Search This Blog

Thursday, March 12, 2020

Bee

From Wikipedia, the free encyclopedia

Bee
Temporal range: Early Cretaceous – Present, 100–0 Ma
O
S
D
C
P
T
J
K
N
Tetragonula carbonaria (14521993792).jpg
The sugarbag bee, Tetragonula carbonaria
Scientific classification e
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
(unranked): Unicalcarida
Suborder: Apocrita
Superfamily: Apoidea
Clade: Anthophila
Families
Synonyms
Apiformes (from Latin 'apis')

Bees are flying insects closely related to wasps and ants, known for their role in pollination and, in the case of the best-known bee species, the western honey bee, for producing honey and beeswax. Bees are a monophyletic lineage within the superfamily Apoidea and are presently considered a clade, called Anthophila. There are over 16,000 known species of bees in seven recognized biological families. They are found on every continent except Antarctica, in every habitat on the planet that contains insect-pollinated flowering plants.

Some species — including honey bees, bumblebees, and stingless bees — live socially in colonies. Bees are adapted for feeding on nectar and pollen, the former primarily as an energy source and the latter primarily for protein and other nutrients. Most pollen is used as food for larvae. Bee pollination is important both ecologically and commercially. The decline in wild bees has increased the value of pollination by commercially managed hives of honey bees.

Bees range in size from tiny stingless bee species whose workers are less than 2 millimetres (0.08 in) long, to Megachile pluto, the largest species of leafcutter bee, whose females can attain a length of 39 millimetres (1.54 in). The most common bees in the Northern Hemisphere are the Halictidae, or sweat bees, but they are small and often mistaken for wasps or flies. Vertebrate predators of bees include birds such as bee-eaters; insect predators include beewolves and dragonflies.

Human beekeeping or apiculture has been practised for millennia, since at least the times of Ancient Egypt and Ancient Greece. Apart from honey and pollination, honey bees produce beeswax, royal jelly and propolis. Bees have appeared in mythology and folklore, through all phases of art and literature, from ancient times to the present day, though primarily focused in the Northern Hemisphere, where beekeeping is far more common.

The analysis of 353 wild bee and hoverfly species across Britain from 1980 to 2013 found the insects have been lost from a quarter of the places they inhabited in 1980.[3]

Evolution

Melittosphex burmensis, a fossil bee preserved in amber from the Early Cretaceous (100 to 145 million years ago) of Myanmar

The ancestors of bees were wasps in the family Crabronidae, which were predators of other insects. The switch from insect prey to pollen may have resulted from the consumption of prey insects which were flower visitors and were partially covered with pollen when they were fed to the wasp larvae. This same evolutionary scenario may have occurred within the vespoid wasps, where the pollen wasps evolved from predatory ancestors. Until recently, the oldest non-compression bee fossil had been found in New Jersey amber, Cretotrigona prisca of Cretaceous age, a corbiculate bee. A bee fossil from the early Cretaceous (~100 mya), Melittosphex burmensis, is considered "an extinct lineage of pollen-collecting Apoidea sister to the modern bees". Derived features of its morphology (apomorphies) place it clearly within the bees, but it retains two unmodified ancestral traits (plesiomorphies) of the legs (two mid-tibial spurs, and a slender hind basitarsus), showing its transitional status. By the Eocene (~45 mya) there was already considerable diversity among eusocial bee lineages.

The highly eusocial corbiculate Apidae appeared roughly 87 Mya, and the Allodapini (within the Apidae) around 53 Mya. The Colletidae appear as fossils only from the late Oligocene (~25 Mya) to early Miocene. The Melittidae are known from Palaeomacropis eocenicus in the Early Eocene. The Megachilidae are known from trace fossils (characteristic leaf cuttings) from the Middle Eocene. The Andrenidae are known from the Eocene-Oligocene boundary, around 34 Mya, of the Florissant shale. The Halictidae first appear in the Early Eocene with species found in amber. The Stenotritidae are known from fossil brood cells of Pleistocene age.

Coevolution

Long-tongued bees and long-tubed flowers coevolved, like this Amegilla cingulata (Apidae) on Acanthus ilicifolius.

The earliest animal-pollinated flowers were shallow, cup-shaped blooms pollinated by insects such as beetles, so the syndrome of insect pollination was well established before the first appearance of bees. The novelty is that bees are specialized as pollination agents, with behavioral and physical modifications that specifically enhance pollination, and are the most efficient pollinating insects. In a process of coevolution, flowers developed floral rewards such as nectar and longer tubes, and bees developed longer tongues to extract the nectar. Bees also developed structures known as scopal hairs and pollen baskets to collect and carry pollen. The location and type differ among and between groups of bees. Most species have scopal hairs on their hind legs or on the underside of their abdomens. Some species in the family Apidae have pollen baskets on their hind legs, while very few lack these and instead collect pollen in their crops. The appearance of these structures drove the adaptive radiation of the angiosperms, and, in turn, bees themselves. Bees coevolved not only with flowers but it is believed that some species coevolved with mites. Some provide tufts of hairs called acarinaria that appear to provide lodgings for mites; in return, it is believed that mites eat fungi that attack pollen, so the relationship in this case may be mutualistc.

