The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid
in space. Solutions to the Navier–Stokes equations are used in many
practical applications. However, theoretical understanding of the
solutions to these equations is incomplete. In particular, solutions of
the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.
Even more basic properties of the solutions to Navier–Stokes have
never been proven. For the three-dimensional system of equations, and
given some initial conditions, mathematicians have not yet proved that smooth solutions always exist, or that if they do exist, they have bounded energy. This is called the Navier–Stokes existence and smoothness problem.
Since understanding the Navier–Stokes equations is considered to be the first step to understanding the elusive phenomenon of turbulence, the Clay Mathematics Institute in May 2000 made this problem one of its seven Millennium Prize problems in mathematics. It offered a US $1,000,000 prize to the first person providing a solution for a specific statement of the problem:
Prove or give a counter-example of the following statement:
In three space dimensions and time, given an initial velocity field, there exists a vector velocity and a scalar pressure field, which are both smooth and globally defined, that solve the Navier–Stokes equations.
In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that models the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using continuum mechanics. The equations are a statement of Newton's second law, with the forces modeled according to those in a viscous Newtonian fluid—as
the sum of contributions by pressure, viscous stress and an external
body force. Since the setting of the problem proposed by the Clay
Mathematics Institute is in three dimensions, for an incompressible and homogeneous fluid, only that case is considered below.
Let be a 3-dimensional vector field, the velocity of the fluid, and let be the pressure of the fluid. The Navier–Stokes equations are:
where is the kinematic viscosity, the external volumetric force, is the gradient operator and is the Laplacian operator, which is also denoted by or .
Note that this is a vector equation, i.e. it has three scalar
equations. Writing down the coordinates of the velocity and the external
force
then for each there is the corresponding scalar Navier–Stokes equation:
The unknowns are the velocity and the pressure .
Since in three dimensions, there are three equations and four unknowns
(three scalar velocities and the pressure), then a supplementary
equation is needed. This extra equation is the continuity equation for incompressible fluids that describes the conservation of mass of the fluid:
Due to this last property, the solutions for the Navier–Stokes equations are searched in the set of solenoidal ("divergence-free") functions. For this flow of a homogeneous medium, density and viscosity are constants.
Since only its gradient appears, the pressure p can be
eliminated by taking the curl of both sides of the Navier–Stokes
equations. In this case the Navier–Stokes equations reduce to the vorticity-transport equations.
Two settings: unbounded and periodic space
There
are two different settings for the one-million-dollar-prize
Navier–Stokes existence and smoothness problem. The original problem is
in the whole space ,
which needs extra conditions on the growth behavior of the initial
condition and the solutions. In order to rule out the problems at
infinity, the Navier–Stokes equations can be set in a periodic
framework, which implies that they are no longer working on the whole
space but in the 3-dimensional torus . Each case will be treated separately.
Statement of the problem in the whole space
Hypotheses and growth conditions
The initial condition is assumed to be a smooth and divergence-free function (see smooth function) such that, for every multi-index (see multi-index notation) and any , there exists a constant such that
- for all
The external force
is assumed to be a smooth function as well, and satisfies a very
analogous inequality (now the multi-index includes time derivatives as
well):
- for all
For physically reasonable conditions, the type of solutions expected are smooth functions that do not grow large as . More precisely, the following assumptions are made:
- There exists a constant such that
for all
Condition 1 implies that the functions are smooth and globally defined and condition 2 means that the kinetic energy of the solution is globally bounded.
The Millennium Prize conjectures in the whole space
(A) Existence and smoothness of the Navier–Stokes solutions in
Let . For any initial condition
satisfying the above hypotheses there exist smooth and globally defined
solutions to the Navier–Stokes equations, i.e. there is a velocity
vector and a pressure satisfying conditions 1 and 2 above.
(B) Breakdown of the Navier–Stokes solutions in
There exists an initial condition and an external force such that there exists no solutions and satisfying conditions 1 and 2 above.
Statement of the periodic problem
Hypotheses
The functions sought now are periodic in the space variables of period 1. More precisely, let be the unitary vector in the i- direction:
Then is periodic in the space variables if for any , then:
Notice that this is considering the coordinates mod 1. This allows working not on the whole space but on the quotient space , which turns out to be the 3-dimensional torus:
Now the hypotheses can be stated properly. The initial condition is assumed to be a smooth and divergence-free function and the external force
is assumed to be a smooth function as well. The type of solutions that
are physically relevant are those who satisfy these conditions:
- There exists a constant such that
for all
Just as in the previous case, condition 3 implies that the functions
are smooth and globally defined and condition 4 means that the kinetic energy of the solution is globally bounded.
The periodic Millennium Prize theorems
(C) Existence and smoothness of the Navier–Stokes solutions in
Let . For any initial condition
satisfying the above hypotheses there exist smooth and globally defined
solutions to the Navier–Stokes equations, i.e. there is a velocity
vector and a pressure satisfying conditions 3 and 4 above.
(D) Breakdown of the Navier–Stokes solutions in
There exists an initial condition and an external force such that there exists no solutions and satisfying conditions 3 and 4 above.
Partial results
- The Navier–Stokes problem in two dimensions has already been solved positively since the 1960s: there exist smooth and globally defined solutions.
- If the initial velocity is sufficiently small then the statement is true: there are smooth and globally defined solutions to the Navier–Stokes equations.
- Given an initial velocity there exists a finite time T, depending on such that the Navier–Stokes equations on have smooth solutions and . It is not known if the solutions exist beyond that "blowup time" T.
- Jean Leray in 1934 proved the existence of so-called weak solutions to the Navier–Stokes equations, satisfying the equations in mean value, not pointwise.
- Terence Tao in 2016 published a finite time blowup result for an averaged version of the 3-dimensional Navier–Stokes equation. He writes that the result formalizes a "supercriticality barrier" for the global regularity problem for the true Navier–Stokes equations, and claims that the method of proof in fact hints at a possible route to establishing blowup for the true equations.
- Tristan Buckmaster and Vlad Vicol showed in 2018 that very weak solutions (weaker than Leray's above) are not unique in the class of finite energy solutions
In popular culture
Unsolved problems have been used to indicate a rare mathematical talent in fiction. The Navier-Stokes problem features in The Mathematician's Shiva
(2014), a book about a prestigious, deceased, fictional mathematician
named Rachela Karnokovitch taking the proof to her grave in protest of
academia. The movie Gifted
(2017) referenced the Millennium Prize problems and dealt with the
potential for a 7-year-old girl and her deceased mathematician mother
for solving the Navier–Stokes problem.