Search This Blog

Monday, September 14, 2020

Galaxy formation and evolution

From Wikipedia, the free encyclopedia

The study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, that clustering and merging allows galaxies to accumulate mass, determining both their shape and structure.

Commonly observed properties of galaxies

Hubble tuning fork diagram of galaxy morphology

Because of the inability to conduct experiments in outer space, the only way to “test” theories and models of galaxy evolution is to compare them with observations. Explanations for how galaxies formed and evolved must be able to predict the observed properties and types of galaxies.

Edwin Hubble created the first galaxy classification scheme known as the Hubble tuning-fork diagram. It partitioned galaxies into ellipticals, normal spirals, barred spirals (such as the Milky Way), and irregulars. These galaxy types exhibit the following properties which can be explained by current galaxy evolution theories:

  • Many of the properties of galaxies (including the galaxy color–magnitude diagram) indicate that there are fundamentally two types of galaxies. These groups divide into blue star-forming galaxies that are more like spiral types, and red non-star forming galaxies that are more like elliptical galaxies.
  • Spiral galaxies are quite thin, dense, and rotate relatively fast, while the stars in elliptical galaxies have randomly oriented orbits.
  • The majority of giant galaxies contain a supermassive black hole in their centers, ranging in mass from millions to billions of times the mass of our Sun. The black hole mass is tied to the host galaxy bulge or spheroid mass.
  • Metallicity has a positive correlation with the absolute magnitude (luminosity) of a galaxy.

There is a common misconception that Hubble believed incorrectly that the tuning fork diagram described an evolutionary sequence for galaxies, from elliptical galaxies through lenticulars to spiral galaxies. This is not the case; instead, the tuning fork diagram shows an evolution from simple to complex with no temporal connotations intended. Astronomers now believe that disk galaxies likely formed first, then evolved into elliptical galaxies through galaxy mergers.

Current models also predict that the majority of mass in galaxies is made up of dark matter, a substance which is not directly observable, and might not interact through any means except gravity. This observation arises because galaxies could not have formed as they have, or rotate as they are seen to, unless they contain far more mass than can be directly observed.

Formation of disk galaxies

The earliest stage in the evolution of galaxies is the formation. When a galaxy forms, it has a disk shape and is called a spiral galaxy due to spiral-like "arm" structures located on the disk. There are different theories on how these disk-like distributions of stars develop from a cloud of matter: however, at present, none of them exactly predicts the results of observation.

Top-down theories

Olin Eggen, Donald Lynden-Bell, and Allan Sandage in 1962, proposed a theory that disk galaxies form through a monolithic collapse of a large gas cloud. The distribution of matter in the early universe was in clumps that consisted mostly of dark matter. These clumps interacted gravitationally, putting tidal torques on each other that acted to give them some angular momentum. As the baryonic matter cooled, it dissipated some energy and contracted toward the center. With angular momentum conserved, the matter near the center speeds up its rotation. Then, like a spinning ball of pizza dough, the matter forms into a tight disk. Once the disk cools, the gas is not gravitationally stable, so it cannot remain a singular homogeneous cloud. It breaks, and these smaller clouds of gas form stars. Since the dark matter does not dissipate as it only interacts gravitationally, it remains distributed outside the disk in what is known as the dark halo. Observations show that there are stars located outside the disk, which does not quite fit the "pizza dough" model. It was first proposed by Leonard Searle and Robert Zinn  that galaxies form by the coalescence of smaller progenitors. Known as a top-down formation scenario, this theory is quite simple yet no longer widely accepted.

Bottom-up theories

More recent theories include the clustering of dark matter halos in the bottom-up process. Instead of large gas clouds collapsing to form a galaxy in which the gas breaks up into smaller clouds, it is proposed that matter started out in these “smaller” clumps (mass on the order of globular clusters), and then many of these clumps merged to form galaxies, which then were drawn by gravitation to form galaxy clusters. This still results in disk-like distributions of baryonic matter with dark matter forming the halo for all the same reasons as in the top-down theory. Models using this sort of process predict more small galaxies than large ones, which matches observations.