Phylogeny

External

This phylogenetic tree is based on Debevic et al, 2012, which used molecular phylogeny to demonstrate that the bees (Anthophila) arose from deep within the Crabronidae, which is therefore paraphyletic. The placement of the Heterogynaidae is uncertain. The small subfamily Mellininae was not included in this analysis.
Apoidea
Ampulicidae (Cockroach wasps) Emerald Cockroach Wasp.JPG
Heterogynaidae (possible placement #1)
Sphecidae (sensu stricto) Sceliphron spirifex TZ edit1.jpg
Crabroninae (part of "Crabronidae") Ectemnius.lapidarius.-.lindsey.jpg
(rest of "Crabronidae")
Bembicini Bembix sp2.jpg
Nyssonini, Astatinae Astata boops a1.jpg
Heterogynaidae (possible placement #2)
Pemphredoninae, Philanthinae P. gibbosus57306787w.jpg
Anthophila (bees) Abeille butineuse et son pollen.JPG

Internal

This cladogram of the bee families is based on Hedtke et al., 2013, which places the former families Dasypodaidae and Meganomiidae as subfamilies inside the Melittidae.[23] English names, where available, are given in parentheses.
Anthophila (bees)
Melittidae (inc. Dasypodainae, Meganomiinae) at least 50 Mya Macropis sp 01.jpg
long-tongued bees
Apidae (inc. honeybees, cuckoo bees, carpenter bees) ≈87 Mya Apis mellifera flying2.jpg
Megachilidae (mason, leafcutter bees) ≈50 Mya Leafcutter bee (Megachile sp.) collecting leaves (7519316920).jpg
short-tongued bees
Andrenidae (mining bees) ≈34 Mya Thomas Bresson - Hyménoptère sur une fleur de pissenlit (by).jpg
Halictidae (sweat bees) ≈50 Mya Iridescent.green.sweat.bee1.jpg
Colletidae (plasterer bees) ≈25 Mya Colletes cunicularius m1.JPG
Stenotritidae (large Australian bees) ≈2 Mya Stenotritus pubescens, f, side, australia 2014-07-05-12.18.33 ZS PMax.jpg

Characteristics

The lapping mouthparts of a honey bee, showing labium and maxillae
 
Bees differ from closely related groups such as wasps by having branched or plume-like setae (hairs), combs on the forelimbs for cleaning their antennae, small anatomical differences in limb structure, and the venation of the hind wings; and in females, by having the seventh dorsal abdominal plate divided into two half-plates.

Bees have the following characteristics:
  • A pair of large compound eyes which cover much of the surface of the head. Between and above these are three small simple eyes (ocelli) which provide information on light intensity.
  • The antennae usually have 13segments in males and 12 in females, and are geniculate, having an elbow joint part way along. They house large numbers of sense organs that can detect touch (mechanoreceptors), smell and taste; and small, hairlike mechanoreceptors that can detect air movement so as to "hear" sounds.
  • The mouthparts are adapted for both chewing and sucking by having both a pair of mandibles and a long proboscis for sucking up nectar.
  • The thorax has three segments, each with a pair of robust legs, and a pair of membranous wings on the hind two segments. The front legs of corbiculate bees bear combs for cleaning the antennae, and in many species the hind legs bear pollen baskets, flattened sections with incurving hairs to secure the collected pollen. The wings are synchronised in flight, and the somewhat smaller hind wings connect to the forewings by a row of hooks along their margin which connect to a groove in the forewing.
  • The abdomen has nine segments, the hindermost three being modified into the sting.
Head-on view of a carpenter bee, showing antennae, three ocelli, compound eyes, sensory bristles and mouthparts

The largest species of bee is thought to be Wallace's giant bee Megachile pluto, whose females can attain a length of 39 millimetres (1.54 in). The smallest species may be dwarf stingless bees in the tribe Meliponini whose workers are less than 2 millimetres (0.08 in) in length.

Sociality

Haplodiploid breeding system

Willing to die for their sisters: worker honey bees killed defending their hive against wasps, along with a dead wasp. Such altruistic behaviour may be favoured by the haplodiploid sex determination system of bees.

According to inclusive fitness theory, organisms can gain fitness not just through increasing their own reproductive output, but also that of close relatives. In evolutionary terms, individuals should help relatives when Cost < Relatedness * Benefit. The requirements for eusociality are more easily fulfilled by haplodiploid species such as bees because of their unusual relatedness structure.

In haplodiploid species, females develop from fertilized eggs and males from unfertilized eggs. Because a male is haploid (has only one copy of each gene), his daughters (which are diploid, with two copies of each gene) share 100% of his genes and 50% of their mother's. Therefore, they share 75% of their genes with each other. This mechanism of sex determination gives rise to what W. D. Hamilton termed "supersisters", more closely related to their sisters than they would be to their own offspring. Workers often do not reproduce, but they can pass on more of their genes by helping to raise their sisters (as queens) than they would by having their own offspring (each of which would only have 50% of their genes), assuming they would produce similar numbers. This unusual situation has been proposed as an explanation of the multiple (at least 9) evolutions of eusociality within Hymenoptera.

Haplodiploidy is neither necessary nor sufficient for eusociality. Some eusocial species such as termites are not haplodiploid. Conversely, all bees are haplodiploid but not all are eusocial, and among eusocial species many queens mate with multiple males, creating half-sisters that share only 25% of each-other's genes. But, monogamy (queens mating singly) is the ancestral state for all eusocial species so far investigated, so it is likely that haplodiploidy contributed to the evolution of eusociality in bees.

