Search This Blog

Monday, November 29, 2021

LASIK

From Wikipedia, the free encyclopedia

LASIK
US Navy 070501-N-5319A-007 Capt. Joseph Pasternak, an ophthalmology surgeon at National Naval Medical Center Bethesda, lines up the laser on Marine Corps Lt. Col. Lawrence Ryder's eye before beginning LASIK IntraLase surgery.jpg
SpecialtyOphthalmology, optometry
ICD-9-CM11.71
MeSHD020731
MedlinePlus007018

LASIK or Lasik (laser-assisted in situ keratomileusis), commonly referred to as laser eye surgery or laser vision correction, is a type of refractive surgery for the correction of myopia, hyperopia, and astigmatism. LASIK surgery is performed by an ophthalmologist who uses a laser or microkeratome to reshape the eye's cornea in order to improve visual acuity. For most people, LASIK provides a long-lasting alternative to eyeglasses or contact lenses.

LASIK is most similar to another surgical corrective procedure, photorefractive keratectomy (PRK), and LASEK. All represent advances over radial keratotomy in the surgical treatment of refractive errors of vision. For patients with moderate to high myopia or thin corneas which cannot be treated with LASIK and PRK, the phakic intraocular lens is an alternative. As of 2018, roughly 9.5 million Americans have had LASIK and, globally, between 1991 and 2016, more than 40 million procedures were performed. However, the procedure seems to be a declining option for many in recent years.

Effectiveness

In 2006, the British National Health Service's National Institute for Health and Clinical Excellence (NICE) considered evidence of the effectiveness and the potential risks of the laser surgery stating "current evidence suggests that photorefractive (laser) surgery for the correction of refractive errors is safe and effective for use in appropriately selected patients. Clinicians undertaking photorefractive (laser) surgery for the correction of refractive errors should ensure that patients understand the benefits and potential risks of the procedure. Risks include failure to achieve the expected improvement in unaided vision, development of new visual disturbances, corneal infection and flap complications. These risks should be weighed against those of wearing spectacles or contact lenses." The FDA reports "The safety and effectiveness of refractive procedures has not been determined in patients with some diseases."

Satisfaction

Surveys of LASIK surgery find rates of patient satisfaction between 92 and 98 percent. In March 2008, the American Society of Cataract and Refractive Surgery published a patient satisfaction meta-analysis of over 3,000 peer-reviewed articles from international clinical journals. Data from a systematic literature review conducted from 1988 to 2008, consisting of 309 peer-reviewed articles about "properly conducted, well-designed, randomized clinical trials" found a 95.4 percent patient satisfaction rate among LASIK patients.

A 2017 JAMA study claims that overall, preoperative symptoms decreased significantly, and visual acuity excelled. A meta-analysis discovered that 97% of patients achieved uncorrected visual acuity (UCVA) of 20/40, while 62% achieved 20/20. The increase in visual acuity allows individuals to enter occupations that were previously not an option due to their vision.

Dissatisfaction

Some people with poor outcomes from LASIK surgical procedures report a significantly reduced quality of life because of vision problems or physical pain associated with the surgery. A small percentage of patients may need to have another surgery because their condition is over- or under-corrected. Some patients need to wear contact lenses or glasses even after treatment.

The most common reason for dissatisfaction in LASIK patients is chronic severe dry eye. Independent research indicates 95% of patients experience dry eye in the initial post-operative period. This number has been reported to up to 60% after one month. Symptoms begin to improve in the vast majority of patients in the 6 to 12 months following the surgery. However, 30% of post-LASIK referrals to tertiary ophthalmology care centers have been shown to be due to chronic dry eye.

Morris Waxler, a former FDA official who was involved in the approval of LASIK, has subsequently criticized its widespread use. In 2010, Waxler made media appearances and claimed that the procedure had a failure rate greater than 50%. The FDA responded that Waxler's information was "filled with false statements, incorrect citations" and "mischaracterization of results".

A 2016 JAMA study indicates that the prevalence of complications from LASIK are higher than indicated, with the study indicating many patients experience glare, halos or other visual symptoms. Forty-three percent of participants in a JAMA study (published in 2017) reported new visual symptoms they had not experienced before.

Presbyopia

A type of LASIK, known as presbyLasik, may be used in presbyopia. Results are, however, more variable and some people have a decrease in visual acuity.

Risks

Higher-order aberrations

Higher-order aberrations are visual problems that require special testing for diagnosis and are not corrected with normal spectacles (eyeglasses). These aberrations include 'starbursts', 'ghosting', 'halos' and others. Some patients describe these symptoms post-operatively and associate them with the LASIK technique including the formation of the flap and the tissue ablation.

There is a correlation between pupil size and aberrations. This correlation may be the result of irregularity in the corneal tissue between the untouched part of the cornea and the reshaped part. Daytime post-LASIK vision is optimal, since the pupil size is smaller than the LASIK flap.

Others propose that higher-order aberrations are present preoperatively. They can be measured in micrometers (µm) whereas the smallest laser-beam size approved by the FDA is about 1000 times larger, at 0.65 mm. In situ keratomileusis effected at a later age increases the incidence of corneal higher-order wavefront aberrations. These factors demonstrate the importance of careful patient selection for LASIK treatment.

A subconjunctival hemorrhage is a common and minor post-LASIK complication.

Dry eyes

95% of patients report dry-eye symptoms after LASIK. Although it is usually temporary, it can develop into chronic and severe dry eye syndrome. Quality of life can be severely affected by dry-eye syndrome.

Underlying conditions with dry eye such as Sjögren's syndrome are considered contraindications to Lasik.

