Search This Blog

Monday, February 25, 2019

Radiation hormesis (updated)

From Wikipedia, the free encyclopedia

Alternative assumptions for the extrapolation of the cancer risk vs. radiation dose to low-dose levels, given a known risk at a high dose: supra-linearity (A), linear (B), linear-quadratic (C) and hormesis (D).
 
Radiation hormesis is the hypothesis that low doses of ionizing radiation (within the region of and just above natural background levels) are beneficial, stimulating the activation of repair mechanisms that protect against disease, that are not activated in absence of ionizing radiation (similar to vaccinations). The reserve repair mechanisms are hypothesized to be sufficiently effective when stimulated as to not only cancel the detrimental effects of ionizing radiation but also inhibit disease not related to radiation exposure. This hypothesis has captured the attention of scientists and public alike in recent years.

While the effects of high and acute doses of ionizing radiation are easily observed and understood in humans (e.g. Japanese Atomic Bomb survivors), the effects of low-level radiation are very difficult to observe and highly controversial. This is because the baseline cancer rate is already very high and the risk of developing cancer fluctuates 40% because of individual life style and environmental effects, obscuring the subtle effects of low-level radiation. An acute effective dose of 100 millisieverts may increase cancer risk by ~0.8%. However, children are particularly sensitive to radioactivity, with childhood leukemias and other cancers increasing even within natural and man-made background radiation levels (under 4 mSv cumulative with 1 mSv being an average annual dose from terrestrial and cosmic radiation excluding radon which primarily doses the lung). There is also indication that exposures around this dose level will cause negative sub-clinical health impacts to neural development. Students born in regions of Sweden with higher Chernobyl fallout performed worse in secondary school, particularly in mathematics. “Damage is accentuated within families (i.e., siblings comparison) and among children born to parents with low education..." who often don't have the resources to overcome this additional health challenge.

Hormesis remains largely unknown to the public. Government and regulatory bodies disagree on the existence of radiation hormesis and research points to the "severe problems and limitations" with the use of hormesis in general as the "principal dose-response default assumption in a risk assessment process charged with ensuring public health protection."

Quoting results from a literature database research, the Académie des Sciences – Académie nationale de Médecine (French Academy of SciencesNational Academy of Medicine) stated in their 2005 report concerning the effects of low-level radiation that many laboratory studies have observed radiation hormesis. However, they cautioned that it is not yet known if radiation hormesis occurs outside the laboratory, or in humans.

Reports by the United States National Research Council and the National Council on Radiation Protection and Measurements and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) argue that there is no evidence for hormesis in humans and in the case of the National Research Council hormesis is outright rejected as a possibility. Therefore, estimating Linear no-threshold model (LNT) continues to be the model generally used by regulatory agencies for human radiation exposure.

Proposed mechanism and ongoing debate

A very low dose of a chemical agent may trigger from an organism the opposite response to a very high dose.
 
Radiation hormesis proposes that radiation exposure comparable to and just above the natural background level of radiation is not harmful but beneficial, while accepting that much higher levels of radiation are hazardous. Proponents of radiation hormesis typically claim that radio-protective responses in cells and the immune system not only counter the harmful effects of radiation but additionally act to inhibit spontaneous cancer not related to radiation exposure. Radiation hormesis stands in stark contrast to the more generally accepted linear no-threshold model (LNT), which states that the radiation dose-risk relationship is linear across all doses, so that small doses are still damaging, albeit less so than higher ones. Opinion pieces on chemical and radiobiological hormesis appeared in the journals Nature and Science in 2003.

Assessing the risk of radiation at low doses (l.t. 100 mSv) and low dose rates (l.t. 0.1 mSv.min−1) is highly problematic and controversial. While epidemiological studies on populations of people exposed to an acute dose of high level radiation such as Japanese Atomic Bomb Survivors (hibakusha (被爆者)) have robustly upheld the LNT (mean dose ~210 mSv), studies involving low doses and low dose rates have failed to detect any increased cancer rate. This is because the baseline cancer rate is already very high (~42 of 100 people will be diagnosed in their lifetime) and it fluctuates ~40% because of lifestyle and environmental effects, obscuring the subtle effects of low level radiation. Epidemiological studies may be capable of detecting elevated cancer rates as low as 1.2 to 1.3 i.e. 20% to 30% increase. But for low doses (1–100 mSv) the predicted elevated risks are only 1.001 to 1.04 and excess cancer cases, if present, cannot be detected due to confounding factors, errors and biases.

