Search This Blog

Friday, May 19, 2023

Water resources

From Wikipedia, the free encyclopedia
 
Global values of water resources and human water use (excluding Antarctica). Water resources 1961-90, water use around 2000. Computed by the global freshwater model WaterGAP.

Water resources are natural resources of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. 97% of the water on the Earth is salt water and only three percent is fresh water; slightly over two thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air. Natural sources of fresh water include surface water, under river flow, groundwater and frozen water. Artificial sources of fresh water can include treated wastewater (wastewater reuse) and desalinated seawater. Human uses of water resources include agricultural, industrial, household, recreational and environmental activities.

Water resources are under threat from water scarcity, water pollution, water conflict and climate change. Fresh water is a renewable resource, yet the world's supply of groundwater is steadily decreasing, with depletion occurring most prominently in Asia, South America and North America, although it is still unclear how much natural renewal balances this usage, and whether ecosystems are threatened. The framework for allocating water resources to water users (where such a framework exists) is known as water rights.

Natural sources of fresh water

Natural sources of fresh water include surface water, under river flow, groundwater and frozen water.

Surface water

Lake Chungará and Parinacota volcano in northern Chile

Surface water is water in a river, lake or fresh water wetland. Surface water is naturally replenished by precipitation and naturally lost through discharge to the oceans, evaporation, evapotranspiration and groundwater recharge. The only natural input to any surface water system is precipitation within its watershed. The total quantity of water in that system at any given time is also dependent on many other factors. These factors include storage capacity in lakes, wetlands and artificial reservoirs, the permeability of the soil beneath these storage bodies, the runoff characteristics of the land in the watershed, the timing of the precipitation and local evaporation rates. All of these factors also affect the proportions of water loss.

Humans often increase storage capacity by constructing reservoirs and decrease it by draining wetlands. Humans often increase runoff quantities and velocities by paving areas and channelizing the stream flow.

Natural surface water can be augmented by importing surface water from another watershed through a canal or pipeline.

Brazil is estimated to have the largest supply of fresh water in the world, followed by Russia and Canada.

Water from glaciers

Glacier runoff is considered to be surface water. The Himalayas, which are often called "The Roof of the World", contain some of the most extensive and rough high altitude areas on Earth as well as the greatest area of glaciers and permafrost outside of the poles. Ten of Asia's largest rivers flow from there, and more than a billion people's livelihoods depend on them. To complicate matters, temperatures there are rising more rapidly than the global average. In Nepal, the temperature has risen by 0.6 degrees Celsius over the last decade, whereas globally, the Earth has warmed approximately 0.7 degrees Celsius over the last hundred years.

Groundwater

Relative groundwater travel times in the subsurface

Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

Typically, groundwater is thought of as water flowing through shallow aquifers, but, in the technical sense, it can also contain soil moisture, permafrost (frozen soil), immobile water in very low permeability bedrock, and deep geothermal or oil formation water. Groundwater is hypothesized to provide lubrication that can possibly influence the movement of faults. It is likely that much of Earth's subsurface contains some water, which may be mixed with other fluids in some instances.

Under river flow

Throughout the course of a river, the total volume of water transported downstream will often be a combination of the visible free water flow together with a substantial contribution flowing through rocks and sediments that underlie the river and its floodplain called the hyporheic zone. For many rivers in large valleys, this unseen component of flow may greatly exceed the visible flow. The hyporheic zone often forms a dynamic interface between surface water and groundwater from aquifers, exchanging flow between rivers and aquifers that may be fully charged or depleted. This is especially significant in karst areas where pot-holes and underground rivers are common.

Artificial sources of usable water

Artificial sources of fresh water can include treated wastewater (reclaimed water), atmospheric water generators, and desalinated seawater. However, economic and environmental side effects of these technologies must also be taken into consideration.

Wastewater reuse

Water reclamation (also called wastewater reuse, water reuse or water recycling) is the process of converting municipal wastewater (sewage) or industrial wastewater into water that can be reused for a variety of purposes. Types of reuse include: urban reuse, agricultural reuse (irrigation), environmental reuse, industrial reuse, planned potable reuse, de facto wastewater reuse (unplanned potable reuse). For example, reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater (i.e., groundwater recharge). Reused water may also be directed toward fulfilling certain needs in residences (e.g. toilet flushing), businesses, and industry, and could even be treated to reach drinking water standards. The injection of reclaimed water into the water supply distribution system is known as direct potable reuse, however, drinking reclaimed water is not a typical practice. Treated municipal wastewater reuse for irrigation is a long-established practice, especially in arid countries. Reusing wastewater as part of sustainable water management allows water to remain as an alternative water source for human activities. This can reduce scarcity and alleviate pressures on groundwater and other natural water bodies.

There are several technologies used to treat wastewater for reuse. A combination of these technologies can meet strict treatment standards and make sure that the processed water is hygienically safe, meaning free from pathogens. The following are some of the typical technologies: Ozonation, ultrafiltration, aerobic treatment (membrane bioreactor), forward osmosis, reverse osmosis, advanced oxidation. Some water demanding activities do not require high grade water. In this case, wastewater can be reused with little or no treatment.

Desalinated water

Desalination is a process that takes away mineral components from saline water. More generally, desalination refers to the removal of salts and minerals from a target substance, as in soil desalination, which is an issue for agriculture. Saltwater (especially sea water) is desalinated to produce water suitable for human consumption or irrigation. The by-product of the desalination process is brine. Desalination is used on many seagoing ships and submarines. Most of the modern interest in desalination is focused on cost-effective provision of fresh water for human use. Along with recycled wastewater, it is one of the few rainfall-independent water resources.

Due to its energy consumption, desalinating sea water is generally more costly than fresh water from surface water or groundwater, water recycling and water conservation. However, these alternatives are not always available and depletion of reserves is a critical problem worldwide. Desalination processes are using either thermal methods (in the case of distillation) or membrane-based methods (e.g. in the case of reverse osmosis) energy types.