Treatments include artificial tears, prescription tears, and punctal occlusion. Punctal occlusion is accomplished by placing a collagen or silicone plug in the tear duct, which normally drains fluid from the eye. Some patients complain of ongoing dry-eye symptoms despite such treatments and dry-eye symptoms may be permanent.

Halos

Some post-LASIK patients see halos and starbursts around bright lights at night. At night, the pupil may dilate to be larger than the flap leading to the edge of the flap or stromal changes causing visual distortion of light that does not occur during the day when the pupil is smaller. The eyes can be examined for large pupils pre-operatively and the risk of this symptom assessed.

Complications due to LASIK have been classified as those that occur due to preoperative, intraoperative, early postoperative, or late postoperative sources: According to the UK National Health Service complications occur in fewer than 5% of cases.

Other complications

  • Flap complications – The incidence of flap complications is about 0.244%. Flap complications (such as displaced flaps or folds in the flaps that necessitate repositioning, diffuse lamellar keratitis, and epithelial ingrowth) are common in lamellar corneal surgeries but rarely lead to permanent loss of visual acuity. The incidence of these microkeratome-related complications decreases with increased physician experience.
  • Slipped flap – is a corneal flap that detaches from the rest of the cornea. The chances of this are greatest immediately after surgery, so patients typically are advised to go home and sleep to let the flap adhere and heal. Patients are usually given sleep goggles or eye shields to wear for several nights to prevent them from dislodging the flap in their sleep. A short operation time may decrease the chance of this complication, as there is less time for the flap to dry.
  • Flap interface particles – are a finding whose clinical significance is undetermined. Particles of various sizes and reflectivity are clinically visible in about 38.7% of eyes examined via slit lamp biomicroscopy and in 100% of eyes examined by confocal microscopy.
  • Diffuse lamellar keratitis  – an inflammatory process that involves an accumulation of white blood cells at the interface between the LASIK corneal flap and the underlying stroma. It is known colloquially as "sands of Sahara syndrome" because on slit lamp exam, the inflammatory infiltrate appears similar to waves of sand. The USAeyes organisation reports an incidence of 2.3% after LASIK. It is most commonly treated with steroid eye drops. Sometimes it is necessary for the eye surgeon to lift the flap and manually remove the accumulated cells. DLK has not been reported with photorefractive keratectomy due to the absence of flap creation.
  • Infection – the incidence of infection responsive to treatment has been estimated at 0.04%.
  • Post-LASIK corneal ectasia – a condition where the cornea starts to bulge forwards at a variable time after LASIK, causing irregular astigmatism. the condition is similar to keratoconus.
  • Subconjunctival hemorrhage – A report shows the incidence of subconjunctival hemorrhage has been estimated at 10.5%.
  • Corneal scarring – or permanent problems with cornea's shape making it impossible to wear contact lenses.
  • Epithelial ingrowth – estimated at 0.01%.
  • Traumatic flap dislocations – Cases of late traumatic flap dislocations have been reported up to thirteen years after LASIK.
  • Retinal detachment: estimated at 0.36 percent.
  • Choroidal neovascularization: estimated at 0.33 percent.
  • Uveitis: estimated at 0.18 percent.
  • For climbers – Although the cornea usually is thinner after LASIK, because of the removal of part of the stroma, refractive surgeons strive to maintain the maximum thickness to avoid structurally weakening the cornea. Decreased atmospheric pressure at higher altitudes has not been demonstrated as extremely dangerous to the eyes of LASIK patients. However, some mountain climbers have experienced a myopic shift at extreme altitudes.
  • Late postoperative complications – A large body of evidence on the chances of long-term complications is not yet established and may be changing due to advances in operator experience, instruments and techniques.
  • Potential best vision loss may occur a year after the surgery regardless of the use of eyewear.
  • Eye floaters – ocular mechanical stress created by LASIK have the potential to damage the vitreous, retina, and macula causing floaters as a result.
  • Ocular neuropathic pain (corneal neuralgia); rare

FDA's position

In October 2009, the FDA, the National Eye Institute (NEI), and the Department of Defense (DoD) launched the LASIK Quality of Life Collaboration Project (LQOLCP) to help better understand the potential risk of severe problems that can result from LASIK in response to widespread reports of problems experienced by patients after LASIK laser eye surgery. This project examined patient-reported outcomes with LASIK (PROWL). The project consisted of three phases: pilot phase, phase I, phase II (PROWL-1) and phase III (PROWL-2). The last two phases were completed in 2014.

The results of the LASIK Quality of Life Study were published in October 2014.

Based on our initial analyses of our studies:
  • Up to 46 percent of participants, who had no visual symptoms before surgery, reported at least one visual symptom at three months after surgery.
  • Participants who developed new visual symptoms after surgery, most often developed halos. Up to 40 percent of participants with no halos before LASIK had halos three months following surgery.
  • Up to 28 percent of participants with no symptoms of dry eyes before LASIK, reported dry eye symptoms at three months after their surgery.
  • Less than 1 percent of study participants experienced "a lot of" difficulty with or inability to do usual activities without corrective lenses because of their visual symptoms (halos, glare, et al.) after LASIK surgery.
  • Participants who were not satisfied with the LASIK surgery reported all types of visual symptoms the questionnaire measured (double vision/ghosting, starbursts, glare, and halos).

The FDA's director of the Division of Ophthalmic Devices, said about the LASIK study "Given the large number of patients undergoing LASIK annually, dissatisfaction and disabling symptoms may occur in a significant number of patients". Also in 2014, FDA published an article highlighting the risks and a list of factors and conditions individuals should consider when choosing a doctor for their refractive surgery.