In particular, variations in smoking prevalence or even accuracy in reporting smoking cause wide variation in excess cancer and measurement error bias. Thus, even a large study of many thousands of subjects with imperfect smoking prevalence information will fail to detect the effects of low level radiation than a smaller study that properly compensates for smoking prevalence. Given the absence of direct epidemiological evidence, there is considerable debate as to whether the dose-response relationship l.t. 100 mSv is supralinear, linear (LNT), has a threshold, is sub-linear, or whether the coefficient is negative with a sign change, i.e. a hormetic response. 

The radiation adaptive response seems to be a main origin of the potential hormetic effect. The theoretical studies indicate that the adaptive response is responsible for the shape of dose-response curve and can transform the linear relationship (LNT) into the hormetic one.

While most major consensus reports and government bodies currently adhere to LNT, the 2005 French Academy of Sciences-National Academy of Medicine's report concerning the effects of low-level radiation rejected LNT as a scientific model of carcinogenic risk at low doses.
Using LNT to estimate the carcinogenic effect at doses of less than 20 mSv is not justified in the light of current radiobiologic knowledge.
They consider there to be several dose-effect relationships rather than only one, and that these relationships have many variables such as target tissue, radiation dose, dose rate and individual sensitivity factors. They request that further study is required on low doses (less than 100 mSv) and very low doses (less than 10 mSv) as well as the impact of tissue type and age. The Academy considers the LNT model is only useful for regulatory purposes as it simplifies the administrative task. Quoting results from literature research, they furthermore claim that approximately 40% of laboratory studies on cell cultures and animals indicate some degree of chemical or radiobiological hormesis, and state:
...its existence in the laboratory is beyond question and its mechanism of action appears well understood.
They go on to outline a growing body of research that illustrates that the human body is not a passive accumulator of radiation damage but it actively repairs the damage caused via a number of different processes, including:
Furthermore, increased sensitivity to radiation induced cancer in the inherited condition Ataxia-telangiectasia like disorder, illustrates the damaging effects of loss of the repair gene Mre11h resulting in the inability to fix DNA double-strand breaks.

The BEIR-VII report argued that, "the presence of a true dose threshold demands totally error-free DNA damage response and repair." The specific damage they worry about is double strand breaks (DSBs) and they continue, "error-prone nonhomologous end joining (NHEJ) repair in postirradiation cellular response, argues strongly against a DNA repair-mediated low-dose threshold for cancer initiation". Recent research observed that DSBs caused by CAT scans are repaired within 24-hours and DSBs maybe more efficiently repaired at low doses, suggesting the risk ionizing radiation at low doses may not by directly proportional to the dose. However, it is not known if low dose ionizing radiation stimulates the repair of DSBs not caused by ionizing radiation i.e. a hormetic response.

Radon gas in homes is the largest source of radiation dose for most individuals and it is generally advised that the concentration be kept below 150 Bq/m³ (4 pCi/L). A recent retrospective case-control study of lung cancer risk showed substantial cancer rate reduction between 50 and 123 Bq per cubic meter relative to a group at zero to 25 Bq per cubic meter. This study is cited as evidence for hormesis, but a single study all by itself cannot be regarded as definitive. Other studies into the effects of domestic radon exposure have not reported a hormetic effect; including for example the respected "Iowa Radon Lung Cancer Study" of Field et al. (2000), which also used sophisticated radon exposure dosimetry. In addition, Darby et al. (2005) argue that radon exposure is negatively correlated with the tendency to smoke and environmental studies need to accurately control for this; people living in urban areas where smoking rates are higher usually have lower levels of radon exposure due the increased prevalence of multi-story dwellings. When doing so, they found a significant increase in lung cancer among smokers exposed to radon at doses as low as 100 to 199 Bq m−3 and warned that smoking greatly increases the risk posed by radon exposure i.e. reducing the prevalence of smoking would decrease deaths caused by radon. However, the discussion about the opposite experimental results is still going on, especially the popular US and German studies have found some hormetic effects.

Furthermore, particle microbeam studies show that passage of even a single alpha particle (e.g. from radon and its progeny) through cell nuclei is highly mutagenic, and that alpha radiation may have a higher mutagenic effect at low doses (even if a small fraction of cells are hit by alpha particles) than predicted by linear no-threshold model, a phenomenon attributed to bystander effect. However, there is currently insufficient evidence at hand to suggest that the bystander effect promotes carcinogenesis in humans at low doses.

