory, it has been shown that the relevant size parameter to the partitioning of polymers in pores is the mean span dimension (mean maximal projection onto a line). Although this issue has not been fully resolved, it is likely that the mean span dimension and the hydrodynamic volume are strongly correlated. 

A size exclusion column.

Each size exclusion column has a range of molecular weights that can be separated. The exclusion limit defines the molecular weight at the upper end of the column 'working' range and is where molecules are too large to get trapped in the stationary phase. The lower end of the range is defined by the permeation limit, which defines the molecular weight of a molecule that is small enough to penetrate all pores of the stationary phase. All molecules below this molecular mass are so small that they elute as a single band.

The filtered solution that is collected at the end is known as the eluate. The void volume includes any particles too large to enter the medium, and the solvent volume is known as the column volume.

Factors affecting filtration

An illustration of the theory behind size exclusion chromatography

In real-life situations, particles in solution do not have a fixed size, resulting in the probability that a particle that would otherwise be hampered by a pore passing right by it. Also, the stationary-phase particles are not ideally defined; both particles and pores may vary in size. Elution curves, therefore, resemble Gaussian distributions. The stationary phase may also interact in undesirable ways with a particle and influence retention times, though great care is taken by column manufacturers to use stationary phases that are inert and minimize this issue. 

Like other forms of chromatography, increasing the column length enhances resolution, and increasing the column diameter increases column capacity. Proper column packing is important for maximum resolution: An over-packed column can collapse the pores in the beads, resulting in a loss of resolution. An under-packed column can reduce the relative surface area of the stationary phase accessible to smaller species, resulting in those species spending less time trapped in pores. Unlike affinity chromatography techniques, a solvent head at the top of the column can drastically diminish resolution as the sample diffuses prior to loading, broadening the downstream elution.

Analysis

In simple manual columns, the eluent is collected in constant volumes, known as fractions. The more similar the particles are in size the more likely they are in the same fraction and not detected separately. More advanced columns overcome this problem by constantly monitoring the eluent.

Standardization of a size exclusion column.

The collected fractions are often examined by spectroscopic techniques to determine the concentration of the particles eluted. Common spectroscopy detection techniques are refractive index (RI) and ultraviolet (UV). When eluting spectroscopically similar species (such as during biological purification), other techniques may be necessary to identify the contents of each fraction. It is also possible to analyze the eluent flow continuously with RI, LALLS, Multi-Angle Laser Light Scattering MALS, UV, and/or viscosity measurements. 

SEC Chromatogram of a biological sample.
 
The elution volume (Ve) decreases roughly linear with the logarithm of the molecular hydrodynamic volume. Columns are often calibrated using 4-5 standard samples (e.g., folded proteins of known molecular weight), and a sample containing a very large molecule such as thyroglobulin to determine the void volume. (Blue dextran is not recommended for Vo determination because it is heterogeneous and may give variable results) The elution volumes of the standards are divided by the elution volume of the thyroglobulin (Ve/Vo) and plotted against the log of the standards' molecular weights.

Applications

Biochemical applications

In general, SEC is considered a low resolution chromatography as it does not discern similar species very well, and is therefore often reserved for the final step of a purification. The technique can determine the quaternary structure of purified proteins that have slow exchange times, since it can be carried out under native solution conditions, preserving macromolecular interactions. SEC can also assay protein tertiary structure, as it measures the hydrodynamic volume (not molecular weight), allowing folded and unfolded versions of the same protein to be distinguished. For example, the apparent hydrodynamic radius of a typical protein domain might be 14 Å and 36 Å for the folded and unfolded forms, respectively. SEC allows the separation of these two forms, as the folded form elutes much later due to its smaller size.

Polymer synthesis

SEC can be used as a measure of both the size and the polydispersity of a synthesised polymer, that is, the ability to find the distribution of the sizes of polymer molecules. If standards of a known size are run previously, then a calibration curve can be created to determine the sizes of polymer molecules of interest in the solvent chosen for analysis (often THF). In alternative fashion, techniques such as light scattering and/or viscometry can be used online with SEC to yield absolute molecular weights that do not rely on calibration with standards of known molecular weight. Due to the difference in size of two polymers with identical molecular weights, the absolute determination methods are, in general, more desirable. A typical SEC system can quickly (in about half an hour) give polymer chemists information on the size and polydispersity of the sample. The preparative SEC can be used for polymer fractionation on an analytical scale.

Drawback

In SEC, mass is not measured so much as the hydrodynamic volume of the polymer molecules, that is, how much space a particular polymer molecule takes up when it is in solution. However, the approximate molecular weight can be calculated from SEC data because the exact relationship between molecular weight and hydrodynamic volume for polystyrene can be found. For this, polystyrene is used as a standard. But the relationship between hydrodynamic volume and molecular weight is not the same for all polymers, so only an approximate measurement can be obtained. Another drawback is the possibility of interaction between the stationary phase and the analyte. Any interaction leads to a later elution time and thus mimics a smaller analyte size. 

When performing this method, the bands of the eluting molecules may be broadened. This can occur by turbulence caused by the flow of the mobile phase molecules passing through the molecules of the stationary phase. In addition, molecular thermal diffusion and friction between the molecules of the glass walls and the molecules of the eluent contribute to the broadening of the bands. Besides broadening, the bands also overlap with each other. As a result, the eluent usually gets considerably diluted. A few precautions can be taken to prevent the likelihood of the bands broadening. For instance, one can apply the sample in a narrow, highly concentrated band on the top of the column. The more concentrated the eluent is, the more efficient the procedure would be. However, it is not always possible to concentrate the eluent, which can be considered as one more disadvantage.

Absolute size-exclusion chromatography

Absolute size-exclusion chromatography (ASEC) is a technique that couples a dynamic light scattering (DLS) instrument to a size exclusion chromatography system for absolute size measurements of proteins and macromolecules as they elute from the chromatography system.

The definition of “absolute” in this case is that calibration is not required to obtain hydrodynamic size, often referred to as hydrodynamic diameter (DH in units of nm). The sizes of the macromolecules are measured as they elute into the flow cell of the DLS instrument from the size exclusion column set. It should be noted that the hydrodynamic size of the molecules or particles are measured and not their molecular weights. For proteins a Mark-Houwink type of calculation can be used to estimate the molecular weight from the hydrodynamic size.

A major advantage of DLS coupled with SEC is the ability to obtain enhanced DLS resolution. Batch DLS is quick and simple and provides a direct measure of the average size, but the baseline resolution of DLS is 3 to 1 in diameter. Using SEC, the proteins and protein oligomers are separated, allowing oligomeric resolution. Aggregation studies can also be done using ASEC. Though the aggregate concentration may not be calculated, the size of the aggregate can be measured, only limited by the maximum size eluting from the SEC columns. 

Limitations of ASEC include flow-rate, concentration, and precision. Because a correlation function requires anywhere from 3–7 seconds to properly build, a limited number of data points can be collected across the peak.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...