Contraindications

Not everyone is eligible to receive LASIK. Severe keratoconus or thin corneas may disqualify patients from LASIK, though other procedures may be viable options. Those with Fuchs' corneal endothelial dystrophy, corneal epithelial basement membrane dystrophy, retinal tears, autoimmune diseases, severe dry eyes, and significant blepharitis should be treated before consideration for LASIK. Women who are pregnant or nursing are generally not eligible to undergo LASIK.

Large Pupils: These can cause symptoms such as glare, halos, starbursts, and ghost images (double vision) after surgery. Because the laser can only work a section of the eye, the outer ring of the eye is left uncorrected. At night or when dark, a patient's eyes dilate and thus the uncorrected outer section of the eye and the inner corrected section, create the problems.

Process

The planning and analysis of corneal reshaping techniques such as LASIK have been standardized by the American National Standards Institute, an approach based on the Alpins method of astigmatism analysis. The FDA website on LASIK states,

"Before undergoing a refractive procedure, you should carefully weigh the risks and benefits based on your own personal value system, and try to avoid being influenced by friends that have had the procedure or doctors encouraging you to do so."

The procedure involves creating a thin flap on the eye, folding it to enable remodeling of the tissue beneath with a laser and repositioning the flap.

Preoperative procedures

Contact lenses

Patients wearing soft contact lenses are instructed to stop wearing them 5 to 21 days before surgery. One industry body recommends that patients wearing hard contact lenses should stop wearing them for a minimum of six weeks plus another six weeks for every three years the hard contacts have been worn. The cornea is avascular because it must be transparent to function normally. Its cells absorb oxygen from the tear film. Thus, low-oxygen-permeable contact lenses reduce the cornea's oxygen absorption, sometimes resulting in corneal neovascularization—the growth of blood vessels into the cornea. This causes a slight lengthening of inflammation duration and healing time and some pain during surgery, because of greater bleeding. Although some contact lenses (notably modern RGP and soft silicone hydrogel lenses) are made of materials with greater oxygen permeability that help reduce the risk of corneal neovascularization, patients considering LASIK are warned to avoid over-wearing their contact lenses.

Pre-operative examination and education

In the United States, the FDA has approved LASIK for age 18 or 22 and over because the vision has to stabilize. More importantly the patient's eye prescription should be stable for at least one year prior to surgery. The patient may be examined with pupillary dilation and education given prior to the procedure. Before the surgery, the patient's corneas are examined with a pachymeter to determine their thickness, and with a topographer, or corneal topography machine, to measure their surface contour. Using low-power lasers, a topographer creates a topographic map of the cornea. The procedure is contraindicated if the topographer finds difficulties such as keratoconus The preparatory process also detects astigmatism and other irregularities in the shape of the cornea. Using this information, the surgeon calculates the amount and the location of corneal tissue to be removed. The patient is prescribed and self-administers an antibiotic beforehand to minimize the risk of infection after the procedure and is sometimes offered a short acting oral sedative medication as a pre-medication. Prior to the procedure, anaesthetic eye drops are instilled. Factors that may rule out LASIK for some patients include large pupils, thin corneas and extremely dry eyes.

Operative procedure

Flap creation

Flap creation with femtosecond laser
 
Flaporhexis as an alternative method to lift a femtosecond laser flap

A soft corneal suction ring is applied to the eye, holding the eye in place. This step in the procedure can sometimes cause small blood vessels to burst, resulting in bleeding or subconjunctival hemorrhage into the white (sclera) of the eye, a harmless side effect that resolves within several weeks. Increased suction causes a transient dimming of vision in the treated eye. Once the eye is immobilized, a flap is created by cutting through the corneal epithelium and Bowman's layer. This process is achieved with a mechanical microkeratome using a metal blade, or a femtosecond laser that creates a series of tiny closely arranged bubbles within the cornea. A hinge is left at one end of this flap. The flap is folded back, revealing the stroma, the middle section of the cornea. The process of lifting and folding back the flap can sometimes be uncomfortable.

Laser remodeling

The second step of the procedure uses an excimer laser (193 nm) to remodel the corneal stroma. The laser vaporizes the tissue in a finely controlled manner without damaging the adjacent stroma. No burning with heat or actual cutting is required to ablate the tissue. The layers of tissue removed are tens of micrometers thick.

Performing the laser ablation in the deeper corneal stroma provides for more rapid visual recovery and less pain than the earlier technique, photorefractive keratectomy (PRK).

During the second step, the patient's vision becomes blurry, once the flap is lifted. They will be able to see only white light surrounding the orange light of the laser, which can lead to mild disorientation. The excimer laser uses an eye tracking system that follows the patient's eye position up to 4,000 times per second, redirecting laser pulses for precise placement within the treatment zone. Typical pulses are around 1 millijoule (mJ) of pulse energy in 10 to 20 nanoseconds.

Repositioning of the flap

After the laser has reshaped the stromal layer, the LASIK flap is carefully repositioned over the treatment area by the surgeon and checked for the presence of air bubbles, debris, and proper fit on the eye. The flap remains in position by natural adhesion until healing is completed.

Postoperative care

Patients are usually given a course of antibiotic and anti-inflammatory eye drops. These are continued in the weeks following surgery. Patients are told to rest and are given dark eyeglasses to protect their eyes from bright lights and occasionally protective goggles to prevent rubbing of the eyes when asleep and to reduce dry eyes. They also are required to moisturize the eyes with preservative-free tears and follow directions for prescription drops. Occasionally after the procedure a bandage contact lens is placed to aid the healing, and typically removed after 3–4 days. Patients should be adequately informed by their surgeons of the importance of proper post-operative care to minimize the risk of complications.