Eusociality

A honey bee swarm
 
Bees may be solitary or may live in various types of communities. Eusociality appears to have originated from at least three independent origins in halictid bees. The most advanced of these are species with eusocial colonies; these are characterised by cooperative brood care and a division of labour into reproductive and non-reproductive adults, plus overlapping generations. This division of labour creates specialized groups within eusocial societies which are called castes. In some species, groups of cohabiting females may be sisters, and if there is a division of labour within the group, they are considered semisocial. The group is called eusocial if, in addition, the group consists of a mother (the queen) and her daughters (workers). When the castes are purely behavioural alternatives, with no morphological differentiation other than size, the system is considered primitively eusocial, as in many paper wasps; when the castes are morphologically discrete, the system is considered highly eusocial.

True honey bees (genus Apis, of which seven species are currently recognized) are highly eusocial, and are among the best known insects. Their colonies are established by swarms, consisting of a queen and several hundred workers. There are 29 subspecies of one of these species, Apis mellifera, native to Europe, the Middle East, and Africa. Africanized bees are a hybrid strain of A. mellifera that escaped from experiments involving crossing European and African subspecies; they are extremely defensive.

Stingless bees are also highly eusocial. They practise mass provisioning, with complex nest architecture and perennial colonies also established via swarming.

A bumblebee carrying pollen in its pollen baskets (corbiculae)

Many bumblebees are eusocial, similar to the eusocial Vespidae such as hornets in that the queen initiates a nest on her own rather than by swarming. Bumblebee colonies typically have from 50 to 200 bees at peak population, which occurs in mid to late summer. Nest architecture is simple, limited by the size of the pre-existing nest cavity, and colonies rarely last more than a year. In 2011, the International Union for Conservation of Nature set up the Bumblebee Specialist Group to review the threat status of all bumblebee species worldwide using the IUCN Red List criteria.

There are many more species of primitively eusocial than highly eusocial bees, but they have been studied less often. Most are in the family Halictidae, or "sweat bees". Colonies are typically small, with a dozen or fewer workers, on average. Queens and workers differ only in size, if at all. Most species have a single season colony cycle, even in the tropics, and only mated females hibernate. A few species have long active seasons and attain colony sizes in the hundreds, such as Halictus hesperus. Some species are eusocial in parts of their range and solitary in others, or have a mix of eusocial and solitary nests in the same population. The orchid bees (Apidae) include some primitively eusocial species with similar biology. Some allodapine bees (Apidae) form primitively eusocial colonies, with progressive provisioning: a larva's food is supplied gradually as it develops, as is the case in honey bees and some bumblebees.

Solitary and communal bees

A leafcutting bee, Megachile rotundata, cutting circles from acacia leaves
 
Most other bees, including familiar insects such as carpenter bees, leafcutter bees and mason bees are solitary in the sense that every female is fertile, and typically inhabits a nest she constructs herself. There is no division of labor so these nests lack queens and worker bees for these species. Solitary bees typically produce neither honey nor beeswax. Bees collect pollen to feed their young, and have the necessary adaptations to do this. However, certain wasp species such as pollen wasps have similar behaviours, and a few species of bee scavenge from carcases to feed their offspring. Solitary bees are important pollinators; they gather pollen to provision their nests with food for their brood. Often it is mixed with nectar to form a paste-like consistency. Some solitary bees have advanced types of pollen-carrying structures on their bodies. Very few species of solitary bee are being cultured for commercial pollination. Most of these species belong to a distinct set of genera which are commonly known by their nesting behavior or preferences, namely: carpenter bees, sweat bees, mason bees, plasterer bees, squash bees, dwarf carpenter bees, leafcutter bees, alkali bees and digger bees.

A solitary bee, Anthidium florentinum (family Megachilidae), visiting Lantana

Most solitary bees nest in the ground in a variety of soil textures and conditions while others create nests in hollow reeds or twigs, holes in wood. The female typically creates a compartment (a "cell") with an egg and some provisions for the resulting larva, then seals it off. A nest may consist of numerous cells. When the nest is in wood, usually the last (those closer to the entrance) contain eggs that will become males. The adult does not provide care for the brood once the egg is laid, and usually dies after making one or more nests. The males typically emerge first and are ready for mating when the females emerge. Solitary bees are either stingless or very unlikely to sting (only in self-defense, if ever).

The mason bee Osmia cornifrons nests in a hole in dead wood. Bee "hotels" are often sold for this purpose.
 
While solitary, females each make individual nests. Some species, such as the European mason bee Hoplitis anthocopoides, and the Dawson's Burrowing bee, Amegilla dawsoni, are gregarious, preferring to make nests near others of the same species, and giving the appearance of being social. Large groups of solitary bee nests are called aggregations, to distinguish them from colonies. In some species, multiple females share a common nest, but each makes and provisions her own cells independently. This type of group is called "communal" and is not uncommon. The primary advantage appears to be that a nest entrance is easier to defend from predators and parasites when there are multiple females using that same entrance on a regular basis.

