Search This Blog

Saturday, January 11, 2025

Outgoing longwave radiation

From Wikipedia, the free encyclopedia
Spectral intensity of sunlight (average at top of atmosphere) and thermal radiation emitted by Earth's surface.

In climate science, longwave radiation (LWR) is electromagnetic thermal radiation emitted by Earth's surface, atmosphere, and clouds. It is also referred to as terrestrial radiation. This radiation is in the infrared portion of the spectrum, but is distinct from the shortwave (SW) near-infrared radiation found in sunlight.

Outgoing longwave radiation (OLR) is the longwave radiation emitted to space from the top of Earth's atmosphere. It may also be referred to as emitted terrestrial radiation. Outgoing longwave radiation plays an important role in planetary cooling.

Longwave radiation generally spans wavelengths ranging from 3–100 micrometres (μm). A cutoff of 4 μm is sometimes used to differentiate sunlight from longwave radiation. Less than 1% of sunlight has wavelengths greater than 4 μm. Over 99% of outgoing longwave radiation has wavelengths between 4 μm and 100 μm.

The flux of energy transported by outgoing longwave radiation is typically measured in units of watts per metre squared (W⋅m−2). In the case of global energy flux, the W/m2 value is obtained by dividing the total energy flow over the surface of the globe (measured in watts) by the surface area of the Earth, 5.1×1014 m2 (5.1×108 km2; 2.0×108 sq mi).

Emitting outgoing longwave radiation is the only way Earth loses energy to space, i.e., the only way the planet cools itself. Radiative heating from absorbed sunlight, and radiative cooling to space via OLR power the heat engine that drives atmospheric dynamics.

The balance between OLR (energy lost) and incoming solar shortwave radiation (energy gained) determines whether the Earth is experiencing global heating or cooling (see Earth's energy budget).

Planetary energy balance

The growth in Earth's energy imbalance from satellite and in situ measurements (2005–2019). A rate of +1.0 W/m2 summed over the planet's surface equates to a continuous heat uptake of about 500 terawatts (~0.3% of the incident solar radiation).

Outgoing longwave radiation (OLR) constitutes a critical component of Earth's energy budget.

The principle of conservation of energy says that energy cannot appear or disappear. Thus, any energy that enters a system but does not leave must be retained within the system. So, the amount of energy retained on Earth (in Earth's climate system) is governed by an equation:

[change in Earth's energy] = [energy arriving][energy leaving].

Energy arrives in the form of absorbed solar radiation (ASR). Energy leaves as outgoing longwave radiation (OLR). Thus, the rate of change in the energy in Earth's climate system is given by Earth's energy imbalance (EEI):

.

When energy is arriving at a higher rate than it leaves (i.e., ASR > OLR, so that EEI is positive), the amount of energy in Earth's climate increases. Temperature is a measure of the amount of thermal energy in matter. So, under these circumstances, temperatures tend to increase overall (though temperatures might decrease in some places as the distribution of energy changes). As temperatures increase, the amount of thermal radiation emitted also increases, leading to more outgoing longwave radiation (OLR), and a smaller energy imbalance (EEI).

Similarly, if energy arrives at a lower rate than it leaves (i.e., ASR < OLR, so than EEI is negative), the amount of energy in Earth's climate decreases, and temperatures tend to decrease overall. As temperatures decrease, OLR decreases, making the imbalance closer to zero.

In this fashion, a planet naturally constantly adjusts its temperature so as to keep the energy imbalance small. If there is more solar radiation absorbed than OLR emitted, the planet will heat up. If there is more OLR than absorbed solar radiation the planet will cool. In both cases, the temperature change works to shift the energy imbalance towards zero. When the energy imbalance is zero, a planet is said to be in radiative equilibrium. Planets natural tend to a state of approximate radiative equilibrium.

In recent decades, energy has been measured to be arriving on Earth at a higher rate than it leaves, corresponding to planetary warming. The energy imbalance has been increasing. It can take decades to centuries for oceans to warm and planetary temperature to shift sufficiently to compensate for an energy imbalance.

Emission

Thermal radiation is emitted by nearly all matter, in proportion to the fourth power of its absolute temperature.

In particular, the emitted energy flux, (measured in W/m2) is given by the Stefan–Boltzmann law for non-blackbody matter:

where is the absolute temperature, is the Stefan–Boltzmann constant, and is the emissivity. The emissivity is a value between zero and one which indicates how much less radiation is emitted compared to what a perfect blackbody would emit.