Statements by leading nuclear bodies

Radiation hormesis has not been accepted by either the United States National Research Council, or the National Council on Radiation Protection and Measurements (NCRP). In May 2018, the NCRP published the report of an interdisciplinary group of radiation experts who critically reviewed 29 high-quality epidemiologic studies of populations exposed to radiation in the low dose and low dose-rate range, mostly published within the last 10 years. The group of experts concluded:
The recent epidemiologic studies support the continued use of the LNT model for radiation protection. This is in accord with judgments by other national and international scientific committees, based on somewhat older data, that no alternative dose-response relationship appears more pragmatic or prudent for radiation protection purposes than the LNT model.
In addition, the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) wrote in its most recent report:
Until the [...] uncertainties on low-dose response are resolved, the Committee believes that an increase in the risk of tumor induction proportionate to the radiation dose is consistent with developing knowledge and that it remains, accordingly, the most scientifically defensible approximation of low-dose response. However, a strictly linear dose response should not be expected in all circumstances.
This is a reference to the fact that very low doses of radiation have only marginal impacts on individual health outcomes. It is therefore difficult to detect the 'signal' of decreased or increased morbidity and mortality due to low-level radiation exposure in the 'noise' of other effects. The notion of radiation hormesis has been rejected by the National Research Council's (part of the National Academy of Sciences) 16-year-long study on the Biological Effects of Ionizing Radiation. "The scientific research base shows that there is no threshold of exposure below which low levels of ionizing radiation can be demonstrated to be harmless or beneficial. The health risks – particularly the development of solid cancers in organs – rise proportionally with exposure" says Richard R. Monson, associate dean for professional education and professor of epidemiology, Harvard School of Public Health, Boston.
The possibility that low doses of radiation may have beneficial effects (a phenomenon often referred to as “hormesis”) has been the subject of considerable debate. Evidence for hormetic effects was reviewed, with emphasis on material published since the 1990 BEIR V study on the health effects of exposure to low levels of ionizing radiation. Although examples of apparent stimulatory or protective effects can be found in cellular and animal biology, the preponderance of available experimental information does not support the contention that low levels of ionizing radiation have a beneficial effect. The mechanism of any such possible effect remains obscure. At this time, the assumption that any stimulatory hormetic effects from low doses of ionizing radiation will have a significant health benefit to humans that exceeds potential detrimental effects from radiation exposure at the same dose is unwarranted.

Studies of low level radiation

Very high natural background gamma radiation cancer rates at Kerala, India

Kerala's monazite sand (containing a third of the world's economically recoverable reserves of radioactive thorium) emits about 8 micro Sieverts per hour of gamma radiation, 80 times the dose rate equivalent in London, but a decade long study of 69,985 residents published in Health Physics in 2009: "showed no excess cancer risk from exposure to terrestrial gamma radiation. The excess relative risk of cancer excluding leukemia was estimated to be -0.13 Gy_1 (95% CI: -0.58, 0.46)", indicating no statistically significant positive or negative relationship between background radiation levels and cancer risk in this sample.

Cultures

Studies in cell cultures can be useful for finding mechanisms for biological processes, but they also can be criticized for not effectively capturing the whole of the living organism.

A study by E.I. Azzam suggested that pre-exposure to radiation causes cells to turn on protection mechanisms. A different study by de Toledo and collaborators, has shown that irradiation with gamma rays increases the concentration of glutathione, an antioxidant found in cells.

In 2011, an in vitro study led by S.V. Costes showed in time-lapse images a strongly non-linear response of certain cellular repair mechanisms called radiation-induced foci (RIF). The study found that low doses of radiation prompted higher rates of RIF formation than high doses, and that after low-dose exposure RIF continued to form after the radiation had ended. Measured rates of RIF formation were 15 RIF/Gy at 2 Gy, and 64 RIF/Gy at .1 Gy. These results suggest that low dose levels of ionizing radiation may not increase cancer risk directly proportional to dose and thus contradict the linear-no-threshold standard model. Mina Bissell, a world-renowned breast cancer researcher and collaborator in this study stated “Our data show that at lower doses of ionizing radiation, DNA repair mechanisms work much better than at higher doses. This non-linear DNA damage response casts doubt on the general assumption that any amount of ionizing radiation is harmful and additive.”

Animals

An early study on mice exposed to low dose of radiation daily (0.11 R per day) suggest that they may outlive control animals. A study by Otsuka and collaborators found hormesis in animals. Miyachi conducted a study on mice and found that a 200 mGy X-ray dose protects mice against both further X-ray exposure and ozone gas. In another rodent study, Sakai and collaborators found that (1 mGy/hr) gamma irradiation prevents the development of cancer (induced by chemical means, injection of methylcholanthrene).