Research into other options

Air-capture over oceans

Schematic illustration of a proposed approach for capturing moisture above the ocean surface and transporting it to proximal land for improving water security
 
Map of water stress and spatial variability of water yield along the delineated near-offshore region of 200 km across the world

Researchers proposed "significantly increasing freshwater through the capture of humid air over oceans" to address present and, especially, future water scarcity/insecurity.

Atmospheric water generators on land

A potentials-assessment study proposed hypothetical portable solar-powered atmospheric water harvesting devices which are under development, along with design criteria, finding they could help a billion people to access safe drinking water, albeit such off-the-grid generation may sometimes "undermine efforts to develop permanent piped infrastructure" among other problems.

Water uses

Total renewable freshwater resources of the world, in mm/yr ( 1 mm is equivalent to 1 l of water per m²) (long-term average for the years 1961-1990). Resolution is 0.5° longitude x 0.5° latitude (equivalent to 55 km x 55 km at the equator). Computed by the global freshwater model WaterGAP.

The total quantity of water available at any given time is an important consideration. Some human water users have an intermittent need for water. For example, many farms require large quantities of water in the spring, and no water at all in the winter. To supply such a farm with water, a surface water system may require a large storage capacity to collect water throughout the year and release it in a short period of time. Other users have a continuous need for water, such as a power plant that requires water for cooling. To supply such a power plant with water, a surface water system only needs enough storage capacity to fill in when average stream flow is below the power plant's need. Nevertheless, over the long term the average rate of precipitation within a watershed is the upper bound for average consumption of natural surface water from that watershed.

Agriculture and other irrigation

It is estimated that 70% of worldwide water is used for irrigation, with 15–35% of irrigation withdrawals being unsustainable. It takes around 2,000 – 3,000 litres of water to produce enough food to satisfy one person's daily dietary need. This is a considerable amount, when compared to that required for drinking, which is between two and five litres. To produce food for the now over 7 billion people who inhabit the planet today requires the water that would fill a canal ten metres deep, 100 metres wide and 2100 kilometres long.

An assessment of water management in agriculture sector was conducted in 2007 by the International Water Management Institute in Sri Lanka to see if the world had sufficient water to provide food for its growing population. It assessed the current availability of water for agriculture on a global scale and mapped out locations suffering from water scarcity. It found that a fifth of the world's people, more than 1.2 billion, live in areas of physical water scarcity, where there is not enough water to meet all demands. A further 1.6 billion people live in areas experiencing economic water scarcity, where the lack of investment in water or insufficient human capacity make it impossible for authorities to satisfy the demand for water. The report found that it would be possible to produce the food required in future, but that continuation of today's food production and environmental trends would lead to crises in many parts of the world. To avoid a global water crisis, farmers will have to strive to increase productivity to meet growing demands for food, while industry and cities find ways to use water more efficiently.

In some areas of the world, irrigation is necessary to grow any crop at all, in other areas it permits more profitable crops to be grown or enhances crop yield. Various irrigation methods involve different trade-offs between crop yield, water consumption and capital cost of equipment and structures. Irrigation methods such as furrow and overhead sprinkler irrigation are usually less expensive but are also typically less efficient, because much of the water evaporates, runs off or drains below the root zone. Other irrigation methods considered to be more efficient include drip or trickle irrigation, surge irrigation, and some types of sprinkler systems where the sprinklers are operated near ground level. These types of systems, while more expensive, usually offer greater potential to minimize runoff, drainage and evaporation. Any system that is improperly managed can be wasteful, all methods have the potential for high efficiencies under suitable conditions, appropriate irrigation timing and management. Some issues that are often insufficiently considered are salinization of groundwater and contaminant accumulation leading to water quality declines.

As global populations grow, and as demand for food increases, there are efforts under way to learn how to produce more food with less water, through improvements in irrigation methods and technologies, agricultural water management, crop types, and water monitoring. Aquaculture is a small but growing agricultural use of water. Freshwater commercial fisheries may also be considered as agricultural uses of water, but have generally been assigned a lower priority than irrigation (see Aral Sea and Pyramid Lake).

Changing landscape for the use of agriculture has a great effect on the flow of fresh water. Changes in landscape by the removal of trees and soils changes the flow of fresh water in the local environment and also affects the cycle of fresh water. As a result, more fresh water is stored in the soil which benefits the agriculture. However, since agriculture is the human activity that consumes the most fresh water, this can put a severe strain on local freshwater resources resulting in the destruction of local ecosystems.

In Australia, over-abstraction of fresh water for intensive irrigation activities has caused 33% of the land area to be at risk of salination.

Water requirements of different classes of livestock
Animal Average / day Range / day
Dairy cow 76 L (20 US gal) 57 to 95 L (15 to 25 US gal)
Cow-calf pair 57 L (15 US gal) 8 to 76 L (2 to 20 US gal)
Yearling cattle 38 L (10 US gal) 23 to 53 L (6 to 14 US gal)
Horse 38 L (10 US gal) 30 to 53 L (8 to 14 US gal)
Sheep 8 L (2 US gal) 8 to 11 L (2 to 3 US gal)


Approximate values of seasonal crop water needs
Crop Crop water needs mm / total growing period
Sugar Cane 1500–2500
Banana 1200–2200
Citrus 900–1200
Potato 500–700
Tomato 400–800
Barley/Oats/Wheat 450–650
Cabbage 350–500
Onions 350–550
Pea 350–500

Irrigation of green spaces and golf courses

Urban green spaces and golf courses usually require some form of irrigation. Golf courses are often targeted as using excessive amounts of water, especially in drier regions. Many golf courses utilize either primarily or exclusively treated effluent water, which has little impact on potable water availability.

Industries

A power plant in Poland

It is estimated that 22% of worldwide water is used in industry. Major industrial users include hydroelectric dams, thermoelectric power plants, which use water for cooling, ore and oil refineries, which use water in chemical processes, and manufacturing plants, which use water as a solvent. Water withdrawal can be very high for certain industries, but consumption is generally much lower than that of agriculture.