Surface

The emissivity of Earth's surface has been measured to be in the range 0.65 to 0.99 (based on observations in the 8-13 micron wavelength range) with the lowest values being for barren desert regions. The emissivity is mostly above 0.9, and the global average surface emissivity is estimated to be around 0.95.

Atmosphere

The most common gases in air (i.e., nitrogen, oxygen, and argon) have a negligible ability to absorb or emit longwave thermal radiation. Consequently, the ability of air to absorb and emit longwave radiation is determined by the concentration of trace gases like water vapor and carbon dioxide.

According to Kirchhoff's law of thermal radiation, the emissivity of matter is always equal to its absorptivity, at a given wavelength. At some wavelengths, greenhouse gases absorb 100% of the longwave radiation emitted by the surface. So, at those wavelengths, the emissivity of the atmosphere is 1 and the atmosphere emits thermal radiation much like an ideal blackbody would. However, this applies only at wavelengths where the atmosphere fully absorbs longwave radiation.

Although greenhouse gases in air have a high emissivity at some wavelengths, this does not necessarily correspond to a high rate of thermal radiation being emitted to space. This is because the atmosphere is generally much colder than the surface, and the rate at which longwave radiation is emitted scales as the fourth power of temperature. Thus, the higher the altitude at which longwave radiation is emitted, the lower its intensity.

Atmospheric absorption

The atmosphere is relatively transparent to solar radiation, but it is nearly opaque to longwave radiation. The atmosphere typically absorbs most of the longwave radiation emitted by the surface. Absorption of longwave radiation prevents that radiation from reaching space.

At wavelengths where the atmosphere absorbs surface radiation, some portion of the radiation that was absorbed is replaced by a lesser amount of thermal radiation emitted by the atmosphere at a higher altitude.

When absorbed, the energy transmitted by this radiation is transferred to the substance that absorbed it. However, overall, greenhouse gases in the troposphere emit more thermal radiation than they absorb, so longwave radiative heat transfer has a net cooling effect on air.

Atmospheric window

Assuming no cloud cover, most of the surface emissions that reach space do so through the atmospheric window. The atmospheric window is a region of the electromagnetic wavelength spectrum between 8 and 11 μm where the atmosphere does not absorb longwave radiation (except for the ozone band between 9.6 and 9.8 μm).

Gases

Greenhouse gases in the atmosphere are responsible for a majority of the absorption of longwave radiation in the atmosphere. The most important of these gases are water vapor, carbon dioxide, methane, and ozone.

The absorption of longwave radiation by gases depends on the specific absorption bands of the gases in the atmosphere. The specific absorption bands are determined by their molecular structure and energy levels. Each type of greenhouse gas has a unique group of absorption bands that correspond to particular wavelengths of radiation that the gas can absorb.

Clouds

The OLR balance is affected by clouds, dust, and aerosols in the atmosphere. Clouds tend to block penetration of upwelling longwave radiation, causing a lower flux of long-wave radiation penetrating to higher altitudes. Clouds are effective at absorbing and scattering longwave radiation, and therefore reduce the amount of outgoing longwave radiation.

Clouds have both cooling and warming effects. They have a cooling effect insofar as they reflect sunlight (as measured by cloud albedo), and a warming effect, insofar as they absorb longwave radiation. For low clouds, the reflection of solar radiation is the larger effect; so, these clouds cool the Earth. In contrast, for high thin clouds in cold air, the absorption of longwave radiation is the more significant effect; so these clouds warm the planet.

Details

The interaction between emitted longwave radiation and the atmosphere is complicated due to the factors that affect absorption. The path of the radiation in the atmosphere also determines radiative absorption: longer paths through the atmosphere result in greater absorption because of the cumulative absorption by many layers of gas. Lastly, the temperature and altitude of the absorbing gas also affect its absorption of longwave radiation.

OLR is affected by Earth's surface skin temperature (i.e, the temperature of the top layer of the surface), skin surface emissivity, atmospheric temperature, water vapor profile, and cloud cover.

Day and night

The net all-wave radiation is dominated by longwave radiation during the night and in the polar regions. While there is no absorbed solar radiation during the night, terrestrial radiation continues to be emitted, primarily as a result of solar energy absorbed during the day.

Relationship to greenhouse effect

Outgoing radiation and greenhouse effect as a function of frequency. The greenhouse effect is visible as the area of the upper red area, and the greenhouse effect associated with CO2 is directly visible as the large dip near the center of the OLR spectrum.

The reduction of the outgoing longwave radiation (OLR), relative to longwave radiation emitted by the surface, is at the heart of the greenhouse effect.