Astronomers do not currently know what process stops the contraction. In fact, theories of disk galaxy formation are not successful at producing the rotation speed and size of disk galaxies. It has been suggested that the radiation from bright newly formed stars, or from an active galactic nucleus can slow the contraction of a forming disk. It has also been suggested that the dark matter halo can pull the galaxy, thus stopping disk contraction.

The Lambda-CDM model is a cosmological model that explains the formation of the universe after the Big Bang. It is a relatively simple model that predicts many properties observed in the universe, including the relative frequency of different galaxy types; however, it underestimates the number of thin disk galaxies in the universe. The reason is that these galaxy formation models predict a large number of mergers. If disk galaxies merge with another galaxy of comparable mass (at least 15 percent of its mass) the merger will likely destroy, or at a minimum greatly disrupt the disk, and the resulting galaxy is not expected to be a disk galaxy (see next section). While this remains an unsolved problem for astronomers, it does not necessarily mean that the Lambda-CDM model is completely wrong, but rather that it requires further refinement to accurately reproduce the population of galaxies in the universe.

Galaxy mergers and the formation of elliptical galaxies

Artist image of a firestorm of star birth deep inside core of young, growing elliptical galaxy.
 
NGC 4676 (Mice Galaxies) is an example of a present merger.
 
Antennae Galaxies are a pair of colliding galaxies – the bright, blue knots are young stars that have recently ignited as a result of the merger.
 
ESO 325-G004, a typical elliptical galaxy.

Elliptical galaxies (such as IC 1101) are among some of the largest known thus far. Their stars are on orbits that are randomly oriented within the galaxy (i.e. they are not rotating like disk galaxies). A distinguishing feature of elliptical galaxies is that the velocity of the stars does not necessarily contribute to flattening of the galaxy, such as in spiral galaxies. Elliptical galaxies have central supermassive black holes, and the masses of these black holes correlate with the galaxy's mass.

Elliptical galaxies have two main stages of evolution. The first is due to the supermassive black hole growing by accreting cooling gas. The second stage is marked by the black hole stabilizing by suppressing gas cooling, thus leaving the elliptical galaxy in a stable state. The mass of the black hole is also correlated to a property called sigma which is the dispersion of the velocities of stars in their orbits. This relationship, known as the M-sigma relation, was discovered in 2000. Elliptical galaxies mostly lack disks, although some bulges of disk galaxies resemble elliptical galaxies. Elliptical galaxies are more likely found in crowded regions of the universe (such as galaxy clusters).

Astronomers now see elliptical galaxies as some of the most evolved systems in the universe. It is widely accepted that the main driving force for the evolution of elliptical galaxies is mergers of smaller galaxies. Many galaxies in the universe are gravitationally bound to other galaxies, which means that they will never escape their mutual pull. If the galaxies are of similar size, the resultant galaxy will appear similar to neither of the progenitors, but will instead be elliptical. There are many types of galaxy mergers, which do not necessarily result in elliptical galaxies, but result in a structural change. For example, a minor merger event is thought to be occurring between the Milky Way and the Magellanic Clouds.

Mergers between such large galaxies are regarded as violent, and the frictional interaction of the gas between the two galaxies can cause gravitational shock waves, which are capable of forming new stars in the new elliptical galaxy. By sequencing several images of different galactic collisions, one can observe the timeline of two spiral galaxies merging into a single elliptical galaxy.

In the Local Group, the Milky Way and the Andromeda Galaxy are gravitationally bound, and currently approaching each other at high speed. Simulations show that the Milky Way and Andromeda are on a collision course, and are expected to collide in less than five billion years. During this collision, it is expected that the Sun and the rest of the Solar System will be ejected from its current path around the Milky Way. The remnant could be a giant elliptical galaxy.

Galaxy quenching

Star formation in what are now "dead" galaxies sputtered out billions of years ago.