Water is used in renewable power generation. Hydroelectric power derives energy from the force of water flowing downhill, driving a turbine connected to a generator. This hydroelectricity is a low-cost, non-polluting, renewable energy source. Significantly, hydroelectric power can also be used for load following unlike most renewable energy sources which are intermittent. Ultimately, the energy in a hydroelectric power plant is supplied by the sun. Heat from the sun evaporates water, which condenses as rain in higher altitudes and flows downhill. Pumped-storage hydroelectric plants also exist, which use grid electricity to pump water uphill when demand is low, and use the stored water to produce electricity when demand is high.

Hydroelectric power plants generally require the creation of a large artificial lake. Evaporation from this lake is higher than evaporation from a river due to the larger surface area exposed to the elements, resulting in much higher water consumption. The process of driving water through the turbine and tunnels or pipes also briefly removes this water from the natural environment, creating water withdrawal. The impact of this withdrawal on wildlife varies greatly depending on the design of the power plant.

Pressurized water is used in water blasting and water jet cutters. Also, very high pressure water guns are used for precise cutting. It works very well, is relatively safe, and is not harmful to the environment. It is also used in the cooling of machinery to prevent overheating, or prevent saw blades from overheating. This is generally a very small source of water consumption relative to other uses.

Water is also used in many large scale industrial processes, such as thermoelectric power production, oil refining, fertilizer production and other chemical plant use, and natural gas extraction from shale rock. Discharge of untreated water from industrial uses is pollution. Pollution includes discharged solutes (chemical pollution) and increased water temperature (thermal pollution). Industry requires pure water for many applications and utilizes a variety of purification techniques both in water supply and discharge. Most of this pure water is generated on site, either from natural freshwater or from municipal grey water. Industrial consumption of water is generally much lower than withdrawal, due to laws requiring industrial grey water to be treated and returned to the environment. Thermoelectric power plants using cooling towers have high consumption, nearly equal to their withdrawal, as most of the withdrawn water is evaporated as part of the cooling process. The withdrawal, however, is lower than in once-through cooling systems.

Drinking water and domestic use (households)

Drinking water

It is estimated that 8% of worldwide water use is for domestic purposes. These include drinking water, bathing, cooking, toilet flushing, cleaning, laundry and gardening. Basic domestic water requirements have been estimated by Peter Gleick at around 50 liters per person per day, excluding water for gardens.

Drinking water is water that is of sufficiently high quality so that it can be consumed or used without risk of immediate or long term harm. Such water is commonly called potable water. In most developed countries, the water supplied to domestic, commerce and industry is all of drinking water standard even though only a very small proportion is actually consumed or used in food preparation.

844 million people still lacked even a basic drinking water service in 2017. Of those, 159 million people worldwide drink water directly from surface water sources, such as lakes and streams.

One in eight people in the world do not have access to safe water. Inappropriate use of water may contribute to this problem. The following tables provide some indicators of water use.

Recommended basic water requirements for human needs (per person)
Activity Minimum, litres / day Range / day
Drinking Water 5 2–5
Sanitation Services 20 20–75
Bathing 15 5–70
Cooking and Kitchen 10 10–50

Environment

Explicit environment water use is also a very small but growing percentage of total water use. Environmental water may include water stored in impoundments and released for environmental purposes (held environmental water), but more often is water retained in waterways through regulatory limits of abstraction. Environmental water usage includes watering of natural or artificial wetlands, artificial lakes intended to create wildlife habitat, fish ladders, and water releases from reservoirs timed to help fish spawn, or to restore more natural flow regimes.

Environmental usage is non-consumptive but may reduce the availability of water for other users at specific times and places. For example, water release from a reservoir to help fish spawn may not be available to farms upstream, and water retained in a river to maintain waterway health would not be available to water abstractors downstream.

Recreation

Recreational water use is mostly tied to lakes, dams, rivers or oceans. If a water reservoir is kept fuller than it would otherwise be for recreation, then the water retained could be categorized as recreational usage. Examples are anglers, water skiers, nature enthusiasts and swimmers.

Recreational usage is usually non-consumptive. However, recreational usage may reduce the availability of water for other users at specific times and places. For example, water retained in a reservoir to allow boating in the late summer is not available to farmers during the spring planting season. Water released for whitewater rafting may not be available for hydroelectric generation during the time of peak electrical demand.

Challenges and threats

Threats for the availability of water resources include: Water scarcity, water pollution, water conflict and climate change.

Water scarcity

Water scarcity (closely related to water stress or water crisis) is the lack of fresh water resources to meet the standard water demand. There are two types of water scarcity: physical water scarcity and economic water scarcity. Physical water scarcity is where there is not enough water to meet all demands, including that needed for ecosystems to function. Arid areas for example Central and West Asia, and North Africa often suffer from physical water scarcity. On the other hand, economic water scarcity is the result of a lack of investment in infrastructure or technology to draw water from rivers, aquifers, or other water sources, or insufficient human capacity to meet the demand for water. Much of Sub-Saharan Africa has economic water scarcity.

Water pollution

Polluted water
Water pollution (or aquatic pollution) is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services (such as providing drinking water) that the water resource would otherwise provide.

Water conflict

Ethiopia's move to fill the dam's reservoir could reduce Nile flows by as much as 25% and devastate Egyptian farmlands.
 
Water conflict is a term describing a conflict between countries, states, or groups over the rights to access water resources. The United Nations recognizes that water disputes result from opposing interests of water users, public or private. A wide range of water conflicts appear throughout history, though rarely are traditional wars waged over water alone. Instead, water has long been a source of tension and one of the causes for conflicts. Water conflicts arise for several reasons, including territorial disputes, a fight for resources, and strategic advantage.

Climate change

Water-related impacts from climate change affect people's water security on a daily basis. They include more frequent and intense heavy precipitation. Another example is faster melting of glaciers. Changes in frequency, size and timing of floods are another example. More frequent and severe droughts in some places are another impact. A decline in groundwater storage, and reduction in groundwater recharge are further impacts. And a deterioration in water quality due to extreme events can also be an impact. Climate change affects water resources in various ways. The total amount of freshwater that is available can change, for instance due to dry spells or droughts. The water quality might also get worse due to the effects of climate change.