More specifically, the greenhouse effect may be defined quantitatively as the amount of longwave radiation emitted by the surface that does not reach space. On Earth as of 2015, about 398 W/m2 of longwave radiation was emitted by the surface, while OLR, the amount reaching space, was 239 W/m2. Thus, the greenhouse effect was 398−239 = 159 W/m2, or 159/398 = 40% of surface emissions, not reaching space.

Effect of increasing greenhouse gases

When the concentration of a greenhouse gas (such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and water vapor (H2O) and is increased, this has a number of effects. At a given wavelength

  • the fraction of surface emissions that are absorbed is increased, decreasing OLR (unless 100% of surface emissions at that wavelength are already being absorbed);
  • the altitude from which the atmosphere emits that that wavelength to space increases (since the altitude at which the atmosphere becomes transparent to that wavelength increases); if the emission altitude is within the troposphere, the temperature of the emitting air will be lower, which will result in a reduction in OLR at that wavelength.

The size of the reduction in OLR will vary by wavelength. Even if OLR does not decrease at certain wavelengths (e.g., because 100% of surface emissions are absorbed and the emission altitude is in the stratosphere), increased greenhouse gas concentration can still lead to significant reductions in OLR at other wavelengths where absorption is weaker.

When OLR decreases, this leads to an energy imbalance, with energy received being greater than energy lost, causing a warming effect. Therefore, an increase in the concentrations of greenhouse gases causes energy to accumulate in Earth's climate system, contributing to global warming.

Surface budget fallacy

If the absorptivity of the gas is high and the gas is present in a high enough concentration, the absorption at certain wavelengths becomes saturated. This means there is enough gas present to completely absorb the radiated energy at that wavelength before the upper atmosphere is reached.

It is sometimes incorrectly argued that this means an increase in the concentration of this gas will have no additional effect on the planet's energy budget. This argument neglects the fact that outgoing longwave radiation is determined not only by the amount of surface radiation that is absorbed, but also by the altitude (and temperature) at which longwave radiation is emitted to space. Even if 100% of surface emissions are absorbed at a given wavelength, the OLR at that wavelength can still be reduced by increased greenhouse gas concentration, since the increased concentration leads to the atmosphere emitting longwave radiation to space from a higher altitude. If the air at that higher altitude is colder (as is true throughout the troposphere), then thermal emissions to space will be reduced, decreasing OLR.

False conclusions about the implications of absorption being "saturated" are examples of the surface budget fallacy, i.e., erroneous reasoning that results from focusing on energy exchange at the surface, instead of focusing on the top-of-atmosphere (TOA) energy balance. 

Measurements

Example wavenumber spectrum of Earth's infrared emissions (400-1600 cm−1) measured by IRIS on Nimbus 4 in year 1970.

Measurements of outgoing longwave radiation at the top of the atmosphere and of longwave radiation back towards the surface are important to understand how much energy is retained in Earth's climate system: for example, how thermal radiation cools and warms the surface, and how this energy is distributed to affect the development of clouds. Observing this radiative flux from a surface also provides a practical way of assessing surface temperatures on both local and global scales. This energy distribution is what drives atmospheric thermodynamics.

OLR

Outgoing long-wave radiation (OLR) has been monitored and reported since 1970 by a progression of satellite missions and instruments.

Surface LW radiation

Longwave radiation at the surface (both outward and inward) is mainly measured by pyrgeometers. A most notable ground-based network for monitoring surface long-wave radiation is the Baseline Surface Radiation Network (BSRN), which provides crucial well-calibrated measurements for studying global dimming and brightening.

Data

Data on surface longwave radiation and OLR is available from a number of sources including:

  • NASA GEWEX Surface Radiation Budget (1983-2007)
  • NASA Clouds and the Earth's Radiant Energy System (CERES) project (2000-2022)

OLR calculation and simulation

Simulated wavenumber spectrum of the Earth's outgoing longwave radiation (OLR) using ARTS. In addition the black-body radiation for a body at surface temperature Ts and at tropopause temperature Tmin is shown.
Simulated wavelength spectrum of Earth's OLR under clear-sky conditions using MODTRAN.

Many applications call for calculation of long-wave radiation quantities. Local radiative cooling by outgoing longwave radiation, suppression of radiative cooling (by downwelling longwave radiation cancelling out energy transfer by upwelling longwave radiation), and radiative heating through incoming solar radiation drive the temperature and dynamics of different parts of the atmosphere.