Wavefront-guided

Wavefront-guided LASIK is a variation of LASIK surgery in which, rather than applying a simple correction of only long/short-sightedness and astigmatism (only lower order aberrations as in traditional LASIK), an ophthalmologist applies a spatially varying correction, guiding the computer-controlled excimer laser with measurements from a wavefront sensor. The goal is to achieve a more optically perfect eye, though the final result still depends on the physician's success at predicting changes that occur during healing and other factors that may have to do with the regularity/irregularity of the cornea and the axis of any residual astigmatism. Another important factor is whether the excimer laser can correctly register eye position in 3 dimensions, and to track the eye in all the possible directions of eye movement. If a wavefront guided treatment is performed with less than perfect registration and tracking, pre-existing aberrations can be worsened. In older patients, scattering from microscopic particles (cataract or incipient cataract) may play a role that outweighs any benefit from wavefront correction.

When treating a patient with preexisting astigmatism, most wavefront-guided LASIK lasers are designed to treat regular astigmatism as determined externally by corneal topography. In patients who have an element of internally induced astigmatism, therefore, the wavefront-guided astigmatism correction may leave regular astigmatism behind (a cross-cylinder effect). If the patient has preexisting irregular astigmatism, wavefront-guided approaches may leave both regular and irregular astigmatism behind. This can result in less-than-optimal visual acuity compared with a wavefront-guided approach combined with vector planning, as shown in a 2008 study. Thus, vector-planning offers a better alignment between corneal astigmatism and laser treatment, and leaves less regular astigmatism behind on the cornea, which is advantageous whether irregular astigmatism coexists or not.

The "leftover" astigmatism after a purely surface-guided laser correction can be calculated beforehand, and is called ocular residual astigmatism (ORA). ORA is a calculation of astigmatism due to the noncorneal surface (internal) optics. The purely refraction-based approach represented by wavefront analysis actually conflicts with corneal surgical experience developed over many years.

The pathway to "super vision" thus may require a more customized approach to corneal astigmatism than is usually attempted, and any remaining astigmatism ought to be regular (as opposed to irregular), which are both fundamental principles of vector planning overlooked by a purely wavefront-guided treatment plan. This was confirmed by the 2008 study mentioned above, which found a greater reduction in corneal astigmatism and better visual outcomes under mesopic conditions using wavefront technology combined with vector analysis than using wavefront technology alone, and also found equivalent higher-order aberrations (see below). Vector planning also proved advantageous in patients with keratoconus.

No good data can be found that compare the percentage of LASIK procedures that employ wavefront guidance versus the percentage that do not, nor the percentage of refractive surgeons who have a preference one way or the other. Wavefront technology continues to be positioned as an "advance" in LASIK with putative advantages; however, it is clear that not all LASIK procedures are performed with wavefront guidance.

Still, surgeons claim patients are generally more satisfied with this technique than with previous methods, particularly regarding lowered incidence of "halos," the visual artifact caused by spherical aberration induced in the eye by earlier methods. A meta-analysis of eight trials showed a lower incidence of these higher order aberrations in patients who had wavefront-guided LASIK compared to non-wavefront-guided LASIK. Based on their experience, the United States Air Force has described WFG-Lasik as giving "superior vision results".

Topography-assisted

Topography-assisted LASIK is intended to be an advancement in precision and reduce night-vision side effects. The first topography-assisted device received FDA approval September 13, 2013.

History

Barraquer's early work

In the 1950s, the microkeratome and keratomileusis technique were developed in Bogotá, Colombia, by the Spanish ophthalmologist Jose Barraquer. In his clinic, he would cut thin (one hundredth of a mm thick) flaps in the cornea to alter its shape. Barraquer also investigated how much of the cornea had to be left unaltered in order to provide stable long-term results. This work was followed by that of the Russian scientist, Svyatoslav Fyodorov, who developed radial keratotomy (RK) in the 1970s and designed the first posterior chamber implantable contact lenses (phakic intraocular lens) in the 1980s.

Laser refractive surgery

In 1980, Rangaswamy Srinivasan, at the IBM Research laboratory, discovered that an ultraviolet excimer laser could etch living tissue, with precision and with no thermal damage to the surrounding area. He named the phenomenon "ablative photo-decomposition" (APD). Five years later, in 1985, Steven Trokel at the Edward S. Harkness Eye Institute, Columbia University in New York City, published his work using the excimer laser in radial keratotomy. He wrote,

"The central corneal flattening obtained by radial diamond knife incisions has been duplicated by radial laser incisions in 18 enucleated human eyes. The incisions, made by 193 nm far-ultraviolet light radiation emitted by the excimer laser, produced corneal flattening ranging from 0.12 to 5.35 diopters. Both the depth of the corneal incisions and the degree of central corneal flattening correlated with the laser energy applied. Histopathology revealed the remarkably smooth edges of the laser incisions."

Together with his colleagues, Charles Munnerlyn and Terry Clapham, Trokel founded VISX USA inc. Marguerite B. MacDonald MD performed the first human VISX refractive laser eye surgery in 1989.

Patent

A number of patents have been issued for several techniques related to LASIK. Rangaswamy Srinivasan and James Wynne filed a patent application on the ultraviolet excimer laser, in 1986, issued in 1988. In 1989, Gholam A. Peyman was granted a US patent for using an excimer laser to modify corneal curvature. It was,

"A method and apparatus for modifying the curvature of a live cornea via use of an excimer laser. The live cornea has a thin layer removed therefrom, leaving an exposed internal surface thereon. Then, either the surface or thin layer is exposed to the laser beam along a predetermined pattern to ablate desired portions. The thin layer is then replaced onto the surface. Ablating a central area of the surface or thin layer makes the cornea less curved, while ablating an annular area spaced from the center of the surface or layer makes the cornea more curved. The desired predetermined pattern is formed by use of a variable diaphragm, a rotating orifice of variable size, a movable mirror or a movable fiber optic cable through which the laser beam is directed towards the exposed internal surface or removed thin layer."