Water resource management

Water resource management is the activity of planning, developing, distributing and managing the optimum use of water resources. It is an aspect of water cycle management. The field of water resources management will have to continue to adapt to the current and future issues facing the allocation of water. With the growing uncertainties of global climate change and the long-term impacts of past management actions, this decision-making will be even more difficult. It is likely that ongoing climate change will lead to situations that have not been encountered. As a result, alternative management strategies, including participatory approaches and adaptive capacity are increasingly being used to strengthen water decision-making.

Ideally, water resource management planning has regard to all the competing demands for water and seeks to allocate water on an equitable basis to satisfy all uses and demands. As with other resource management, this is rarely possible in practice so decision-makers must prioritise issues of sustainability, equity and factor optimisation (in that order!) to achieve acceptable outcomes. One of the biggest concerns for water-based resources in the future is the sustainability of the current and future water resource allocation.

Sustainable Development Goal 6 has a target related to water resources management: "Target 6.5: By 2030, implement integrated water resources management at all levels, including through transboundary cooperation as appropriate."

Sustainable water management

At present, only about 0.08 percent of all the world's fresh water is accessible. And there is ever-increasing demand for drinking, manufacturing, leisure and agriculture. Due to the small percentage of water available, optimizing the fresh water we have left from natural resources has been a growing challenge around the world.

Much effort in water resource management is directed at optimizing the use of water and in minimizing the environmental impact of water use on the natural environment. The observation of water as an integral part of the ecosystem is based on integrated water resources management, based on the 1992 Dublin Principles (see below).

Sustainable water management requires a holistic approach based on the principles of Integrated Water Resource Management, originally articulated in 1992 at the Dublin (January) and Rio (July) conferences. The four Dublin Principles, promulgated in the Dublin Statement are:

  1. Fresh water is a finite and vulnerable resource, essential to sustain life, development and the environment;
  2. Water development and management should be based on a participatory approach, involving users, planners and policy-makers at all levels;
  3. Women play a central part in the provision, management and safeguarding of water;
  4. Water has an economic value in all its competing uses and should be recognized as an economic good.

Implementation of these principles has guided reform of national water management law around the world since 1992.

Further challenges to sustainable and equitable water resources management include the fact that many water bodies are shared across boundaries which may be international (see water conflict) or intra-national (see Murray-Darling basin).

Integrated water resources management

Integrated water resources management (IWRM) has been defined by the Global Water Partnership (GWP) as "a process which promotes the coordinated development and management of water, land and related resources, in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems".

Some scholars say that IWRM is complementary to water security because water security is a goal or destination, whilst IWRM is the process necessary to achieve that goal.

IWRM is a paradigm that emerged at international conferences in the late 1900s and early 2000s, although participatory water management institutions have existed for centuries. Discussions on a holistic way of managing water resources began already in the 1950s leading up to the 1977 United Nations Water Conference. The development of IWRM was particularly recommended in the final statement of the ministers at the International Conference on Water and the Environment in 1992, known as the Dublin Statement. This concept aims to promote changes in practices which are considered fundamental to improved water resource management. IWRM was a topic of the second World Water Forum, which was attended by a more varied group of stakeholders than the preceding conferences and contributed to the creation of the GWP.

In the International Water Association definition, IWRM rests upon three principles that together act as the overall framework:

  1. Social equity: ensuring equal access for all users (particularly marginalized and poorer user groups) to an adequate quantity and quality of water necessary to sustain human well-being.
  2. Economic efficiency: bringing the greatest benefit to the greatest number of users possible with the available financial and water resources.
  3. Ecological sustainability: requiring that aquatic ecosystems are acknowledged as users and that adequate allocation is made to sustain their natural functioning.

In 2002, the development of IWRM was discussed at the World Summit on Sustainable Development held in Johannesburg, which aimed to encourage the implementation of IWRM at a global level. The third World Water Forum recommended IWRM and discussed information sharing, stakeholder participation, and gender and class dynamics.

IWRM practices depend on context; at the operational level, the challenge is to translate the agreed principles into concrete action.

Operationally, IWRM approaches involve applying knowledge from various disciplines as well as the insights from diverse stakeholders to devise and implement efficient, equitable and sustainable solutions to water and development problems. As such, IWRM is a comprehensive, participatory planning and implementation tool for managing and developing water resources in a way that balances social and economic needs, and that ensures the protection of ecosystems for future generations. In addition, in light of contributing the achievement of Sustainable Development goals (SDGs),  IWRM has been evolving into more sustainable approach as it considers the Nexus approach, which is a cross-sectoral water resource management. The Nexus approach is based on the recognition that "water, energy and food are closely linked through global and local water, carbon and energy cycles or chains."

Water's many different uses — for agriculture, for healthy ecosystems, for people and livelihoods — demands coordinated action. An IWRM approach is consequently cross-sectoral, aiming to be an open, flexible process, and bringing all stakeholders to the table to set policy and make sound, balanced decisions in response to specific water challenges faced.

An IWRM approach focuses on three basics and aims at avoiding a fragmented approach of water resources management by considering the following aspects:

  1. Enabling Environment: A proper enabling environment is essential to both ensure the rights and assets of all stakeholders (individuals as well as public and private sector organizations and companies), and also to protect public assets such as intrinsic environmental values.
  2. Roles of Institutions: Institutional development is critical to the formulation and implementation of IWRM policies and programmes. Failure to match responsibilities, authority and capacities for action are all major sources of difficulty with implementing IWRM.
  3. Management Instruments: The management instruments for IWRM are the tools and methods that enable and help decision-makers to make rational and informed choices between alternative actions.

Some of the cross-cutting conditions that are also important to consider when implementing IWRM are:

  • Political will and commitment
  • Capacity development
  • Adequate investment, financial stability and sustainable cost recovery
  • Monitoring and evaluation

IWRM should be viewed as a process rather than a one-shot approach - one that is long-term and iterative rather than linear in nature. As a process which seeks to shift water development and management systems from their currently unsustainable forms, IWRM has no fixed beginnings or endings.