Biology

Life cycle

The life cycle of a bee, be it a solitary or social species, involves the laying of an egg, the development through several moults of a legless larva, a pupation stage during which the insect undergoes complete metamorphosis, followed by the emergence of a winged adult. Most solitary bees and bumble bees in temperate climates overwinter as adults or pupae and emerge in spring when increasing numbers of flowering plants come into bloom. The males usually emerge first and search for females with which to mate. The sex of a bee is determined by whether or not the egg is fertilised; after mating, a female stores the sperm, and determines which sex is required at the time each individual egg is laid, fertilised eggs producing female offspring and unfertilised eggs, males. Tropical bees may have several generations in a year and no diapause stage.

The egg is generally oblong, slightly curved and tapering at one end. Solitary bees, lay each egg in a separate cell with a supply of mixed pollen and nectar next to it. This may be rolled into a pellet or placed in a pile and is known as mass provisioning. Social bee species provision progressively, that is, they feed the larva regularly while it grows. The nest varies from a hole in the ground or in wood, in solitary bees, to a substantial structure with wax combs in bumblebees and honey bees.

In most species, larvae are whitish grubs, roughly oval and bluntly-pointed at both ends. They have 15 segments and spiracles in each segment for breathing. They have no legs but move within the cell, helped by tubercles on their sides. They have short horns on the head, jaws for chewing food and an appendage on either side of the mouth tipped with a bristle. There is a gland under the mouth that secretes a viscous liquid which solidifies into the silk they use to produce a cocoon. The cocoon is semi-transparent and the pupa can be seen through it. Over the course of a few days, the larva undergoes metamorphosis into an winged adult. When ready to emerge, the adult splits its skin dorsally and climbs out of the exuviae and breaks out of the cell.

Flight

Honeybee in flight carrying pollen in pollen basket

Antoine Magnan's 1934 book Le vol des insectes, says that he and André Sainte-Laguë had applied the equations of air resistance to insects and found that their flight could not be explained by fixed-wing calculations, but that "One shouldn't be surprised that the results of the calculations don't square with reality". This has led to a common misconception that bees "violate aerodynamic theory". In fact it merely confirms that bees do not engage in fixed-wing flight, and that their flight is explained by other mechanics, such as those used by helicopters. In 1996 it was shown that vortices created by many insects' wings helped to provide lift. High-speed cinematography and robotic mock-up of a bee wing showed that lift was generated by "the unconventional combination of short, choppy wing strokes, a rapid rotation of the wing as it flops over and reverses direction, and a very fast wing-beat frequency". Wing-beat frequency normally increases as size decreases, but as the bee's wing beat covers such a small arc, it flaps approximately 230 times per second, faster than a fruitfly (200 times per second) which is 80 times smaller.

Navigation, communication, and finding food

Karl von Frisch (1953) discovered that honey bee workers can navigate, indicating the range and direction to food to other workers with a waggle dance.

The ethologist Karl von Frisch studied navigation in the honey bee. He showed that honey bees communicate by the waggle dance, in which a worker indicates the location of a food source to other workers in the hive. He demonstrated that bees can recognize a desired compass direction in three different ways: by the sun, by the polarization pattern of the blue sky, and by the earth's magnetic field. He showed that the sun is the preferred or main compass; the other mechanisms are used under cloudy skies or inside a dark beehive. Bees navigate using spatial memory with a "rich, map-like organization".

Digestion

The gut of bees is relatively simple, but multiple metabolic strategies exist in the gut microbiota. Pollinating bees consume nectar and pollen, which require different digestion strategies by somewhat specialized bacteria. While nectar is a liquid of mostly monosaccharide sugars and so easily absorbed, pollen contains complex polysaccharides: branching pectin and hemicellulose. Approximately five groups of bacteria are involved in digestion. Three groups specialize in simple sugars (Snodgrassella and two groups of Lactobacillus), and two other groups in complex sugars (Gilliamella and Bifidobacterium). Digestion of pectin and hemicellulose is dominated by bacterial clades Gilliamella and Bifidobacterium respectively. Bacteria that cannot digest polysaccharides obtain enzymes from their neighbors, and bacteria that lack certain amino acids do the same, creating multiple ecological niches.

Although most bee species are nectarivorous and palynivorous, some are not. Particularly unusual are vulture bees in the genus Trigona, which consume carrion and wasp brood, turning meat into a honey-like substance.

Ecology

Floral relationships

Most bees are polylectic (generalist) meaning they collect pollen from a range of flowering plants, but some are oligoleges (specialists), in that they only gather pollen from one or a few species or genera of closely related plants. Specialist pollinators also include bee species which gather floral oils instead of pollen, and male orchid bees, which gather aromatic compounds from orchids (one of the few cases where male bees are effective pollinators). Bees are able to sense the presence of desirable flowers through ultraviolet patterning on flowers, floral odors, and even electromagnetic fields. Once landed, a bee then uses nectar quality and pollen taste to determine whether to continue visiting similar flowers.

In rare cases, a plant species may only be effectively pollinated by a single bee species, and some plants are endangered at least in part because their pollinator is also threatened. But, there is a pronounced tendency for oligolectic bees to be associated with common, widespread plants visited by multiple pollinator species. For example, the creosote bush in the arid parts of the United States southwest is associated with some 40 oligoleges.