One observation (see above) that must be explained by a successful theory of galaxy evolution is the existence of two different populations of galaxies on the galaxy color-magnitude diagram. Most galaxies tend to fall into two separate locations on this diagram: a "red sequence" and a "blue cloud". Red sequence galaxies are generally non-star-forming elliptical galaxies with little gas and dust, while blue cloud galaxies tend to be dusty star-forming spiral galaxies.

As described in previous sections, galaxies tend to evolve from spiral to elliptical structure via mergers. However, the current rate of galaxy mergers does not explain how all galaxies move from the "blue cloud" to the "red sequence". It also does not explain how star formation ceases in galaxies. Theories of galaxy evolution must therefore be able to explain how star formation turns off in galaxies. This phenomenon is called galaxy "quenching".

Stars form out of cold gas (see also the Kennicutt-Schmidt law), so a galaxy is quenched when it has no more cold gas. However, it is thought that quenching occurs relatively quickly (within 1 billion years), which is much shorter than the time it would take for a galaxy to simply use up its reservoir of cold gas. Galaxy evolution models explain this by hypothesizing other physical mechanisms that remove or shut off the supply of cold gas in a galaxy. These mechanisms can be broadly classified into two categories: (1) preventive feedback mechanisms that stop cold gas from entering a galaxy or stop it from producing stars, and (2) ejective feedback mechanisms that remove gas so that it cannot form stars.

One theorized preventive mechanism called “strangulation” keeps cold gas from entering the galaxy. Strangulation is likely the main mechanism for quenching star formation in nearby low-mass galaxies. The exact physical explanation for strangulation is still unknown, but it may have to do with a galaxy's interactions with other galaxies. As a galaxy falls into a galaxy cluster, gravitational interactions with other galaxies can strangle it by preventing it from accreting more gas.[22] For galaxies with massive dark matter halos, another preventive mechanism called “virial shock heating” may also prevent gas from becoming cool enough to form stars.

Ejective processes, which expel cold gas from galaxies, may explain how more massive galaxies are quenched. One ejective mechanism is caused by supermassive black holes found in the centers of galaxies. Simulations have shown that gas accreting onto supermassive black holes in galactic centers produces high-energy jets; the released energy can expel enough cold gas to quench star formation.

Our own Milky Way and the nearby Andromeda Galaxy currently appear to be undergoing the quenching transition from star-forming blue galaxies to passive red galaxies.

Gallery

Sagittarius A

From Wikipedia, the free encyclopedia
 
Sagittarius A
Astrometry

Radial velocity (Rv)46 km/s

Details

Mass~4.1 million M
Radius31.6 R
Age+10.000 years

Other designations
AX J1745.6-2900, SAGITTARIUS A, W 24, Cul 1742-28, SGR A, [DGW65] 96, EQ 1742-28, RORF 1742-289, [SKM2002] 28.
Database references
SIMBADdata

Sagittarius A or Sgr A is a complex radio source at the center of the Milky Way which contains a supermassive black hole. It is located in the constellation Sagittarius, and is hidden from view at optical wavelengths by large clouds of cosmic dust in the spiral arms of the Milky Way.

It consists of three components, the supernova remnant Sagittarius A East, the spiral structure Sagittarius A West, and a very bright compact radio source at the center of the spiral, Sagittarius A* ("Sagittarius A-star"). These three overlap: Sagittarius A East is the largest, West appears off-center within East, and A* is at the center of West.

Sagittarius spiral arm

A study was done with the measured parallaxes and motions of 10 massive regions in the Sagittarius spiral arm of the Milky Way where stars are formed. Data was gathered using the BeSSeL Survey with the VLBA, and the results were synthesized to discover the physical properties of these sections (called the Galactocentric azimuth, around −2 and 65 degrees). The results were that the spiral pitch angle of the arms is 7.3 ± 1.5 degrees, and the half-width of the arms of the Milky Way were found to be 0.2 kpc. The nearest arm from the Sun is around 1.4 ± 0.2 kpc away.