In a 2006 paper, a dose of 1 Gy was delivered to the cells (at constant rate from a radioactive source) over a series of lengths of time. These were between 8.77 and 87.7 hours, the abstract states for a dose delivered over 35 hours or more (low dose rate) no transformation of the cells occurred. Also for the 1 Gy dose delivered over 8.77 to 18.3 hours that the biological effect (neoplastic transformation) was about "1.5 times less than that measured at high dose rate in previous studies with a similar quality of [X-ray] radiation." Likewise it has been reported that fractionation of gamma irradiation reduces the likelihood of a neoplastic transformation. Pre-exposure to fast neutrons and gamma rays from Cs-137 is reported to increase the ability of a second dose to induce a neoplastic transformation.

Caution must be used in interpreting these results, as it noted in the BEIR VII report, these pre-doses can also increase cancer risk:
In chronic low-dose experiments with dogs (75 mGy/d for the duration of life), vital hematopoietic progenitors showed increased radioresistance along with renewed proliferative capacity (Seed and Kaspar 1992). Under the same conditions, a subset of animals showed an increased repair capacity as judged by the unscheduled DNA synthesis assay (Seed and Meyers 1993). Although one might interpret these observations as an adaptive effect at the cellular level, the exposed animal population experienced a high incidence of myeloid leukemia and related myeloproliferative disorders. The authors concluded that “the acquisition of radioresistance and associated repair functions under the strong selective and mutagenic pressure of chronic radiation is tied temporally and causally to leukemogenic transformation by the radiation exposure” (Seed and Kaspar 1992).
However, 75 mGy/d cannot be accurately described as a low dose rate – it is equivalent to over 27 sieverts per year. The same study on dogs showed no increase in cancer nor reduction in life expectancy for dogs irradiated at 3 mGy/d.

Humans

Effects of sunlight exposure

In an Australian study which analyzed the association between solar UV exposure and DNA damage, the results indicated that although the frequency of cells with chromosome breakage increased with increasing sun exposure, the misrepair of DNA strand breaks decreased as sun exposure was heightened.

Effects of cobalt-60 exposure

The health of the inhabitants of radioactive apartment buildings in Taiwan has received prominent attention in popular treatments of radiation hormesis. In 1982, more than 20,000 tons of steel was accidentally contaminated with cobalt-60, and much of this radioactive steel was used to build apartments and exposed thousands of Taiwanese to gamma radiation levels of up to 1000+ times background (average 47.7 mSv, maximum 2360 mSv excess cumulative dose) – it was not until 1992 that the radioactive contamination was discovered. A medical study published in 2004 claimed the cancer mortality rates in the exposed population were much lower than expected. However, this initial study failed to control for age, comparing a much younger exposed population (mean age 17.2 years at initial exposure) with the much older general population of Taiwan (mean age approx. 34 years in 2004), a serious flaw. Older people have much higher cancer rates even in the absence of excess radiation exposure. 

A subsequent study by Hwang et al. (2006) found the incidence of "all cancers" in the irradiated population was 40% lower than expected (95 vs. 160.3 cases expected), except for leukemia in men (6 vs. 1.8 cases expected) and thyroid cancer in women (6 vs. 2.8 cases expected), an increase only detected among those exposed before the age of 30. Hwang et al. proposed that the lower rate of "all cancers" might be due to the exposed populations higher socioeconomic status and thus overall healthier lifestyle, but this was difficult to prove. Additionally, they cautioned that leukaemia was the first cancer type found to be elevated among the survivors of the Hiroshima and Nagasaki bombings, so it may be decades before any increase in more common cancer types is seen.

Besides the excess risks of leukemia and thyroid cancer, a later publication notes various DNA anomalies and other health effects among the exposed population:
There have been several reports concerning the radiation effects on the exposed population, including cytogenetic analysis that showed increased micronucleus frequencies in peripheral lymphocytes in the exposed population, increases in acentromeric and single or multiple centromeric cytogenetic damages, and higher frequencies of chromosomal translocations, rings and dicentrics. Other analyses have shown persistent depression of peripheral leucocytes and neutrophils, increased eosinophils, altered distributions of lymphocyte subpopulations, increased frequencies of lens opacities, delays in physical development among exposed children, increased risk of thyroid abnormalities, and late consequences in hematopoietic adaptation in children.