Furthermore, there is not one correct administrative model. The art of IWRM lies in selecting, adjusting and applying the right mix of these tools for a given situation.

Managing water in urban settings

Typical urban water cycle depicting drinking water purification and municipal sewage treatment systems

Integrated urban water management (IUWM) is the practice of managing freshwater, wastewater, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin. IUWM is commonly seen as a strategy for achieving the goals of Water Sensitive Urban Design. IUWM seeks to change the impact of urban development on the natural water cycle, based on the premise that by managing the urban water cycle as a whole; a more efficient use of resources can be achieved providing not only economic benefits but also improved social and environmental outcomes. One approach is to establish an inner, urban, water cycle loop through the implementation of reuse strategies. Developing this urban water cycle loop requires an understanding both of the natural, pre-development, water balance and the post-development water balance. Accounting for flows in the pre- and post-development systems is an important step toward limiting urban impacts on the natural water cycle.

IUWM within an urban water system can also be conducted by performance assessment of any new intervention strategies by developing a holistic approach which encompasses various system elements and criteria including sustainability type ones in which integration of water system components including water supply, waste water and storm water subsystems would be advantageous. Simulation of metabolism type flows in urban water system can also be useful for analysing processes in urban water cycle of IUWM.

Acoustic metamaterial

From Wikipedia, the free encyclopedia

An acoustic metamaterial, sonic crystal, or phononic crystal, is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids (crystal lattices). Sound wave control is accomplished through manipulating parameters such as the bulk modulus β, density ρ, and chirality. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic resonator.

Acoustic metamaterials are used to model and research extremely large-scale acoustic phenomena like seismic waves and earthquakes, but also extremely small-scale phenomena like atoms. The latter is possible due to band gap engineering: acoustic metamaterials can be designed such that they exhibit band gaps for phonons, similar to the existence of band gaps for electrons in solids or electron orbitals in atoms. That has also made the phononic crystal an increasingly widely researched component in quantum technologies and experiments that probe quantum mechanics. Important branches of physics and technology that rely heavily on acoustic metamaterials are negative refractive index material research, and (quantum) optomechanics.

The artwork "Órgano" by sculptor Eusebio Sempere is large-scale example of a phononic crystal: it consists of a periodic array of cylinders in air (the 'metamaterial' or 'crystal structure') and its dimensions and pattern is designed such that sound waves at a frequency of 1670 Hz are strongly attenuated. It became the first evidence for the existence of phononic band gaps in periodic structures.

History

Acoustic metamaterials have developed from the research and findings in metamaterials. A novel material was originally proposed by Victor Veselago in 1967, but not realized until some 33 years later. John Pendry produced the basic elements of metamaterials in the late 1990s. His materials were combined, with negative index materials first realized in 2000, broadening the possible optical and material responses. Research in acoustic metamaterials has the same goal of broader material responses with sound waves.

Research employing acoustic metamaterials began in 2000 with the fabrication and demonstration of sonic crystals in a liquid. This was followed by transposing the behavior of the split-ring resonator to research in acoustic metamaterials. After this, double negative parameters (negative bulk modulus βeff and negative density ρeff) were produced by this type of medium. Then a group of researchers presented the design and test results of an ultrasonic metamaterial lens for focusing 60 kHz.

Acoustical engineering is typically concerned with noise control, medical ultrasound, sonar, sound reproduction, and how to measure some other physical properties using sound. With acoustic metamaterials the direction of sound through the medium can be controlled by manipulating the acoustic refractive index. Therefore, the capabilities of traditional acoustic technologies are extended, for example, eventually being able to cloak certain objects from acoustic detection.

The first successful industrial applications of acoustic metamaterials were tested for aircraft insulation.

Basic principles

Properties of acoustic metamaterials usually arise from structure rather than composition, with techniques such as the controlled fabrication of small inhomogeneities to enact effective macroscopic behavior.

Bulk modulus and mass density

Bulk modulus - illustration of uniform compression

The bulk modulus β is a measure of a substance's resistance to uniform compression. It is defined as the ratio of pressure increase needed to cause a given relative decrease in volume.

The mass density (or just "density") of a material is defined as mass per unit volume and is expressed in grams per cubic centimeter (g/cm3). In all three classic states of matter—gas, liquid, or solid—the density varies with a change in temperature or pressure, with gases being the most susceptible to those changes. The spectrum of densities is wide-ranging: from 1015 g/cm3 for neutron stars, 1.00 g/cm3 for water, to 1.2×10−3 g/cm3 for air. Other relevant parameters are area density which is mass over a (two-dimensional) area, linear density - mass over a one-dimensional line, and relative density, which is a density divided by the density of a reference material, such as water.

For acoustic materials and acoustic metamaterials, both bulk modulus and density are component parameters, which define their refractive index. The acoustic refractive index is similar to the concept used in optics, but it concerns pressure or shear waves, instead of electromagnetic waves.

Theoretical model

Comparison of 1D, 2D and 3D phononic crystal structures where the metamaterial exhibits a periodic variation of sound speed in 1, 2 and 3 dimensions (from left to right, respectively).

Acoustic metamaterials or phononic crystals can be understood as the acoustic analog of photonic crystals: instead of electromagnetic waves (photons) propagating through a material with a periodically modified optical refractive index (resulting in a modified speed of light), the phononic crystal comprises pressure waves (phonons) propagating through a material with a periodically modified acoustic refractive index, resulting in a modified speed of sound.

In addition to the parallel concepts of refractive index and crystal structure, electromagnetic waves and acoustic waves are both mathematically described by the wave equation.

The simplest realization of an acoustic metamaterial would constitute the propagation of a pressure wave through a slab with a periodically modified refractive index in one dimension. In that case, the behavior of the wave through the slab or 'stack' can be predicted and analyzed using transfer matrices. This method is ubiquitous in optics, where it is used for the description of light waves propagating through a distributed Bragg reflector.