The patents related to so-called broad-beam LASIK and PRK technologies were granted to US companies including Visx and Summit during 1990–1995 based on the fundamental US patent issued to IBM (1988) which claimed the use of UV laser for the ablation of organic tissues.

Implementation in the U.S.

The LASIK technique was implemented in the U.S. after its successful application elsewhere. The Food and Drug Administration (FDA) commenced a trial of the excimer laser in 1989. The first enterprise to receive FDA approval to use an excimer laser for photo-refractive keratectomy was Summit Technology (founder and CEO, Dr. David Muller). In 1992, under the direction of the FDA, Greek ophthalmologist Ioannis Pallikaris introduced LASIK to ten VISX centres. In 1998, the "Kremer Excimer Laser", serial number KEA 940202, received FDA approval for its singular use for performing LASIK. Subsequently, Summit Technology was the first company to receive FDA approval to mass manufacture and distribute excimer lasers. VISX and other companies followed.

The excimer laser that was used for the first LASIK surgeries by I. Pallikaris

Pallikaris suggested a flap of cornea could be raised by microkeratome prior to the performing of PRK with the excimer laser. The addition of a flap to PRK became known as LASIK.

Recent years

The procedure seems to be a declining option for many in the United States, dropping more than 50 percent, from about 1.5 million surgeries in 2007 to 604,000 in 2015, according to the eye-care data source Market Scope. A study in the journal Cornea determined the frequency with which LASIK was searched on Google from 2007 to 2011. Within this time frame, LASIK searches declined by 40% in the United States. Countries such as the U.K. and India also showed a decline, 22% and 24% respectively. Canada, however, showed an increase in LASIK searches by 8%. This decrease in interest can be attributed to several factors: the emergence of refractive cataract surgery, the economic recession in 2008, and unfavorable media coverage from the FDA's 2008 press release on LASIK.

Further research

Since 1991, there have been further developments such as faster lasers; larger spot areas; bladeless flap incisions; intraoperative corneal pachymetry; and "wavefront-optimized" and "wavefront-guided" techniques which were introduced by the University of Michigan's Center for Ultrafast Optical Science. The goal of replacing standard LASIK in refractive surgery is to avoid permanently weakening the cornea with incisions and to deliver less energy to the surrounding tissues. More recently, techniques like Epi-Bowman Keratectomy have been developed that avoid touching the epithelial basement membrane or Bowman's layer.

Experimental techniques

  • "plain" LASIK: LASEK, Epi-LASIK,
  • Wavefront-guided PRK,
  • advanced intraocular lenses.
  • Femtosecond laser intrastromal vision correction: using all-femtosecond correction, for example, Femtosecond Lenticule EXtraction, FLIVC, or IntraCOR),
  • Keraflex: a thermobiochemical solution which has received the CE Mark for refractive correction. and is in European clinical trials for the correction of myopia and keratoconus.
  • Technolas FEMTEC laser: for incisionless IntraCOR ablation for presbyopia, with trials ongoing for myopia and other conditions.
  • LASIK with the IntraLase femtosecond laser: early trials comparing to the «LASIK with microkeratomes for the correction of myopia suggest no significant differences in safety or efficacy. However, the femtosecond laser has a potential advantage in predictability, although this finding was not significant».

Comparison to photorefractive keratectomy

A systematic review that compared PRK and LASIK concluded that LASIK has shorter recovery time and less pain. The two techniques after a period of one year have similar results.

A 2017 systematic review found uncertainty in visual acuity, but found that in one study, those receiving PRK were less likely to achieve a refractive error, and were less likely to have an over-correction than compared to LASIK.

Laser surgery

From Wikipedia, the free encyclopedia
Laser surgery
MeSHD053685

Laser surgery is a type of surgery that uses a laser (in contrast to using a scalpel) to cut tissue.

Examples include the use of a laser scalpel in otherwise conventional surgery, and soft-tissue laser surgery, in which the laser beam vaporizes soft tissue with high water content.

Laser surgery is commonly used on the eye. Techniques used include LASIK, which is used to correct near and far-sightedness in vision, and photorefractive keratectomy, a procedure which permanently reshapes the cornea using an excimer laser to remove a small amount of the human tissue.

Types of surgical lasers include carbon dioxide, argon, Nd:YAG laser, and potassium titanyl phosphate, among others.

Effects

  1. Photochemical effect: clinically referred to as photodynamic therapy. Photosensitizer (photophrin II) is administered which is taken up by the tumor tissue and later irradiated by laser light resulting in highly toxic substances with resultant necrosis of the tumor. Photodynamic therapy is used in palliation of oesophageal and bronchial carcinoma and ablation of mucosal cancers of Gastrointestinal tract and urinary bladder.
  2. Photoablative effect: Used in eye surgeries like band keratoplast, and endartectomy of peripheral blood vessels.
  3. Photothermal effect: this property is used for endoscopic control of bleeding e.g. Bleeding peptic ulcers, oesophageal varices
  4. Photomechanical effect: used in intraluminal lithotripsy

Equipment

A 40 watt CO2 laser used for soft-tissue laser surgery

Surgical laser systems, sometimes called "laser scalpels", are differentiated not only by the wavelength, but also by the light delivery system: flexible fiber or articulated arm, as well as by other factors.

CO2 lasers were the dominant soft-tissue surgical lasers as of 2010.