As mimics and models

The bee-fly Bombylius major, a Batesian mimic of bees, taking nectar and pollinating a flower.


Bee orchid lures male bees to attempt to mate with the flower's lip, which resembles a bee perched on a pink flower.

Many bees are aposematically coloured, typically orange and black, warning of their ability to defend themselves with a powerful sting. As such they are models for Batesian mimicry by non-stinging insects such as bee-flies, robber flies and hoverflies, all of which gain a measure of protection by superficially looking and behaving like bees.

Bees are themselves Müllerian mimics of other aposematic insects with the same colour scheme, including wasps, lycid and other beetles, and many butterflies and moths (Lepidoptera) which are themselves distasteful, often through acquiring bitter and poisonous chemicals from their plant food. All the Müllerian mimics, including bees, benefit from the reduced risk of predation that results from their easily recognised warning coloration.

Bees are also mimicked by plants such as the bee orchid which imitates both the appearance and the scent of a female bee; male bees attempt to mate (pseudocopulation) with the furry lip of the flower, thus pollinating it.

As brood parasites


Brood parasites occur in several bee families including the apid subfamily Nomadinae. Females of these species lack pollen collecting structures (the scopa) and do not construct their own nests. They typically enter the nests of pollen collecting species, and lay their eggs in cells provisioned by the host bee. When the "cuckoo" bee larva hatches, it consumes the host larva's pollen ball, and often the host egg also. In particular, the Arctic bee species, Bombus hyperboreus is an aggressive species that attacks and enslaves other bees of the same subgenus. However, unlike many other bee brood parasites, they have pollen baskets and often collect pollen.

In Southern Africa, hives of African honeybees (A. mellifera scutellata) are being destroyed by parasitic workers of the Cape honeybee, A. m. capensis. These lay diploid eggs ("thelytoky"), escaping normal worker policing, leading to the colony's destruction; the parasites can then move to other hives.

The cuckoo bees in the Bombus subgenus Psithyrus are closely related to, and resemble, their hosts in looks and size. This common pattern gave rise to the ecological principle "Emery's rule". Others parasitize bees in different families, like Townsendiella, a nomadine apid, two species of which are cleptoparasites of the dasypodaid genus Hesperapis, while the other species in the same genus attacks halictid bees.

Nocturnal bees

Four bee families (Andrenidae, Colletidae, Halictidae, and Apidae) contain some species that are crepuscular. Most are tropical or subtropical, but some live in arid regions at higher latitudes. These bees have greatly enlarged ocelli, which are extremely sensitive to light and dark, though incapable of forming images. Some have refracting superposition compound eyes: these combine the output of many elements of their compound eyes to provide enough light for each retinal photoreceptor. Their ability to fly by night enables them to avoid many predators, and to exploit flowers that produce nectar only or also at night.

Predators, parasites and pathogens

The bee-eater, Merops apiaster, specialises in feeding on bees; here a male catches a nuptial gift for his mate.
 
Vertebrate predators of bees include bee-eaters, shrikes and flycatchers, which make short sallies to catch insects in flight. Swifts and swallows fly almost continually, catching insects as they go. The honey buzzard attacks bees' nests and eats the larvae. The greater honeyguide interacts with humans by guiding them to the nests of wild bees. The humans break open the nests and take the honey and the bird feeds on the larvae and the wax. Among mammals, predators such as the badger dig up bumblebee nests and eat both the larvae and any stored food.

The beewolf Philanthus triangulum paralysing a bee with its sting
 
Specialist ambush predators of visitors to flowers include crab spiders, which wait on flowering plants for pollinating insects; predatory bugs, and praying mantises, some of which (the flower mantises of the tropics) wait motionless, aggressive mimics camouflaged as flowers. Beewolves are large wasps that habitually attack bees; the ethologist Niko Tinbergen estimated that a single colony of the beewolf Philanthus triangulum might kill several thousand honeybees in a day: all the prey he observed were honeybees. Other predatory insects that sometimes catch bees include robber flies and dragonflies. Honey bees are affected by parasites including acarine and Varroa mites. However, some bees are believed to have a mutualistic relationship with mites.

Relationship with humans

In mythology and folklore

Gold plaques embossed with winged bee goddesses. Camiros, Rhodes. 7th century B.C.

Homer's Hymn to Hermes, describes three bee maidens with the power of divination and thus speaking truth, and identifies the food of the gods as honey; the bee maidens were originally associated with Apollo, and are probably not correctly identified with the Thriae.[citation needed] Honey, according to a Greek myth, was discovered by a nymph called Melissa ("Bee"); and honey was offered to the Greek gods from Mycenean times. Bees were also associated with the Delphic oracle and the prophetess was sometimes called a bee.

The image of a community of honey bees has been used from ancient to modern times, in Aristotle and Plato; in Virgil and Seneca; in Erasmus and Shakespeare; Tolstoy, and by political and social theorists such as Bernard Mandeville and Karl Marx as a model for human society. In English folklore, bees would be told of important events in the household, in a custom known as "Telling the bees".

In art and literature

Beatrix Potter's illustration of Babbity Bumble in The Tale of Mrs Tittlemouse, 1910

Some of the oldest examples of bees in art are rock paintings in Spain which have been dated to 15,000 BC.