Sagittarius A East

This feature is approximately 25 light-years in width and has the attributes of a supernova remnant from an explosive event that occurred between 35 000 and 100 000 BC. However, it would take 50 to 100 times more energy than a standard supernova explosion to create a structure of this size and energy. It is conjectured that Sgr A East is the remnant of the explosion of a star that was gravitationally compressed as it made a close approach to the central black hole. 

Sagittarius A West

Surface brightness and velocity field of the inner part of Sagittarius A West

Sgr A West has the appearance of a three-arm spiral, from the point of view of the Earth. For this reason, it is also known as the "Minispiral". This appearance and nickname are misleading, though: the three-dimensional structure of the Minispiral is not that of a spiral. It is made of several dust and gas clouds, which orbit and fall onto Sagittarius A* at velocities as high as 1,000 kilometers per second. The surface layer of these clouds is ionized. The source of ionisation is the population of massive stars (more than one hundred OB stars have been identified so far) that also occupy the central parsec.

Sgr A West is surrounded by a massive, clumpy torus of cooler molecular gas, the Circumnuclear Disk (CND). The nature and kinematics of the Northern Arm cloud of Sgr A West suggest that it once was a clump in the CND, which fell due to some perturbation, perhaps the supernova explosion responsible for Sgr A East. The Northern Arm appears as a very bright North—South ridge of emission, but it extends far to the East and can be detected as a dim extended source.

The Western Arc (outside the field of view of the image shown in the right) is interpreted as the ionized inner surface of the CND. The Eastern Arm and the Bar seem to be two additional large clouds similar to the Northern Arm, although they do not share the same orbital plane. They have been estimated to amount for about 20 solar masses each.

On top of these large scale structures (of the order of a few light-years in size), many smaller cloudlets and holes inside the large clouds can be seen. The most prominent of these perturbations is the Minicavity which is interpreted as a bubble blown inside the Northern Arm by the stellar wind of a massive star, which is not clearly identified.

Sagittarius A*

Astronomers have observed stars spinning around the supermassive black hole in Sagittarius A*.

Astronomers now have evidence there is a supermassive black hole at the center of the galaxy.

Sagittarius A* (abbreviated Sgr A*) is agreed to be the most plausible candidate for the location of this supermassive black hole. The Very Large Telescope and Keck Telescope detected stars orbiting Sgr A* at speeds greater than that of any other stars in the galaxy. One star, designated S2, was calculated to orbit Sgr A* at speeds of over 5,000 kilometers per second at its closest approach.

A gas cloud, G2, passed through the Sagittarius A* region in 2014 and managed to do so without disappearing beyond the event horizon as theorists predicted would happen. Rather, it disintegrated, suggesting the gas cloud G2 and previous gas cloud G1, were star remnants with larger gravitation fields than gas clouds.

In September 2019, scientists found that Sagittarius A* had been consuming nearby matter at a much faster rate than usual over the past year. Researchers speculated that this could mean that the black hole is entering a new phase, or that Sagittarius A* had stripped the outer layer of G2 when it passed through.

Sagittarius A in popular culture

  • In the 2014 space-sim videogame Elite: Dangerous players are able to travel to Sagittarius A*, with an achievement tied to it in the Xbox One version of the game.
  • On the television show Community, Pierce Hawthorne mentions that in his opinion, Sagittarius A is the only black hole worth studying.
  • In the H.P. Lovecraft Cthulhu Mythos, Sagittarius A is said to be the location of where the Nuclear Chaos, Azathoth dwells.
  • In the final arc of the Sailor Moon manga series, "Sagittarius Zero Star" is the location of the Galaxy Cauldron, a fictional artifact that serves as the birthplace of all life in the Milky Way.