Effects of no radiation

Given the uncertain effects of low-level and very-low-level radiation, there is a pressing need for quality research in this area. An expert panel convened at the 2006 Ultra-Low-Level Radiation Effects Summit at Carlsbad, New Mexico, proposed the construction of an Ultra-Low-Level Radiation laboratory. The laboratory, if built, will investigate the effects of almost no radiation on laboratory animals and cell cultures, and it will compare these groups to control groups exposed to natural radiation levels. Precautions would be made, for example, to remove potassium-40 from the food of laboratory animals. The expert panel believes that the Ultra-Low-Level Radiation laboratory is the only experiment that can explore with authority and confidence the effects of low-level radiation; that it can confirm or discard the various radiobiological effects proposed at low radiation levels e.g. LNT, threshold and radiation hormesis.

The first preliminary results of the effects of almost no-radiation on cell cultures was reported by two research groups in 2011 and 2012; researchers in the US studied cell cultures protected from radiation in a steel chamber 650 meters underground at the Waste Isolation Pilot Plant in Carlsbad, New Mexico and researchers in Europe reported the effects of almost no-radiation on mouse cells (pKZ1 transgenic chromosomal inversion assay).

Radiobiology

From Wikipedia, the free encyclopedia

Radiobiology (also known as radiation biology) is a field of clinical and basic medical sciences that involves the study of the action of ionizing radiation on living things, especially health effects of radiation. Ionizing radiation is generally harmful and potentially lethal to living things but can have health benefits in radiation therapy for the treatment of cancer and thyrotoxicosis. Its most common impact is the induction of cancer with a latent period of years or decades after exposure. High doses can cause visually dramatic radiation burns, and/or rapid fatality through acute radiation syndrome. Controlled doses are used for medical imaging and radiotherapy.

Health effects

In general, ionizing radiation is harmful and potentially lethal to living beings but can have health benefits in radiation therapy for the treatment of cancer and thyrotoxicosis

Most adverse health effects of radiation exposure may be grouped in two general categories:
  • deterministic effects (harmful tissue reactions) due in large part to the killing/ malfunction of cells following high doses; and
  • stochastic effects, i.e., cancer and heritable effects involving either cancer development in exposed individuals owing to mutation of somatic cells or heritable disease in their offspring owing to mutation of reproductive (germ) cells.

Stochastic

Some effects of ionizing radiation on human health are stochastic, meaning that their probability of occurrence increases with dose, while the severity is independent of dose. Radiation-induced cancer, teratogenesis, cognitive decline, and heart disease are all examples of stochastic effects. 

Its most common impact is the stochastic induction of cancer with a latent period of years or decades after exposure. The mechanism by which this occurs is well understood, but quantitative models predicting the level of risk remain controversial. The most widely accepted model posits that the incidence of cancers due to ionizing radiation increases linearly with effective radiation dose at a rate of 5.5% per sievert. If this linear model is correct, then natural background radiation is the most hazardous source of radiation to general public health, followed by medical imaging as a close second. Other stochastic effects of ionizing radiation are teratogenesis, cognitive decline, and heart disease

Quantitative data on the effects of ionizing radiation on human health is relatively limited compared to other medical conditions because of the low number of cases to date, and because of the stochastic nature of some of the effects. Stochastic effects can only be measured through large epidemiological studies where enough data has been collected to remove confounding factors such as smoking habits and other lifestyle factors. The richest source of high-quality data comes from the study of Japanese atomic bomb survivors. In vitro and animal experiments are informative, but radioresistance varies greatly across species. 

The added lifetime risk of developing cancer by a single abdominal CT of 8 mSv is estimated to be 0.05%, or 1 one in 2,000.

Deterministic

Deterministic effects are those that reliably occur above a threshold dose, and their severity increases with dose.

High radiation dose gives rise to deterministic effects which reliably occur above a threshold, and their severity increases with dose. Deterministic effects are not necessarily more or less serious than stochastic effects; either can ultimately lead to a temporary nuisance or a fatality. Examples of deterministic effects are:
The US National Academy of Sciences Biological Effects of Ionizing Radiation Committee "has concluded that there is no compelling evidence to indicate a dose threshold below which the risk of tumor induction is zero."