Applications

Soft tissue

Soft-tissue laser surgery is used in a variety of applications in humans (general surgery, neurosurgery, ENT, dentistry, orthodontics, and oral and maxillofacial surgery) as well as veterinary surgical fields. The primary uses of lasers in soft tissue surgery are to cut, ablate, vaporize, and coagulate. There are several different laser wavelengths used in soft tissue surgery. Different laser wavelengths and device settings (such as pulse duration and power) produce different effects on the tissue. Some commonly used lasers types in soft tissue surgery include erbium, diode, and CO2. Erbium lasers are excellent cutters, but provide minimal hemostasis. Diode lasers (hot tip) provide excellent hemostasis, but are slow cutters. CO2 lasers are both efficient at cutting and coagulating.

Dermatology and plastic surgery

A range of lasers such as erbium, dye, Q switch lasers, and CO2 are used to treat various skin conditions including scars, vascular and pigmented lesions, and for photorejuvenation. The laser surgery for dermatology often bypasses the skin surface. The principle of laser surgery for dermatologic problems is based on SPTL (selective photothermolysis). The laser beam penetrates the skin until it encounters chromophore which absorbs the laser beam. After absorption of the laser beam, heat is generated to induce coagulation, necrosis of the targeted tissue, this results in the removal of unwanted tissue by laser surgery.

Laser resurfacing is a technique in which covalent bonds of a material are dissolved by a laser, a technique invented by aesthetic plastic surgeon Thomas L. Roberts, III using CO2 lasers in the 1990s.

Lasers are also used for laser-assisted lipectomy.

Eye surgery

Various types of laser surgery are used to treat refractive error. LASIK, in which a knife is used to cut a flap in the cornea, and a laser is used to reshape the layers underneath, is used to treat refractive error. IntraLASIK is a variant in which the flap is also cut with a laser. In photorefractive keratectomy (PRK, LASEK), the cornea is reshaped without first cutting a flap. In laser thermal keratoplasty, a ring of concentric burns is made in the cornea, which causes its surface to steepen, allowing better near vision. ReLEx SMILE is the latest advancement in laser vision correction technology. In SMILE surgery, ZEISS VisuMax ® femtosecond laser is used to make a small incision and to create a pre-calculated mini lens tissue (or lenticule) inside the cornea.

Lasers are also used to treat non-refractive conditions, such as phototherapeutic keratectomy (PTK) in which opacities and surface irregularities are removed from the cornea and laser coagulation in which a laser is used to cauterize blood vessels in the eye, to treat various conditions. Lasers can be used to repair tears in the retina.

Endovascular surgery

Laser endarterectomy is a technique in which an entire atheromatous plaque in the artery is excised. Other applications include laser assisted angioplasties and laser-assisted vascular anastomosis.

Foot and ankle surgery

Lasers are used to treat several disorders in foot and ankle surgery. They are used to remove benign and malignant tumors, treat bunions, debride ulcers and burns, excise epidermal nevi, blue rubber bleb nevi, and keloids, and the removal of hypertrophic scars and tattoos.

A carbon dioxide laser (CO2) is used in surgery to treat onychocryptosis (ingrown nails), onychauxis (club nails), onychogryposis (rams horn nail), and onychomycosis (fungus nail).

Gastro-intestinal tract

  1. Peritoneum-Laser is used for adhesiolysis.
  2. Peptic ulcer disease and oesophageal varices - Laser photoablation is done.
  3. Coagulation of vascular malformations of stomach, duodenum, and colon.
  4. Lasers can be effectively used to treat early gastric cancers provided they are less than 4 cm and without lymph node involvement. Lasers are also used in treating oral submucous fibrosis.
  5. Palliative laser therapy is given in advanced oesophageal cancers with obstruction of lumen. Recanalisation of the lumen is done which allows the patient to resume a soft diet and maintain hydration.
  6. Ablative laser therapy is used in advanced colorectal cancers to relieve obstruction and to control bleeding.
  7. Laser surgery used in hemorrhoidectomy, and is a relatively popular and non-invasive method of hemorrhoid removal.
  8. Laser-assisted liver resections have been done using carbon dioxide and Nd:YAG lasers.
  9. The ablation of liver tumors can be achieved by selective photovaporization of the tumor.
  10. Endoscopic laser lithotripsy is a safer modality compared to electrohydraulic lithotripsy.

Oral and dental surgery

The CO2 laser is used in oral and dental surgery for virtually all soft-tissue procedures, such as gingivectomies, vestibuloplasties, frenectomies, and operculectomies. The CO2 10,600 nm wavelength is safe around implants as it is reflected by titanium, and thus has been gaining popularity in the field of periodontology. The laser may also be effective in treating peri-implantitis.

Spine surgery

Laser spine surgery first began seeing clinical use in the 1980s and was primarily used within discectomy to treat lumbar disc disease under the notion that heating a bulging disc vaporized enough tissue to relieve pressure on the nerves and help alleviate pain.

Since that time, laser spine surgery has become one of the most marketed forms of minimally invasive spine surgery, despite the fact that it has never been studied in a controlled clinical trial to determine its effectiveness apart from disc decompression. Evidence-based data surrounding the use of lasers in spine surgery is limited and its safety and efficacy were poorly understood as of 2017.

Thoracic surgery

In thoracic surgery, surgical laser applications are most often used to remove pulmonary metastases and tumors of different primary localizations. Other areas of application are surgical sectioning of the parenchyma, anatomic segmental resections, removal of tumors from the thoracic wall and abrasion of the pleura parietalis. Since the introduction of surgical lasers, the amount of potentially surgically resectable pulmonary nodules has significantly increased. Compared to laser surgery, other conventional surgical methods such as segmental or wedge resections with surgical stapling will normally lead to a bigger loss of lung tissue, especially in patients with multiple pulmonary nodules methods.