Galactic coordinate system

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Galactic_coordinate_system

Artist's depiction of the Milky Way galaxy, showing the galactic longitude relative to the Galactic Center

The galactic coordinate system is a celestial coordinate system in spherical coordinates, with the Sun as its center, the primary direction aligned with the approximate center of the Milky Way galaxy, and the fundamental plane parallel to an approximation of the galactic plane but offset to its north. It uses the right-handed convention, meaning that coordinates are positive toward the north and toward the east in the fundamental plane.

Galactic longitude

The galactic coordinates use the Sun as the origin. Galactic longitude (l) is measured with primary direction from the Sun to the center of the galaxy in the galactic plane, while the galactic latitude (b) measures the angle of the object above the galactic plane.

Longitude (symbol l) measures the angular distance of an object eastward along the galactic equator from the galactic center. Analogous to terrestrial longitude, galactic longitude is usually measured in degrees (°).

Galactic latitude

Latitude (symbol b) measures the angle of an object north or south of the galactic equator (or midplane) as viewed from Earth; positive to the north, negative to the south. For example, the north galactic pole has a latitude of +90°. Analogous to terrestrial latitude, galactic latitude is usually measured in degrees (°).

Definition

The first galactic coordinate system was used by William Herschel in 1785. A number of different coordinate systems, each differing by a few degrees, were used until 1932, when Lund Observatory assembled a set of conversion tables that defined a standard galactic coordinate system based on a galactic north pole at RA 12h 40m, dec +28° (in the B1900.0 epoch convention) and a 0° longitude at the point where the galactic plane and equatorial plane intersected.

In 1958, the International Astronomical Union (IAU) defined the galactic coordinate system in reference to radio observations of galactic neutral hydrogen through the hydrogen line, changing the definition of the Galactic longitude by 32° and the latitude by 1.5°. In the equatorial coordinate system, for equinox and equator of 1950.0, the north galactic pole is defined at right ascension 12h 49m, declination +27.4°, in the constellation Coma Berenices, with a probable error of ±0.1°. Longitude 0° is the great semicircle that originates from this point along the line in position angle 123° with respect to the equatorial pole. The galactic longitude increases in the same direction as right ascension. Galactic latitude is positive towards the north galactic pole, with a plane passing through the Sun and parallel to the galactic equator being 0°, whilst the poles are ±90°. Based on this definition, the galactic poles and equator can be found from spherical trigonometry and can be precessed to other epochs; see the table.

Equatorial coordinates J2000.0 of galactic reference points
  Right ascension Declination Constellation
North Pole
+90° latitude
12h 51.4m +27.13° Coma Berenices
(near 31 Com)
South Pole
−90° latitude
0h 51.4m −27.13° Sculptor
(near NGC 288)
Center
0° longitude
17h 45.6m −28.94° Sagittarius
(in Sagittarius A)
Anticenter
180° longitude
5h 45.6m +28.94° Auriga
(near HIP 27088)
Galactic north pole.png
Galactic north
Galactic south pole.png
Galactic south
Galactic zero longitude.png
Galactic center

The IAU recommended that during the transition period from the old, pre-1958 system to the new, the old longitude and latitude should be designated lI and bI while the new should be designated lII and bII. This convention is occasionally seen.

Radio source Sagittarius A*, which is the best physical marker of the true galactic center, is located at 17h 45m 40.0409s, −29° 00′ 28.118″ (J2000). Rounded to the same number of digits as the table, 17h 45.7m, −29.01° (J2000), there is an offset of about 0.07° from the defined coordinate center, well within the 1958 error estimate of ±0.1°. Due to the Sun's position, which currently lies 56.75±6.20 ly north of the midplane, and the heliocentric definition adopted by the IAU, the galactic coordinates of Sgr A* are latitude +0° 07′ 12″ south, longitude 0° 04′ 06″. Since as defined the galactic coordinate system does not rotate with time, Sgr A* is actually decreasing in longitude at the rate of galactic rotation at the sun, Ω, approximately 5.7 milliarcseconds per year (see Oort constants).

Conversion between equatorial and galactic coordinates

An object's location expressed in the equatorial coordinate system can be transformed into the galactic coordinate system. In these equations, α is right ascension, δ is declination. NGP refers to the coordinate values of the north galactic pole and NCP to those of the north celestial pole.