Negative refractive index acoustic metamaterials

In certain frequency bands, the effective mass density and bulk modulus may become negative. This results in a negative refractive index. Flat slab focusing, which can result in super resolution, is similar to electromagnetic metamaterials. The double negative parameters are a result of low-frequency resonances. In combination with a well-defined polarization during wave propagation; k = |n|ω, is an equation for refractive index as sound waves interact with acoustic metamaterials (below):

The inherent parameters of the medium are the mass density ρ, bulk modulus β, and chirality k. Chirality, or handedness, determines the polarity of wave propagation (wave vector). Hence within the last equation, Veselago-type solutions (n2 = u*ε) are possible for wave propagation as the negative or positive state of ρ and β determine the forward or backward wave propagation.

In electromagnetic metamaterials negative permittivity can be found in natural materials. However, negative permeability has to be intentionally created in the artificial transmission medium. For acoustic materials neither negative ρ nor negative β are found in naturally occurring materials; they are derived from the resonant frequencies of an artificially fabricated transmission medium, and such negative values are an anomalous response. Negative ρ or β means that at certain frequencies the medium expands when experiencing compression (negative modulus), and accelerates to the left when being pushed to the right (negative density).

Electromagnetic field vs acoustic field

The electromagnetic spectrum extends from low frequencies used for modern radio to gamma radiation at the short-wavelength end, covering wavelengths from thousands of kilometers down to a fraction of the size of an atom. In comparison, infrasonic frequencies range from 20 Hz down to 0.001 Hz, audible frequencies are 20 Hz to 20 kHz and the ultrasonic range is above 20 kHz.

While electromagnetic waves can travel in vacuum, acoustic wave propagation requires a medium.

Mechanics of lattice waves

Lattice wave.svg

In a rigid lattice structure, atoms exert force on each other, maintaining equilibrium. Most of these atomic forces, such as covalent or ionic bonds, are of electric nature. The magnetic force, and the force of gravity are negligible. Because of the bonding between them, the displacement of one or more atoms from their equilibrium positions gives rise to a set of vibration waves propagating through the lattice. One such wave is shown in the figure to the right. The amplitude of the wave is given by the displacements of the atoms from their equilibrium positions. The wavelength λ is marked.

There is a minimum possible wavelength, given by the equilibrium separation a between atoms. Any wavelength shorter than this can be mapped onto a long wavelength, due to effects similar to aliasing.

Research and applications

Applications of acoustic metamaterial research include seismic wave reflection and vibration control technologies related to earthquakes, as well as precision sensing. Phononic crystals can be engineered to exhibit band gaps for phonons, similar to the existence of band gaps for electrons in solids and to the existence of electron orbitals in atoms. However, unlike atoms and natural materials, the properties of metamaterials can be fine-tuned (for example through microfabrication). For that reason, they constitute a potential testbed for fundamental physics and quantum technologies. They also have a variety of engineering applications, for example they are widely used as a mechanical component in optomechanical systems.

Sonic crystals

In 2000, the research of Liu et al. paved the way to acoustic metamaterials through sonic crystals, which exhibit spectral gaps two orders of magnitude smaller than the wavelength of sound. The spectral gaps prevent the transmission of waves at prescribed frequencies. The frequency can be tuned to desired parameters by varying the size and geometry.

The fabricated material consisted of high-density solid lead balls as the core, one centimeter in size and coated with a 2.5-mm layer of rubber silicone. These were arranged in an 8 × 8 × 8 cube crystal lattice structure. The balls were cemented into the cubic structure with an epoxy. Transmission was measured as a function of frequency from 250 to 1600 Hz for a four-layer sonic crystal. A two-centimeter slab absorbed sound that normally would require a much thicker material, at 400 Hz. A drop in amplitude was observed at 400 and 1100 Hz.

The amplitudes of the sound waves entering the surface were compared with the sound waves at the center of the structure. The oscillations of the coated spheres absorbed sonic energy, which created the frequency gap; the sound energy was absorbed exponentially as the thickness of the material increased. The key result was the negative elastic constant created from resonant frequencies of the material.

Projected applications of sonic crystals are seismic wave reflection and ultrasonics.

Split-ring resonators for acoustic metamaterials

Copper split-ring resonators and wires mounted on interlocking sheets of fiberglass circuit board. A split-ring resonator consists of an inner square with a split on one side embedded in an outer square with a split on the other side. The split-ring resonators are on the front and right surfaces of the square grid and the single vertical wires are on the back and left surfaces.

In 2004 split-ring resonators (SRR) became the object of acoustic metamaterial research. An analysis of the frequency band gap characteristics, derived from the inherent limiting properties of artificially created SRRs, paralleled an analysis of sonic crystals. The band gap properties of SRRs were related to sonic crystal band gap properties. Inherent in this inquiry is a description of mechanical properties and problems of continuum mechanics for sonic crystals, as a macroscopically homogeneous substance.

The correlation in band gap capabilities includes locally resonant elements and elastic moduli which operate in a certain frequency range. Elements which interact and resonate in their respective localized area are embedded throughout the material. In acoustic metamaterials, locally resonant elements would be the interaction of a single 1-cm rubber sphere with the surrounding liquid. The values of the stopband and band-gap frequencies can be controlled by choosing the size, types of materials, and the integration of microscopic structures which control the modulation of the frequencies. These materials are then able to shield acoustic signals and attenuate the effects of anti-plane shear waves. By extrapolating these properties to larger scales it could be possible to create seismic wave filters (see Seismic metamaterials).

Arrayed metamaterials can create filters or polarizers of either electromagnetic or elastic waves. Methods which can be applied to two-dimensional stopband and band gap control with either photonic or sonic structures have been developed. Similar to photonic and electromagnetic metamaterial fabrication, a sonic metamaterial is embedded with localized sources of mass density ρ and the bulk modulus β parameters, which are analogous to permittivity and permeability, respectively. The sonic (or phononic) metamaterials are sonic crystals. These crystals have a solid lead core and a softer, more elastic silicone coating. The sonic crystals had built-in localized resonances due to the coated spheres which result in almost flat dispersion curves. Movchan and Guenneau analyzed and presented low-frequency band gaps and localized wave interactions of the coated spheres.