W. B. Yeats's poem The Lake Isle of Innisfree (1888) contains the couplet "Nine bean rows will I have there, a hive for the honey bee, / And live alone in the bee loud glade." At the time he was living in Bedford Park in the West of London. Beatrix Potter's illustrated book The Tale of Mrs Tittlemouse (1910) features Babbity Bumble and her brood (pictured). Kit Williams' treasure hunt book The Bee on the Comb (1984) uses bees and beekeeping as part of its story and puzzle. Sue Monk Kidd's The Secret Life of Bees (2004), and the 2009 film starring Dakota Fanning, tells the story of a girl who escapes her abusive home and finds her way to live with a family of beekeepers, the Boatwrights.

The humorous 2007 animated film Bee Movie used Jerry Seinfeld's first script and was his first work for children; he starred as a bee named Barry B. Benson, alongside Renée Zellweger. Critics found its premise awkward and its delivery tame. Dave Goulson's A Sting in the Tale (2014) describes his efforts to save bumblebees in Britain, as well as much about their biology. The playwright Laline Paull's fantasy The Bees (2015) tells the tale of a hive bee named Flora 717 from hatching onwards.

Beekeeping

A commercial beekeeper at work

Humans have kept honey bee colonies, commonly in hives, for millennia. Beekeepers collect honey, beeswax, propolis, pollen, and royal jelly from hives; bees are also kept to pollinate crops and to produce bees for sale to other beekeepers. 

Depictions of humans collecting honey from wild bees date to 15,000 years ago; efforts to domesticate them are shown in Egyptian art around 4,500 years ago. Simple hives and smoke were used; jars of honey were found in the tombs of pharaohs such as Tutankhamun. From the 18th century, European understanding of the colonies and biology of bees allowed the construction of the moveable comb hive so that honey could be harvested without destroying the colony. Among Classical Era authors, beekeeping with the use of smoke is described in Aristotle's History of Animals Book 9. The account mentions that bees die after stinging; that workers remove corpses from the hive, and guard it; castes including workers and non-working drones, but "kings" rather than queens; predators including toads and bee-eaters; and the waggle dance, with the "irresistible suggestion" of άpοσειονται ("aroseiontai", it waggles) and παρακολουθούσιν ("parakolouthousin", they watch).

Beekeeping is described in detail by Virgil in his Eclogues; it is also mentioned in his Aeneid, and in Pliny's Natural History.

As commercial pollinators

Squash bees (Apidae) are important pollinators of squashes and cucumbers.

Bees play an important role in pollinating flowering plants, and are the major type of pollinator in many ecosystems that contain flowering plants. It is estimated that one third of the human food supply depends on pollination by insects, birds and bats, most of which is accomplished by bees, whether wild or domesticated. Over the last half century, there has been a general decline in the species richness of wild bees and other pollinators, probably attributable to stress from increased parasites and disease, the use of pesticides, and a general decrease in the number of wild flowers. Climate change probably exacerbates the problem.

Contract pollination has overtaken the role of honey production for beekeepers in many countries. After the introduction of Varroa mites, feral honey bees declined dramatically in the US, though their numbers have since recovered. The number of colonies kept by beekeepers declined slightly, through urbanization, systematic pesticide use, tracheal and Varroa mites, and the closure of beekeeping businesses. In 2006 and 2007 the rate of attrition increased, and was described as colony collapse disorder. In 2010 invertebrate iridescent virus and the fungus Nosema ceranae were shown to be in every killed colony, and deadly in combination. Winter losses increased to about 1/3. Varroa mites were thought to be responsible for about half the losses.

Apart from colony collapse disorder, losses outside the US have been attributed to causes including pesticide seed dressings, using neonicotinoids such as Clothianidin, Imidacloprid and Thiamethoxam. From 2013 the European Union restricted some pesticides to stop bee populations from declining further. In 2014 the Intergovernmental Panel on Climate Change report warned that bees faced increased risk of extinction because of global warming. In 2018 the European Union decided to ban field use of all three major neonicotinoids; they remain permitted in veterinary, greenhouse, and vehicle transport usage.

Farmers have focused on alternative solutions to mitigate these problems. By raising native plants, they provide food for native bee pollinators like Lasioglossum vierecki and L. leucozonium, leading to less reliance on honey bee populations.

As food producers

Honey is a natural product produced by bees and stored for their own use, but its sweetness has always appealed to humans. Before domestication of bees was even attempted, humans were raiding their nests for their honey. Smoke was often used to subdue the bees and such activities are depicted in rock paintings in Spain dated to 15,000 BC.

Honey bees are used commercially to produce honey. They also produce some substances used as dietary supplements with possible health benefits, pollen, propolis, and royal jelly, though all of these can also cause allergic reactions.

As food (bee brood)

Bee larvae as food in the Javanese dish botok tawon

Bees are partly considered edible insects. Indigenous people in many countries eat insects, including the larvae and pupae of bees, mostly stingless species. They also gather larvae, pupae and surrounding cells, known as bee brood, for consumption. In the Indonesian dish botok tawon from Central and East Java, bee larvae are eaten as a companion to rice, after being mixed with shredded coconut, wrapped in banana leaves, and steamed.