Phase Symptom Whole-body absorbed dose (Gy)
1–2 Gy 2–6 Gy 6–8 Gy 8–30 Gy > 30 Gy
Immediate Nausea and vomiting 5–50% 50–100% 75–100% 90–100% 100%
Time of onset 2–6 h 1–2 h 10–60 min < 10 min Minutes
Duration < 24 h 24–48 h < 48 h < 48 h N/A (patients die in < 48 h)
Diarrhea None None to mild (< 10%) Heavy (> 10%) Heavy (> 95%) Heavy (100%)
Time of onset 3–8 h 1–3 h < 1 h < 1 h
Headache Slight Mild to moderate (50%) Moderate (80%) Severe (80–90%) Severe (100%)
Time of onset 4–24 h 3–4 h 1–2 h < 1 h
Fever None Moderate increase (10–100%) Moderate to severe (100%) Severe (100%) Severe (100%)
Time of onset 1–3 h < 1 h < 1 h < 1 h
CNS function No impairment Cognitive impairment 6–20 h Cognitive impairment > 24 h Rapid incapacitation Seizures, tremor, ataxia, lethargy
Latent period
28–31 days 7–28 days < 7 days None None
Symptom
Mild to moderate Leukopenia
Fatigue
Weakness
Moderate to severe Leukopenia
Purpura
Hemorrhage
Infections
Alopecia after 3 Gy
Severe leukopenia
High fever
Diarrhea
Vomiting
Dizziness and disorientation
Hypotension
Electrolyte disturbance
Nausea
Vomiting
Severe diarrhea
High fever
Electrolyte disturbance
Shock
N/A (patients die in < 48h)
Mortality Without care 0–5% 5–95% 95–100% 100% 100%
With care 0–5% 5–50% 50–100% 99–100% 100%
Death 6–8 weeks 4–6 weeks 2–4 weeks 2 days – 2 weeks 1–2 days

By type of radiation

When alpha particle emitting isotopes are ingested, they are far more dangerous than their half-life or decay rate would suggest. This is due to the high relative biological effectiveness of alpha radiation to cause biological damage after alpha-emitting radioisotopes enter living cells. Ingested alpha emitter radioisotopes such as transuranics or actinides are an average of about 20 times more dangerous, and in some experiments up to 1000 times more dangerous than an equivalent activity of beta emitting or gamma emitting radioisotopes. If the radiation type is not known then it can be determined by differential measurements in the presence of electrical fields, magnetic fields, or varying amounts of shielding. 

External dose quantities used in radiation protection. See article on sievert on how these are calculated and used.

In pregnancy

The risk for developing radiation-induced cancer at some point in life is greater when exposing a fetus than an adult, both because the cells are more vulnerable when they are growing, and because there is much longer lifespan after the dose to develop cancer. 

Possible deterministic effects include of radiation exposure in pregnancy include miscarriage, structural birth defects, Growth restriction and intellectual disability. The determinstistic effects have been studied at for example survivors of the atomic bombings of Hiroshima and Nagasaki and cases where radiation therapy has been necessary during pregnancy: 

Gestational age Embryonic age Effects Estimated threshold dose (mGy)
2 to 4 weeks 0 to 2 weeks Miscarriage or none (all or nothing) 50 - 100
4 to 10 weeks 2 to 8 weeks Structural birth defects 200
Growth restriction 200 - 250
10 to 17 weeks 8 to 15 weeks Severe intellectual disability 60 - 310
18 to 27 weeks 16 to 25 weeks Severe intellectual disability (lower risk) 250 - 280

The intellectual deficit has been estimated to be about 25 IQ-points per 1,000 mGy at 10 to 17 weeks of gestational age.

These effects are sometimes relevant when deciding about medical imaging in pregnancy, since projectional radiography and CT scanning exposes the fetus to radiation. 

Also, the risk for the mother of later acquiring radiation-induced breast cancer seems to be particularly high for radiation doses during pregnancy.

Measurement

The human body cannot sense ionizing radiation except in very high doses, but the effects of ionization can be used to characterize the radiation. Parameters of interest include disintegration rate, particle flux, particle type, beam energy, kerma, dose rate, and radiation dose. 

The monitoring and calculation of doses to safeguard human health is called dosimetry and is undertaken within the science of health physics. Key measurement tools are the use of dosimeters to give the external effective dose uptake and the use of bio-assay for ingested dose. The article on the sievert summarizes the recommendations of the ICRU and ICRP on the use of dose quantities and includes a guide to the effects of ionizing radiation as measured in sieverts, and gives examples of approximate figures of dose uptake in certain situations. 

The committed dose is a measure of the stochastic health risk due to an intake of radioactive material into the human body. The ICRP states "For internal exposure, committed effective doses are generally determined from an assessment of the intakes of radionuclides from bioassay measurements or other quantities. The radiation dose is determined from the intake using recommended dose coefficients".

Absorbed, equivalent and effective dose

The Absorbed dose is a physical dose quantity D representing the mean energy imparted to matter per unit mass by ionizing radiation. In the SI system of units, the unit of measure is joules per kilogram, and its special name is gray (Gy). The non-SI CGS unit rad is sometimes also used, predominantly in the USA. 