This method can be used to tune band gaps inherent in the material, and to create new low-frequency band gaps. It is also applicable for designing low-frequency phononic crystal waveguides.

Phononic crystals

Phononic crystals are synthetic materials formed by periodic variation of the acoustic properties of the material (i.e., elasticity and mass). One of their main properties is the possibility of having a phononic band gap. A phononic crystal with phononic band gap prevents phonons of selected ranges of frequencies from being transmitted through the material.

To obtain the frequency band structure of a phononic crystal, Bloch's theorem is applied on a single unit cell in the reciprocal lattice space (Brillouin zone). Several numerical methods are available for this problem, such as the planewave expansion method, the finite element method, and the finite difference method.

In order to speed up the calculation of the frequency band structure, the Reduced Bloch Mode Expansion (RBME) method can be used. The RBME applies "on top" of any of the primary expansion numerical methods mentioned above. For large unit cell models, the RBME method can reduce the time for computing the band structure by up to two orders of magnitude.

The basis of phononic crystals dates back to Isaac Newton who imagined that sound waves propagated through air in the same way that an elastic wave would propagate along a lattice of point masses connected by springs with an elastic force constant E. This force constant is identical to the modulus of the material. With phononic crystals of materials with differing modulus the calculations are more complicated than this simple model.

A key factor for acoustic band gap engineering is the impedance mismatch between periodic elements comprising the crystal and the surrounding medium. When an advancing wave-front meets a material with very high impedance it will tend to increase its phase velocity through that medium. Likewise, when the advancing wave-front meets a low impedance medium it will slow down. This concept can be exploited with periodic arrangements of impedance-mismatched elements to affect acoustic waves in the crystal.

The position of the band gap in frequency space for a phononic crystal is controlled by the size and arrangement of the elements comprising the crystal. The width of the band gap is generally related to the difference in the speed of sound (due to impedance differences) through the materials that form the composite. Phononic crystals effectively reduce low-frequency noise, since their locally resonant systems act as spatial frequency filters. However, they have narrow band gaps, impose additional weight on the primary system, and work only at the adjusted frequency range. For widening band gaps, the unit cells must be large in size or contain dense materials. As a solution to the disadvantages mentioned above of phononic crystals, proposes a novel three-dimensional lightweight re-entrant meta-structure composed of a cross-shaped beam scatterer embedded in a host plate with holes based on the square lattice metamaterial. By combining the re-entry networks mechanism and the Floquet–Bloch theory, on the basis of cross-shaped beam theory and perforation mechanism, it was demonstrated that such a lightweight phononic structure can filter elastic waves across a broad frequency range (not just a specific narrow region) while simultaneously reducing structure weight to a significant degree.

Double-negative acoustic metamaterial

In-phase waves
 
Out-of-phase waves
 
Left: the real part of a plane wave moving from top to bottom. Right: the same wave after a central section underwent a phase shift, for example, by passing through metamaterial inhomogeneities of different thickness than the other parts. (The illustration on the right ignores the effect of diffraction whose effect increases over large distances).

Electromagnetic (isotropic) metamaterials have built-in resonant structures that exhibit effective negative permittivity and negative permeability for some frequency ranges. In contrast, it is difficult to build composite acoustic materials with built-in resonances such that the two effective response functions are negative within the capability or range of the transmission medium.

The mass density ρ and bulk modulus β are position dependent. Using the formulation of a plane wave the wave vector is:

With angular frequency represented by ω, and c being the propagation speed of acoustic signal through the homogeneous medium. With constant density and bulk modulus as constituents of the medium, the refractive index is expressed as n2 = ρ / β. In order to develop a propagating plane wave through the material, it is necessary for both ρ and β to be either positive or negative.

When the negative parameters are achieved, the mathematical result of the Poynting vector is in the opposite direction of the wave vector . This requires negativity in bulk modulus and density. Natural materials do not have a negative density or a negative bulk modulus, but, negative values are mathematically possible, and can be demonstrated when dispersing soft rubber in a liquid.

Even for composite materials, the effective bulk modulus and density should be normally bounded by the values of the constituents, i.e., the derivation of lower and upper bounds for the elastic moduli of the medium. The expectation for positive bulk modulus and positive density is intrinsic. For example, dispersing spherical solid particles in a fluid result in the ratio governed by the specific gravity when interacting with the long acoustic wavelength (sound). Mathematically, it can be proven that βeff and ρeff are definitely positive for natural materials. The exception occurs at low resonant frequencies.

As an example, acoustic double negativity is theoretically demonstrated with a composite of soft, silicone rubber spheres suspended in water. In soft rubber, sound travels much slower than through the water. The high velocity contrast of sound speeds between the rubber spheres and the water allows for the transmission of very low monopolar and dipolar frequencies. This is an analogue to analytical solution for the scattering of electromagnetic radiation, or electromagnetic plane wave scattering, by spherical particles - dielectric spheres.

Hence, there is a narrow range of normalized frequencies 0.035 < ωa/(2πc) < 0.04 where the bulk modulus and negative density are both negative. Here a is the lattice constant if the spheres are arranged in a face-centered cubic (fcc) lattice; ω is angular frequency and c is speed of the acoustic signal. The effective bulk modulus and density near the static limit are positive as predicted. The monopolar resonance creates a negative bulk modulus above the normalized frequency at about 0.035 while the dipolar resonance creates a negative density above the normalized frequency at about 0.04.

This behavior is analogous to low-frequency resonances produced in SRRs (electromagnetic metamaterial). The wires and split rings create intrinsic electric dipolar and magnetic dipolar response. With this artificially constructed acoustic metamaterial of rubber spheres and water, only one structure (instead of two) creates the low-frequency resonances to achieve double negativity. With monopolar resonance, the spheres expand, which produces a phase shift between the waves passing through rubber and water. This creates a negative response. The dipolar resonance creates a negative response such that the frequency of the center of mass of the spheres is out of phase with the wave vector of the sound wave (acoustic signal). If these negative responses are large enough to compensate the background fluid, one can have both negative effective bulk modulus and negative effective density.