Other advantages of laser surgery compared to conventional methods are that it leads to an improved postoperative lung function and that it gives the additional possibility to histologically analyze the removed material which would otherwise be destroyed through radiation or heat.

Other surgery

The CO2 laser is also used in gynecology, genitourinary, general surgery, otorhinolaryngology, orthopedic, and neurosurgery.

Hard tissues

Lasers are used to cut or ablate bones and teeth in dentistry.

 

Medical physics

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Medical_physics

Medical physics is a profession which deals with the application of the concepts and methods of physics to the prevention, diagnosis and treatment of human diseases with a specific goal of improving human health and well-being. Since 2008, medical physics has been included as a health profession according to International Standard Classification of Occupation of the International Labour Organization.

Although medical physics may sometimes also be referred to as biomedical physics, medical biophysics, applied physics in medicine, physics applications in medical science, radiological physics or hospital radio-physics, however a "medical physicist" is specifically a health professional with specialist education and training in the concepts and techniques of applying physics in medicine and competent to practice independently in one or more of the subfields of medical physics. Traditionally, medical physicists are found in the following healthcare specialties: radiation oncology (also known as radiotherapy or radiation therapy), diagnostic and interventional radiology (also known as medical imaging), nuclear medicine, and radiation protection. Medical physics of radiation therapy can involve work such as dosimetry, linac quality assurance, and brachytherapy. Medical physics of diagnostic and interventional radiology involves medical imaging techniques such as magnetic resonance imaging, ultrasound, computed tomography and x-ray. Nuclear medicine will include positron emission tomography and radionuclide therapy. However one can find Medical Physicists in many other areas such as physiological monitoring, audiology, neurology, neurophysiology, cardiology and others.

Medical physics departments may be found in institutions such as universities, hospitals, and laboratories. University departments are of two types. The first type are mainly concerned with preparing students for a career as a hospital Medical Physicist and research focuses on improving the practice of the profession. A second type (increasingly called 'biomedical physics') has a much wider scope and may include research in any applications of physics to medicine from the study of biomolecular structure to microscopy and nanomedicine.

Mission statement of medical physicists

In hospital medical physics departments, the mission statement for medical physicists as adopted by the European Federation of Organisations for Medical Physics (EFOMP) is the following:

"Medical Physicists will contribute to maintaining and improving the quality, safety and cost-effectiveness of healthcare services through patient-oriented activities requiring expert action, involvement or advice regarding the specification, selection, acceptance testing, commissioning, quality assurance/control and optimised clinical use of medical devices and regarding patient risks and protection from associated physical agents (e.g., x-rays, electromagnetic fields, laser light, radionuclides) including the prevention of unintended or accidental exposures; all activities will be based on current best evidence or own scientific research when the available evidence is not sufficient. The scope includes risks to volunteers in biomedical research, carers and comforters. The scope often includes risks to workers and public particularly when these impact patient risk"

The term "physical agents" refers to ionising and non-ionising electromagnetic radiations, static electric and magnetic fields, ultrasound, laser light and any other Physical Agent associated with medical e.g., x-rays in computerised tomography (CT), gamma rays/radionuclides in nuclear medicine, magnetic fields and radio-frequencies in magnetic resonance imaging (MRI), ultrasound in ultrasound imaging and Doppler measurements.

This mission includes the following 11 key activities:

  1. Scientific problem solving service: Comprehensive problem solving service involving recognition of less than optimal performance or optimised use of medical devices, identification and elimination of possible causes or misuse, and confirmation that proposed solutions have restored device performance and use to acceptable status. All activities are to be based on current best scientific evidence or own research when the available evidence is not sufficient.
  2. Dosimetry measurements: Measurement of doses suffered by patients, volunteers in biomedical research, carers, comforters and persons subjected to non-medical imaging exposures (e.g., for legal or employment purposes); selection, calibration and maintenance of dosimetry related instrumentation; independent checking of dose related quantities provided by dose reporting devices (including software devices); measurement of dose related quantities required as inputs to dose reporting or estimating devices (including software). Measurements to be based on current recommended techniques and protocols. Includes dosimetry of all physical agents.
  3. Patient safety/risk management (including volunteers in biomedical research, carers, comforters and persons subjected to non-medical imaging exposures. Surveillance of medical devices and evaluation of clinical protocols to ensure the ongoing protection of patients, volunteers in biomedical research, carers, comforters and persons subjected to non-medical imaging exposures from the deleterious effects of physical agents in accordance with the latest published evidence or own research when the available evidence is not sufficient. Includes the development of risk assessment protocols.
  4. Occupational and public safety/risk management (when there is an impact on medical exposure or own safety). Surveillance of medical devices and evaluation of clinical protocols with respect to protection of workers and public when impacting the exposure of patients, volunteers in biomedical research, carers, comforters and persons subjected to non-medical imaging exposures or responsibility with respect to own safety. Includes the development of risk assessment protocols in conjunction with other experts involved in occupational / public risks.
  5. Clinical medical device management: Specification, selection, acceptance testing, commissioning and quality assurance/ control of medical devices in accordance with the latest published European or International recommendations and the management and supervision of associated programmes. Testing to be based on current recommended techniques and protocols.
  6. Clinical involvement: Carrying out, participating in and supervising everyday radiation protection and quality control procedures to ensure ongoing effective and optimised use of medical radiological devices and including patient specific optimization.
  7. Development of service quality and cost-effectiveness: Leading the introduction of new medical radiological devices into clinical service, the introduction of new medical physics services and participating in the introduction/development of clinical protocols/techniques whilst giving due attention to economic issues.
  8. Expert consultancy: Provision of expert advice to outside clients (e.g., clinics with no in-house medical physics expertise).
  9. Education of healthcare professionals (including medical physics trainees: Contributing to quality healthcare professional education through knowledge transfer activities concerning the technical-scientific knowledge, skills and competences supporting the clinically effective, safe, evidence-based and economical use of medical radiological devices. Participation in the education of medical physics students and organisation of medical physics residency programmes.
  10. Health technology assessment (HTA): Taking responsibility for the physics component of health technology assessments related to medical radiological devices and /or the medical uses of radioactive substances/sources.
  11. Innovation: Developing new or modifying existing devices (including software) and protocols for the solution of hitherto unresolved clinical problems.