The reverse (galactic to equatorial) can also be accomplished with the following conversion formulas.

Rectangular coordinates

In some applications use is made of rectangular coordinates based on galactic longitude and latitude and distance. In some work regarding the distant past or future the galactic coordinate system is taken as rotating so that the x-axis always goes to the centre of the galaxy.

There are two major rectangular variations of galactic coordinates, commonly used for computing space velocities of galactic objects. In these systems the xyz-axes are designated UVW, but the definitions vary by author. In one system, the U axis is directed toward the galactic center (l = 0°), and it is a right-handed system (positive towards the east and towards the north galactic pole); in the other, the U axis is directed toward the galactic anticenter (l = 180°), and it is a left-handed system (positive towards the east and towards the north galactic pole).

The anisotropy of the star density in the night sky makes the galactic coordinate system very useful for coordinating surveys, both those that require high densities of stars at low galactic latitudes, and those that require a low density of stars at high galactic latitudes. For this image the Mollweide projection has been applied, typical in maps using galactic coordinates.

In the constellations

The galactic equator runs through the following constellations:


Galactic Center

From Wikipedia, the free encyclopedia
 
The Galactic Center, as seen by one of the 2MASS infrared telescopes, is located in the bright upper left portion of the image.

The Galactic Center (or Galactic Centre) is the rotational center of the Milky Way galaxy; it is a supermassive black hole of 4.100 ± 0.034 million solar masses, which powers the compact radio source Sagittarius A*.  It is 8.2 ± 0.4 kiloparsecs (26,700 ± 1,300 ly) away from Earth in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius where the Milky Way appears brightest.

There are around 10 million stars within one parsec of the Galactic Center, dominated by red giants, with a significant population of massive supergiants and Wolf-Rayet stars from star formation in the region around 1 million years ago.

Discovery

This pan video gives a closer look at a huge image of the central parts of the Milky Way made by combining thousands of images from ESO's VISTA telescope on Paranal in Chile and compares it with the view in visible light. Because VISTA has a camera sensitive to infrared light, it can see through much of the dust blocking the view in visible light, although many more opaque dust filaments still show up well in this picture.

Because of interstellar dust along the line of sight, the Galactic Center cannot be studied at visible, ultraviolet, or soft (low-energy) X-ray wavelengths. The available information about the Galactic Center comes from observations at gamma ray, hard (high-energy) X-ray, infrared, submillimetre, and radio wavelengths.

Immanuel Kant stated in General Natural History and Theory of the Heavens (1755) that a large star was at the center of the Milky Way Galaxy, and that Sirius might be the star.  Harlow Shapley stated in 1918 that the halo of globular clusters surrounding the Milky Way seemed to be centered on the star swarms in the constellation of Sagittarius, but the dark molecular clouds in the area blocked the view for optical astronomy.  In the early 1940s Walter Baade at Mount Wilson Observatory took advantage of wartime blackout conditions in nearby Los Angeles to conduct a search for the center with the 100-inch (250 cm) Hooker Telescope. He found that near the star Alnasl (Gamma Sagittarii) there is a one-degree-wide void in the interstellar dust lanes, which provides a relatively clear view of the swarms of stars around the nucleus of our Milky Way Galaxy. This gap has been known as Baade's Window ever since.

At Dover Heights in Sydney, Australia, a team of radio astronomers from the Division of Radiophysics at the CSIRO, led by Joseph Lade Pawsey, used 'sea interferometry' to discover some of the first interstellar and intergalactic radio sources, including Taurus A, Virgo A and Centaurus A. By 1954 they had built an 80-foot (24 m) fixed dish antenna and used it to make a detailed study of an extended, extremely powerful belt of radio emission that was detected in Sagittarius. They named an intense point-source near the center of this belt Sagittarius A, and realised that it was located at the very center of our Galaxy, despite being some 32 degrees south-west of the conjectured galactic center of the time.