Bee brood (pupae and larvae) although low in calcium, has been found to be high in protein and carbohydrate, and a useful source of phosphorus, magnesium, potassium, and trace minerals iron, zinc, copper, and selenium. In addition, while bee brood was high in fat, it contained no fat soluble vitamins (such as A, D, and E) but it was a good source of most of the water-soluble B-vitamins including choline as well as vitamin C. The fat was composed mostly of saturated and monounsaturated fatty acids with 2.0% being polyunsaturated fatty acids.

As alternative medicine

Apitherapy is a branch of alternative medicine that uses honey bee products, including raw honey, royal jelly, pollen, propolis, beeswax and apitoxin (Bee venom). The claim that apitherapy treats cancer, which some proponents of apitherapy make, remains unsupported by evidence-based medicine.

Stings

The painful stings of bees are mostly associated with the poison gland and the Dufour's gland which are abdominal exocrine glands containing various chemicals. In Lasioglossum leucozonium, the Dufour's Gland mostly contains octadecanolide as well as some eicosanolide. There is also evidence of n-triscosane, n-heptacosane, and 22-docosanolide. However, the secretions of these glands could also be used for nest construction.

Hornet

From Wikipedia, the free encyclopedia
 
Hornet
Hornet.jpg
Oriental hornet, Vespa orientalis
Scientific classification e
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera
Family: Vespidae
Subfamily: Vespinae
Genus: Vespa
Linnaeus, 1758
Type species
Vespa crabro
Linnaeus, 1758
Species
See text

Hornets (insects in the genus Vespa) are the largest of the eusocial wasps, and are similar in appearance to their close relatives yellowjackets. Some species can reach up to 5.5 cm (2.2 in) in length. They are distinguished from other vespine wasps by the relatively large top margin of the head and by the rounded segment of the abdomen just behind the waist. Worldwide, there are 22 recognized species of Vespa, Most species only occur in the tropics of Asia, though the European hornet (Vespa crabro), is widely distributed throughout Europe, Russia, North America and Northeast Asia. Wasps native to North America in the genus Dolichovespula are commonly referred to as hornets (e.g., baldfaced hornets), but are actually yellowjackets.

Like other social wasps, hornets build communal nests by chewing wood to make a papery pulp. Each nest has one queen, who lays eggs and is attended by workers who, while genetically female, cannot lay fertile eggs. Most species make exposed nests in trees and shrubs, but some (like Vespa orientalis) build their nests underground or in other cavities. In the tropics, these nests may last year-round, but in temperate areas, the nest dies over the winter, with lone queens hibernating in leaf litter or other insulative material until the spring.

Hornets are often considered pests, as they aggressively guard their nesting sites when threatened and their stings can be more dangerous than those of bees.

Life cycle

The structure of an incipient nest

In Vespa crabro, the nest is founded in spring by a fertilized female known as the queen. She generally selects sheltered places such as dark, hollow tree trunks. She first builds a series of cells (up to 50) out of chewed tree bark. The cells are arranged in horizontal layers named combs, each cell being vertical and closed at the top. An egg is then laid in each cell. After 5–8 days, the egg hatches, and in the next two weeks, the larva undergoes its five stages. During this time, the queen feeds it a protein-rich diet of insects. Then, the larva spins a silk cap over the cell's opening and, during the next two weeks, transforms into an adult, a process called metamorphosis. The adult then eats its way through the silk cap. This first generation of workers, invariably females, now gradually undertakes all the tasks formerly carried out by the queen (foraging, nest building, taking care of the brood, etc.) with the exception of egg-laying, which remains exclusive to the queen.

Life history of Vespa crabro

As the colony size grows, new combs are added, and an envelope is built around the cell layers until the nest is entirely covered, with the exception of an entry hole. To be able to build cells in total darkness, they apparently use gravity to aid them. At the peak of its population, which occurs in late summer, the colony can reach a size of 700 workers.

At this time, the queen starts producing the first reproductive individuals. Fertilized eggs develop into females (called "gynes" by entomologists), and unfertilized ones develop into males (sometimes called "drones"). Adult males do not participate in nest maintenance, foraging, or caretaking of the larvae. In early to mid autumn, they leave the nest and mate during "nuptial flights."

Other temperate species (e.g., the yellow hornet, V. simillima, or the Oriental hornet, V. orientalis) have similar cycles. In the case of tropical species (e.g., V. tropica), life histories may well differ, and in species with both tropical and temperate distributions (such as the Asian giant hornet, Vespa mandarinia), the cycle likely depends on latitude.

Distribution

Hornets are found mainly in the Northern Hemisphere. The common European hornet (Vespa crabro) is the best-known species, widely distributed in Europe (but is never found north of the 63rd parallel), Ukraine and European Russia (except in extreme northern areas). In the east, the species' distribution area stretches over the Ural Mountains to Western Siberia (found in the vicinity of Khanty-Mansiysk). In Asia, the common European hornet is found in southern Siberia, as well as in eastern China. The common European hornet was accidentally introduced to eastern North America about the middle of the 19th century and has lived there since at about the same latitudes as in Europe. However, it has never been found in western North America.

The Asian giant hornet (Vespa mandarinia) lives in the Primorsky Krai, Khabarovsky Krai (southern part) and Jewish AO regions of Russia, China, Korea, Taiwan, Cambodia, Laos, Vietnam, Indochina, India, Nepal, Sri Lanka and Thailand, but is most commonly found in the mountains of Japan, where they are commonly known as the giant sparrow bee.