To represent stochastic risk the equivalent dose H T and effective dose E are used, and appropriate dose factors and coefficients are used to calculate these from the absorbed dose. Equivalent and effective dose quantities are expressed in units of the sievert or rem which implies that biological effects have been taken into account. These are usually in accordance with the recommendations of the International Committee on Radiation Protection (ICRP) and International Commission on Radiation Units and Measurements (ICRU). The coherent system of radiological protection quantities developed by them is shown in the accompanying diagram.

Organizations

The International Commission on Radiological Protection (ICRP) manages the International System of Radiological Protection, which sets recommended limits for dose uptake. Dose values may represent absorbed, equivalent, effective, or committed dose. 

Other important organizations studying the topic include:

Exposure pathways

External

A schematic diagram showing a rectangle being irradiated by an external source (in red) of radiation (shown in yellow).
 
A schematic diagram showing a rectangle being irradiated by radioactive contamination (shown in red) which is present on an external surface such as the skin; this emits radiation (shown in yellow) which can enter the animal's body
 
External exposure is exposure which occurs when the radioactive source (or other radiation source) is outside (and remains outside) the organism which is exposed. Examples of external exposure include:
  • A person who places a sealed radioactive source in his pocket
  • A space traveler who is irradiated by cosmic rays
  • A person who is treated for cancer by either teletherapy or brachytherapy. While in brachytherapy the source is inside the person it is still considered external exposure because it does not result in a committed dose.
  • A nuclear worker whose hands have been dirtied with radioactive dust. Assuming that his hands are cleaned before any radioactive material can be absorbed, inhaled or ingested, skin contamination is considered external exposure.
External exposure is relatively easy to estimate, and the irradiated organism does not become radioactive, except for a case where the radiation is an intense neutron beam which causes activation.

By type of medical imaging

Effective dose by medical imaging type
Target organs Exam type Effective dose in adults Equivalent time of background radiation
CT of the head Single series 2 mSv 8 months
With + without radiocontrast 4 mSv 16 months
Chest CT of the chest 7 mSv 2 years
CT of the chest, lung cancer screening protocol 1.5 mSv 6 months
Chest X-ray 0.1 mSv 10 days
Heart Coronary CT angiography 12 mSv 4 years
Coronary CT calcium scan 3 mSv 1 year
Abdominal CT of abdomen and pelvis 10 mSv 3 years
CT of abdomen and pelvis, low dose protocol 3 mSv 1 year
CT of abdomen and pelvis, with + without radiocontrast 20 mSv 7 years
CT Colonography 6 mSv 2 years
Intravenous pyelogram 3 mSv 1 year
Upper gastrointestinal series 6 mSv 2 years
Lower gastrointestinal series 8 mSv 3 years
Spine Spine X-ray 1.5 mSv 6 months
CT of the spine 6 mSv 2 years
Extremities X-ray of extremity 0.001 mSv 3 hours
Lower extremity CT angiography 0.3 - 1.6 mSv[14] 5 weeks - 6 months
Dental X-ray 0.005 mSv 1 day
DEXA (bone density) 0.001 mSv 3 hours
PET-CT combination 25 mSv 8 years
Mammography 0.4 mSv 7 weeks

Internal

Internal exposure occurs when the radioactive material enters the organism, and the radioactive atoms become incorporated into the organism. This can occur through inhalation, ingestion, or injection. Below are a series of examples of internal exposure.
  • The exposure caused by potassium-40 present within a normal person.
  • The exposure to the ingestion of a soluble radioactive substance, such as 89Sr in cows' milk.
  • A person who is being treated for cancer by means of a radiopharmaceutical where a radioisotope is used as a drug (usually a liquid or pill). A review of this topic was published in 1999. Because the radioactive material becomes intimately mixed with the affected object it is often difficult to decontaminate the object or person in a case where internal exposure is occurring. While some very insoluble materials such as fission products within a uranium dioxide matrix might never be able to truly become part of an organism, it is normal to consider such particles in the lungs and digestive tract as a form of internal contamination which results in internal exposure.
  • Boron neutron capture therapy (BNCT) involves injecting a boron-10 tagged chemical that preferentially binds to tumor cells. Neutrons from a nuclear reactor are shaped by a neutron moderator to the neutron energy spectrum suitable for BNCT treatment. The tumor is selectively bombarded with these neutrons. The neutrons quickly slow down in the body to become low energy thermal neutrons. These thermal neutrons are captured by the injected boron-10, forming excited (boron-11) which breaks down into lithium-7 and a helium-4 alpha particle both of these produce closely spaced ionizing radiation.This concept is described as a binary system using two separate components for the therapy of cancer. Each component in itself is relatively harmless to the cells, but when combined together for treatment they produce a highly cytocidal (cytotoxic) effect which is lethal (within a limited range of 5-9 micrometers or approximately one cell diameter). Clinical trials, with promising results, are currently carried out in Finland and Japan.
When radioactive compounds enter the human body, the effects are different from those resulting from exposure to an external radiation source. Especially in the case of alpha radiation, which normally does not penetrate the skin, the exposure can be much more damaging after ingestion or inhalation. The radiation exposure is normally expressed as a committed dose.