In 1958 the International Astronomical Union (IAU) decided to adopt the position of Sagittarius A as the true zero co-ordinate point for the system of galactic latitude and longitude. In the equatorial coordinate system the location is: RA  17h 45m 40.04s, Dec −29° 00′ 28.1″ (J2000 epoch).

Distance to the Galactic Center

Animation of a barred galaxy like the Milky Way showing the presence of an X-shaped bulge. The X-shape extends to about one half of the bar radius. It is directly visible when the bar is seen from the side, but when the viewer is close to the long axis of the bar it cannot be seen directly and its presence can only be inferred from the distribution of brightnesses of stars along a given direction.

The exact distance between the Solar System and the Galactic Center is not certain, although estimates since 2000 have remained within the range 24–28.4 kilolight-years (7.4–8.7 kiloparsecs). The latest estimates from geometric-based methods and standard candles yield the following distances to the Galactic Center:

  • 7.4±0.2(stat) ± 0.2(syst) or 7.4±0.3 kpc (≈24±kly)
  • 7.62±0.32 kpc (≈24.8±1 kly)
  • 7.7±0.7 kpc (≈25.1±2.3 kly)
  • 7.94 or 8.0±0.5 kpc (≈26±1.6 kly)
  • 7.98±0.15(stat) ± 0.20(syst) or 8.0±0.25 kpc (≈26±0.8 kly)
  • 8.33±0.35 kpc (≈27±1.1 kly)
  • 8.7±0.5 kpc (≈28.4±1.6 kly)

An accurate determination of the distance to the Galactic Center as established from variable stars (e.g. RR Lyrae variables) or standard candles (e.g. red-clump stars) is hindered by countless effects, which include: an ambiguous reddening law; a bias for smaller values of the distance to the Galactic Center because of a preferential sampling of stars toward the near side of the Galactic bulge owing to interstellar extinction; and an uncertainty in characterizing how a mean distance to a group of variable stars found in the direction of the Galactic bulge relates to the distance to the Galactic Center.

The nature of the Milky Way's bar, which extends across the Galactic Center, is also actively debated, with estimates for its half-length and orientation spanning between 1–5 kpc (short or a long bar) and 10–50°. Certain authors advocate that the Milky Way features two distinct bars, one nestled within the other. The bar is delineated by red-clump stars (see also red giant); however, RR Lyrae variables do not trace a prominent Galactic bar. The bar may be surrounded by a ring called the 5-kpc ring that contains a large fraction of the molecular hydrogen present in the Milky Way, and most of the Milky Way's star formation activity. Viewed from the Andromeda Galaxy, it would be the brightest feature of the Milky Way.

Supermassive black hole

There is a supermassive black hole in the bright white area to the right of the center of the image. This composite photograph covers about half of a degree.

The complex astronomical radio source Sagittarius A appears to be located almost exactly at the Galactic Center and contains an intense compact radio source, Sagittarius A*, which coincides with a supermassive black hole at the center of the Milky Way. Accretion of gas onto the black hole, probably involving an accretion disk around it, would release energy to power the radio source, itself much larger than the black hole. The latter is too small to see with present instruments.

Artist impression of a supermassive black hole at the center of a galaxy

A study in 2008 which linked radio telescopes in Hawaii, Arizona and California (Very Long Baseline Interferometry) measured the diameter of Sagittarius A* to be 44 million kilometers (0.3 AU). For comparison, the radius of Earth's orbit around the Sun is about 150 million kilometers (1.0 AU), whereas the distance of Mercury from the Sun at closest approach (perihelion) is 46 million kilometers (0.3 AU). Thus, the diameter of the radio source is slightly less than the distance from Mercury to the Sun.

Scientists at the Max Planck Institute for Extraterrestrial Physics in Germany using Chilean telescopes have confirmed the existence of a supermassive black hole at the Galactic Center, on the order of 4.3 million solar masses.