The Oriental hornet (Vespa orientalis) occurs in semi-dry sub-tropical areas of Central Asia (Armenia, Dagestan in Russia, Iran, Afghanistan, Oman, Pakistan, Turkmenistan, Uzbekistan, Tajikistan, Kyrghyzstan, southern Kazakhstan), southern Europe (Italy, Malta, Albania, Romania, Turkey, Greece, Bulgaria, Cyprus), North Africa (Algeria, Libya, Egypt, Sudan, Eritrea, Somalia) and along the shores of the Gulf of Aden and in the Middle East. It has been introduced to Madagascar.
The Asian hornet (Vespa velutina) has been introduced to France, Spain, Portugal and Italy.

Stings

Hornets have stings used to kill prey and defend nests. Hornet stings are more painful to humans than typical wasp stings because hornet venom contains a large amount (5%) of acetylcholine. Individual hornets can sting repeatedly; unlike honey bees, hornets do not die after stinging because their stingers are very finely barbed (only visible under high magnification) and can easily be withdrawn and so are not pulled out of their bodies when disengaging.

The toxicity of hornet stings varies according to hornet species; some deliver just a typical insect sting, while others are among the most venomous known insects. Single hornet stings are not in themselves fatal, except sometimes to allergic victims. Multiple stings by non-European hornets may be fatal because of highly toxic species-specific components of their venom.

The stings of the Asian giant hornet (Vespa mandarinia) are among the most venomous known, and are thought to cause 30–50 human deaths annually in Japan. Between July and September 2013, hornet stings caused the death of 42 people in China. Asian giant hornet's venom can cause allergic reactions and multiple organ failure leading to death, though dialysis can be used to remove the toxins from the bloodstream.

People who are allergic to wasp venom are also allergic to hornet stings. Allergic reactions are commonly treated with epinephrine (adrenaline) injection using a device such as an epinephrine autoinjector, with prompt follow-up treatment in a hospital. In severe cases, allergic individuals may go into anaphylactic shock and die unless treated promptly.

Attack pheromone

Hornets, like many social wasps, can mobilize the entire nest to sting in defense, which is highly dangerous to humans and other animals. The attack pheromone is released in case of threat to the nest. In the case of the Asian giant hornet (Vespa mandarinia) this is also used to mobilize many workers at once when attacking colonies of their prey, honey bees and other Vespa species. Three biologically active chemicals, 2-pentanol, 3-methyl-1-butanol, and 1-methylbutyl 3-methylbutanoate, have been identified for this species. In field tests, 2-pentanol alone triggered mild alarm and defensive behavior, but adding the other two compounds increased aggressiveness in a synergistic effect. In the European hornet (Vespa crabro) the major compound of the alarm pheromone is 2-methyl-3-butene-2-ol.

If a hornet is killed near a nest it may release pheromones that can cause the other hornets to attack. Materials that come in contact with these pheromones, such as clothes, skin, and dead prey or hornets, can also trigger an attack, as can certain food flavorings, such as banana and apple flavorings, and fragrances that contain C5 alcohols and C10 esters.

Diet and feeding

Adult hornets and their relatives (e.g., yellowjackets) feed themselves with nectar and sugar-rich plant foods. Thus, they can often be found feeding on the sap of oak trees, rotting sweet fruits, honey and any sugar-containing foodstuffs. Hornets frequently fly into orchards to feed on overripe fruit. Hornets tend to gnaw a hole into fruit to become totally immersed into its pulp. A person who accidentally plucks a fruit with a feeding hornet can be attacked by the disturbed insect.

The adults also attack various insects, which they kill with stings and jaws. Due to their size and the power of their venom, hornets are able to kill large insects such as honey bees, grasshoppers, locusts and katydids without difficulty. The victim is fully masticated and then fed to the larvae developing in the nest, rather than consumed by the adult hornets. Given that some of their prey are considered pests, hornets may be considered beneficial under some circumstances.

The larvae of hornets produce a sweet secretion containing sugars and amino acids that is consumed by the workers and queens.

Hornets and other Vespidae

European hornet with the remnants of a honey bee.

While taxonomically well defined, there may be some confusion about the differences between hornets and other wasps of the family Vespidae, specifically the yellowjackets, which are members of the same subfamily. Yellowjackets are generally smaller than hornets and are bright yellow and black, whereas hornets may often be black and white. There is also a related genus of Asian nocturnal vespines, Provespa, which are referred to as "night wasps" or "night hornets", though they are not true hornets.

Some other large wasps are sometimes referred to as hornets, most notably the bald-faced hornet (Dolichovespula maculata) found in North America. It is set apart by its black and ivory coloration. The name "hornet" is used for this and related species primarily because of their habit of making aerial nests (similar to the true hornets) rather than subterranean nests. Another example is the Australian hornet (Abispa ephippium), which is actually a species of potter wasp.

Species (22 extant + 7 †fossil; not including subspecies)

Notable species

As food and medicine

Hornet larvae are widely accepted as food in mountainous regions in China. Hornets and their nest are treated as medicine in Traditional Chinese Medicine.

Gallery

Pantheism

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Pantheism     Pantheism is the philosophic...