Medical biophysics and biomedical physics

Some education institutions house departments or programs bearing the title "medical biophysics" or "biomedical physics" or "applied physics in medicine". Generally, these fall into one of two categories: interdisciplinary departments that house biophysics, radiobiology, and medical physics under a single umbrella; and undergraduate programs that prepare students for further study in medical physics, biophysics, or medicine. Most of the scientific concepts in bionanotechnology are derived from other fields. Biochemical principles that are used to understand the material properties of biological systems are central in bionanotechnology because those same principles are to be used to create new technologies. Material properties and applications studied in bionanoscience include mechanical properties (e.g. deformation, adhesion, failure), electrical/electronic (e.g. electromechanical stimulation, capacitors, energy storage/batteries), optical (e.g. absorption, luminescence, photochemistry), thermal (e.g. thermomutability, thermal management), biological (e.g. how cells interact with nanomaterials, molecular flaws/defects, biosensing, biological mechanisms such as mechanosensation), nanoscience of disease (e.g. genetic disease, cancer, organ/tissue failure), as well as computing (e.g. DNA computing) and agriculture (target delivery of pesticides, hormones and fertilizers.

Areas of specialty

The International Organization for Medical Physics (IOMP) recognizes main areas of medical physics employment and focus.

Medical imaging physics

Para-sagittal MRI of the head in a patient with benign familial macrocephaly.

Medical imaging physics is also known as diagnostic and interventional radiology physics. Clinical (both "in-house" and "consulting") physicists typically deal with areas of testing, optimization, and quality assurance of diagnostic radiology physics areas such as radiographic X-rays, fluoroscopy, mammography, angiography, and computed tomography, as well as non-ionizing radiation modalities such as ultrasound, and MRI. They may also be engaged with radiation protection issues such as dosimetry (for staff and patients). In addition, many imaging physicists are often also involved with nuclear medicine systems, including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Sometimes, imaging physicists may be engaged in clinical areas, but for research and teaching purposes, such as quantifying intravascular ultrasound as a possible method of imaging a particular vascular object.

Radiation therapeutic physics

Radiation therapeutic physics is also known as radiotherapy physics or radiation oncologist physics. The majority of medical physicists currently working in the US, Canada, and some western countries are of this group. A radiation therapy physicist typically deals with linear accelerator (Linac) systems and kilovoltage x-ray treatment units on a daily basis, as well as other modalities such as TomoTherapy, gamma knife, cyberknife, proton therapy, and brachytherapy. The academic and research side of therapeutic physics may encompass fields such as boron neutron capture therapy, sealed source radiotherapy, terahertz radiation, high-intensity focused ultrasound (including lithotripsy), optical radiation lasers, ultraviolet etc. including photodynamic therapy, as well as nuclear medicine including unsealed source radiotherapy, and photomedicine, which is the use of light to treat and diagnose disease.

Nuclear medicine physics

Nuclear medicine is a branch of medicine that uses radiation to provide information about the functioning of a person's specific organs or to treat disease. The thyroid, bones, heart, liver and many other organs can be easily imaged, and disorders in their function revealed. In some cases radiation sources can be used to treat diseased organs, or tumours. Five Nobel laureates have been intimately involved with the use of radioactive tracers in medicine. Over 10,000 hospitals worldwide use radioisotopes in medicine, and about 90% of the procedures are for diagnosis. The most common radioisotope used in diagnosis is technetium-99m, with some 30 million procedures per year, accounting for 80% of all nuclear medicine procedures worldwide.

Health physics

Health physics is also known as radiation safety or radiation protection. Health physics is the applied physics of radiation protection for health and health care purposes. It is the science concerned with the recognition, evaluation, and control of health hazards to permit the safe use and application of ionizing radiation. Health physics professionals promote excellence in the science and practice of radiation protection and safety.

Non-ionizing Medical Radiation Physics

Some aspects of non-ionising radiation physics may be considered under radiation protection or diagnostic imaging physics. Imaging modalities include MRI, optical imaging and ultrasound. Safety considerations include these areas and lasers

Physiological measurement

Physiological measurements have also been used to monitor and measure various physiological parameters. Many physiological measurement techniques are non-invasive and can be used in conjunction with, or as an alternative to, other invasive methods. Measurement methods include electrocardiography Many of these areas may be covered by other specialities, for example medical engineering or vascular science.

Healthcare informatics and computational physics

Other closely related fields to medical physics include fields which deal with medical data, information technology and computer science for medicine.

Areas of research and academic development

ECG trace

Non-clinical physicists may or may not focus on the above areas from an academic and research point of view, but their scope of specialization may also encompass lasers and ultraviolet systems (such as photodynamic therapy), fMRI and other methods for functional imaging as well as molecular imaging, electrical impedance tomography, diffuse optical imaging, optical coherence tomography, and dual energy X-ray absorptiometry.

Legislative and advisory bodies

Entropy (information theory)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Entropy_(information_theory) In info...