On 5 January 2015, NASA reported observing an X-ray flare 400 times brighter than usual, a record-breaker, from Sagittarius A*. The unusual event may have been caused by the breaking apart of an asteroid falling into the black hole or by the entanglement of magnetic field lines within gas flowing into Sagittarius A*, according to astronomers.

Stellar population

Galactic Center of the Milky Way and a meteor

The central cubic parsec around Sagittarius A* contains around 10 million stars. Although most of them are old red giant stars, the Galactic Center is also rich in massive stars. More than 100 OB and Wolf–Rayet stars have been identified there so far. They seem to have all been formed in a single star formation event a few million years ago. The existence of these relatively young stars was a surprise to experts, who expected the tidal forces from the central black hole to prevent their formation. This paradox of youth is even stronger for stars that are on very tight orbits around Sagittarius A*, such as S2 and S0-102. The scenarios invoked to explain this formation involve either star formation in a massive star cluster offset from the Galactic Center that would have migrated to its current location once formed, or star formation within a massive, compact gas accretion disk around the central black-hole. Current evidence favors the latter theory, as formation through a large accretion disk is more likely to lead to the observed discrete edge of the young stellar cluster at roughly 0.5 parsec. Most of these 100 young, massive stars seem to be concentrated within one or two disks, rather than randomly distributed within the central parsec. This observation however does not allow definite conclusions to be drawn at this point.

Star formation does not seem to be occurring currently at the Galactic Center, although the Circumnuclear Disk of molecular gas that orbits the Galactic Center at two parsecs seems a fairly favorable site for star formation. Work presented in 2002 by Antony Stark and Chris Martin mapping the gas density in a 400-light-year region around the Galactic Center has revealed an accumulating ring with a mass several million times that of the Sun and near the critical density for star formation. They predict that in approximately 200 million years there will be an episode of starburst in the Galactic Center, with many stars forming rapidly and undergoing supernovae at a hundred times the current rate. This starburst may also be accompanied by the formation of galactic relativistic jets as matter falls into the central black hole. It is thought that the Milky Way undergoes a starburst of this sort every 500 million years.

In addition to the paradox of youth, there is also a "conundrum of old age" associated with the distribution of the old stars at the Galactic Center. Theoretical models had predicted that the old stars—which far outnumber young stars—should have a steeply-rising density near the black hole, a so-called Bahcall–Wolf cusp. Instead, it was discovered in 2009 that the density of the old stars peaks at a distance of roughly 0.5 parsec from Sgr A*, then falls inward: instead of a dense cluster, there is a "hole", or core, around the black hole. Several suggestions have been put forward to explain this puzzling observation, but none is completely satisfactory. For instance, although the black hole would eat stars near it, creating a region of low density, this region would be much smaller than a parsec. Because the observed stars are a fraction of the total number, it is theoretically possible that the overall stellar distribution is different from what is observed, although no plausible models of this sort have been proposed yet.

Gallery

Gamma- and X-ray emitting Fermi bubbles

Galactic gamma- and X-ray bubbles
 
Gamma- and X-ray bubbles at the Milky Way galaxy center: Top: illustration; Bottom: video.

In November 2010, it was announced that two large elliptical lobe structures of energetic plasma, termed "bubbles", which emit gamma- and X-rays, were detected astride the Milky Way galaxy's core. These so-called "Fermi bubbles" extend up to about 25,000 light years above and below the galactic center. The galaxy's diffuse gamma-ray fog hampered prior observations, but the discovery team led by D. Finkbeiner, building on research by G. Dobler, worked around this problem. The 2014 Bruno Rossi Prize went to Tracy Slatyer, Douglas Finkbeiner, and Meng Su "for their discovery, in gamma rays, of the large unanticipated Galactic structure called the Fermi bubbles".

The origin of the bubbles is being researched. The bubbles are connected and seemingly coupled, via energy transport, to the galactic core by columnar structures of energetic plasma dubbed "chimneys". They were seen in visible light and optical measurements were made for the first time in 2020.

Equality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Equality_...