History

Although radiation was discovered in late 19th century, the dangers of radioactivity and of radiation were not immediately recognized. Acute effects of radiation were first observed in the use of X-rays when Wilhelm Röntgen intentionally subjected his fingers to X-rays in 1895. He published his observations concerning the burns that developed, though he misattributed them to ozone, a free radical produced in air by X-rays. Other free radicals produced within the body are now understood to be more important. His injuries healed later. 

As a field of medical sciences, radiobiology originated from Leopold Freund's 1896 demonstration of the therapeutic treatment of a hairy mole using a new type of electromagnetic radiation called x-rays, which was discovered 1 year previously by the German physicist, Wilhelm Röntgen. After irradiating frogs and insects with X-rays in early 1896, Ivan Romanovich Tarkhanov concluded that these newly discovered rays not only photograph, but also "affect the living function". At the same time, Pierre and Marie Curie discovered the radioactive polonium and radium later used to treat cancer.

The genetic effects of radiation, including the effects on cancer risk, were recognized much later. In 1927 Hermann Joseph Muller published research showing genetic effects, and in 1946 was awarded the Nobel prize for his findings. 

More generally, the 1930s saw attempts to develop a general model for radiobiology. Notable here was Douglas Lea, whose presentation also included an exhaustive review of some 400 supporting publications.

Before the biological effects of radiation were known, many physicians and corporations had begun marketing radioactive substances as patent medicine and radioactive quackery. Examples were radium enema treatments, and radium-containing waters to be drunk as tonics. Marie Curie spoke out against this sort of treatment, warning that the effects of radiation on the human body were not well understood. Curie later died of aplastic anemia caused by radiation poisoning. Eben Byers, a famous American socialite, died of multiple cancers (but not acute radiation syndrome) in 1932 after consuming large quantities of radium over several years; his death drew public attention to dangers of radiation. By the 1930s, after a number of cases of bone necrosis and death in enthusiasts, radium-containing medical products had nearly vanished from the market.

In the United States, the experience of the so-called Radium Girls, where thousands of radium-dial painters contracted oral cancers (but no cases of acute radiation syndrome), popularized the warnings of occupational health associated with radiation hazards. Robley D. Evans, at MIT, developed the first standard for permissible body burden of radium, a key step in the establishment of nuclear medicine as a field of study. With the development of nuclear reactors and nuclear weapons in the 1940s, heightened scientific attention was given to the study of all manner of radiation effects.

The atomic bombings of Hiroshima and Nagasaki resulted in a large number of incidents of radiation poisoning, allowing for greater insight into its symptoms and dangers. Red Cross Hospital Surgeon, Dr. Terufumi Sasaki led intensive research into the Syndrome in the weeks and months following the Hiroshima bombings. Dr Sasaki and his team were able to monitor the effects of radiation in patients of varying proximities to the blast itself, leading to the establishment of three recorded stages of the syndrome. Within 25–30 days of the explosion, the Red Cross surgeon noticed a sharp drop in white blood cell count and established this drop, along with symptoms of fever, as prognostic standards for Acute Radiation Syndrome. Actress Midori Naka, who was present during the atomic bombing of Hiroshima, was the first incident of radiation poisoning to be extensively studied. Her death on August 24, 1945 was the first death ever to be officially certified as a result of radiation poisoning (or "Atomic bomb disease").

Areas of interest

The interactions between organisms and electromagnetic fields (EMF) and ionizing radiation can be studied in a number of ways:
The activity of biological and astronomical systems inevitably generates magnetic and electrical fields, which can be measured with sensitive instruments and which have at times been suggested as a basis for "esoteric" ideas of energy.

Radiation sources for experimental radiobiology

Radiobiology experiments typically make use of a radiation source which could be:

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...