Both the mass density and the reciprocal of the bulk modulus decrease in magnitude fast enough for the group velocity to become negative (double negativity). This gives rise to the desired results of negative refraction. The double negativity is a consequence of resonance and the resulting negative refraction properties.

Metamaterial with simultaneously negative bulk modulus and mass density

In 2007 a metamaterial was reported which simultaneously possesses a negative bulk modulus and negative mass density. This metamaterial is a zinc blende structure consisting of one fcc array of bubble-contained-water spheres (BWSs) and another relatively shifted fcc array of rubber-coated-gold spheres (RGSs) in special epoxy.

Negative bulk modulus is achieved through monopolar resonances of the BWS series. Negative mass density is achieved with dipolar resonances of the gold sphere series. Rather than rubber spheres in liquid, this is a solid based material. This is also as yet a realization of simultaneously negative bulk modulus and mass density in a solid based material, which is an important distinction.

Double C resonators

Double C resonators (DCRs) are rings cut in half, which can be arranged in multiple cell configurations, similarly to the SRRS. Each cell consists of a large rigid disk and two thin ligaments, and acts as a tiny oscillator connected by springs. One spring anchors the oscillator, and the other connects to the mass. It is analogous to an LC resonator of capacitance, C, and inductance, L, and resonant frequency √1/(LC). The speed of sound in the matrix is expressed as c = √ρ/µ with density ρ and shear modulus μ. Although linear elasticity is considered, the problem is mainly defined by shear waves directed at angles to the plane of the cylinders.

A phononic band gap occurs in association with the resonance of the split cylinder ring. There is a phononic band gap within a range of normalized frequencies. This is when the inclusion moves as a rigid body. The DCR design produced a suitable band with a negative slope in a range of frequencies. This band was obtained by hybridizing the modes of a DCR with the modes of thin stiff bars. Calculations have shown that at these frequencies:

  • a beam of sound negatively refracts across a slab of such a medium,
  • the phase vector in the medium possesses real and imaginary parts with opposite signs,
  • the medium is well impedance-matched with the surrounding medium,
  • a flat slab of the metamaterial can image a source across the slab like a Veselago lens,
  • the image formed by the flat slab has considerable sub-wavelength image resolution, and
  • a double corner of the metamaterial can act as an open resonator for sound.

Acoustic metamaterial superlens

In 2009 Shu Zhang et al. presented the design and test results of an ultrasonic metamaterial lens for focusing 60 kHz (~2 cm wavelength) sound waves under water. The lens was made of sub-wavelength elements, potentially more compact than phononic lenses operating in the same frequency range.

The lens consists of a network of fluid-filled cavities called Helmholtz resonators that oscillate at certain frequencies. Similar to a network of inductors and capacitors in an electromagnetic metamaterial, the arrangement of Helmholtz cavities designed by Zhang et al. have a negative dynamic modulus for ultrasound waves. A point source of 60.5 kHz sound was focused to a spot roughly the width of half a wavelength, and there is potential of improving the spatial resolution even further. Result were in agreement with the transmission line model, which derived the effective mass density and compressibility. This metamaterial lens also displays variable focal length at different frequencies.

This lens could improve acoustic imaging techniques, since the spatial resolution of the conventional methods is restricted by the incident ultrasound wavelength. This is due to the quickly fading evanescent fields which carry the sub-wavelength features of objects.

Acoustic diode

An acoustic diode was introduced in 2009, which converts sound to a different frequency and blocks backward flow of the original frequency. This device could provide more flexibility for designing ultrasonic sources like those used in medical imaging. The proposed structure combines two components: The first is a sheet of nonlinear acoustic material—one whose sound speed varies with air pressure. An example of such a material is a collection of grains or beads, which becomes stiffer as it is squeezed. The second component is a filter that allows the doubled frequency to pass through but reflects the original.

Acoustic cloaking

An acoustic cloak is a hypothetical device that would make objects impervious to sound waves. This could be used to build sound proof homes, advanced concert halls, or stealth warships. The idea of acoustic cloaking is simply to deviate the sounds waves around the object that has to be cloaked, but realizing has been difficult since mechanical metamaterials are needed. Making such a metamaterial for a sound means modifying the acoustic analogues to permittivity and permeability in light waves, which are the material's mass density and its elastic constant. Researchers from Wuhan University, China in a 2007 paper reported a metamaterial which simultaneously possessed a negative bulk modulus and mass density.

A laboratory metamaterial device that is applicable to ultrasound waves was demonstrated in 2011 for frequencies from 40 to 80 kHz. The metamaterial acoustic cloak was designed to hide objects submerged in water, bending and twists sound waves. The cloaking mechanism consists of 16 concentric rings in a cylindrical configuration, each ring having acoustic circuits and a different index of refraction. This causes sound waves to vary their speed from ring to ring. The sound waves propagate around the outer ring, guided by the channels in the circuits, which bend the waves to wrap them around the outer layers. This device has been described as an array of cavities which actually slow the speed of the propagating sound waves. An experimental cylinder was submerged in a tank, and made to disappear from sonar detection. Other objects of various shapes and densities were also hidden from sonar.

Phononic metamaterials for thermal management

As phonons are responsible for thermal conduction in solids, acoustic metamaterials may be designed to control heat transfer.

Quantum-like computing with acoustic metamaterials

Researchers have demonstrated a quantum-like computing method using acoustic metamaterials. Recently operations similar to the Controlled-NOT (CNOT) gate, a key component in quantum computing, have been demonstrated. By employing a nonlinear acoustic metamaterial, consisting of three elastically coupled waveguides, the team created classical qubit analogues called logical phi-bits. This approach allows for scalable, systematic, and predictable CNOT gate operations using a simple physical manipulation. This innovation brings promise to the field of quantum-like computing using acoustic metamaterials.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...