By using the radiance measured from a particular direction by an instrument, atmospheric properties (like temperature or humidity) can be inversely inferred. Calculations of these quantities solve the radiative transfer equations that describe radiation in the atmosphere. Usually the solution is done numerically by atmospheric radiative transfer codes adapted to the specific problem.

Another common approach is to estimate values using surface temperature and emissivity, then compare to satellite top-of-atmosphere radiance or brightness temperature.

There are online interactive tools that allow one to see the spectrum of outgoing longwave radiation that is predicted to reach space under various atmospheric conditions.

Solar radiation modification

From Wikipedia, the free encyclopedia
refer to caption and image description
Schematic with five proposed methods for solar radiation modification technologies

Solar radiation modification or solar radiation management (SRM), also known as solar geoengineering, are planetary-scale approaches to limit global warming by reducing the greenhouse effect, the atmospheric trapping of outgoing thermal radiation that would leave Earth to outer space. SRM includes mainly methods of increasing the reflection of incoming sunlight (solar radiation) by the atmosphere back to space. Among the multiple potential approaches, stratospheric aerosol injection (SAI) is the most-studied, followed by marine cloud brightening (MCB). SRM also includes ground-based albedo modification (GBAM). Space-based concepts, such as space sunshades and space mirrors, are not currently included in the IPCC Sixth Assessment Report as a relevant option. SRM is a form of climate engineering. It could be a supplement but would not be a substitute to the main climate change mitigation measures, reducing greenhouse gas emissions and removing greenhouse gases from the atmosphere.

Scientific studies, based on evidence from climate models, have generally shown that some forms of SRM could in theory reduce global warming and therefore many effects of climate change. However, because warming from greenhouse gases and cooling from SRM would operate differently across latitudes and seasons, a world where global warming would be offset by SRM would have a different climate from one where this warming did not occur in the first place. Furthermore, confidence in the current projections of how SRM would affect regional climate and ecosystems is low. SRM would therefore pose environmental risks.

Governing SRM is challenging for multiple reasons, including that several countries would likely be capable of doing it alone. For now, there is no formal international framework designed to regulate SRM, although aspects of existing international law would be applicable. Issues of governance and effectiveness are intertwined, as poorly governed use of SRM might lead to its highly suboptimal implementation. Thus, many questions regarding the acceptable deployment of SRM, or even its research and development, are currently unanswered. In 2022, a dozen academics launched a campaign for national policies of "no public funding, no outdoor experiments, no patents, no deployment, and no support in international institutions... including in assessments by the Intergovernmental Panel on Climate Change." As of December 2024, nearly 540 academics and 60 advocacy organizations have endorsed the proposal.

According to Bloomberg News, as of 2024 several American billionaires are funding research into SRM: "A growing number of Silicon Valley founders and investors are backing research into blocking the sun by spraying reflective particles high in the atmosphere or making clouds brighter."

Context

Potential complementary responses to climate change: greenhouse gas emissions abatement, carbon dioxide removal, SRM, and adaptation.

The context for the interest in solar radiation modification (SRM) options is continued high global emissions of greenhouse gases. Human's greenhouse gas emissions have disrupted the Earth's energy budget. Due to elevated atmospheric greenhouse gas concentrations, the net difference between the amount of sunlight absorbed by the Earth and the amount of energy radiated back to space has risen from 1.7 W/m2 in 1980, to 3.1 W/m2 in 2019. This imbalance, or "radiative forcing," means that the Earth absorbs more energy than it emits, causing global temperatures to rise which will, in turn, have negative impacts on humans and nature.

In principle, net emissions could be reduced and even eliminated achieved through a combination of emission cuts and carbon dioxide removal (together called "mitigation"). However, emissions have persisted, consistently exceeding targets, and experts have raised serious questions regarding the feasibility of large-scale removals. The 2023 Emissions Gap Report from the UN Environment Programme estimated that even the most optimistic assumptions regarding countries' current conditional emissions policies and pledges has only a 14% chance of limiting global warming to 1.5 °C.

SRM would increase Earth's reflection of sunlight by increasing the albedo of the atmosphere or the surface. An increase in planetary albedo of 1% would reduce radiative forcing by 2.35 W/m2, eliminating most of global warming from current anthropogenically elevated greenhouse gas concentrations, while a 2% albedo increase would negate the warming effect of doubling the atmospheric carbon dioxide concentration.

SRM could theoretically buy time by slowing the rate of climate change or to eliminate the worst climate impacts until net negative emissions reduce atmospheric greenhouse gas concentrations sufficiently. This is because SRM could, unlike the other responses, cool the planet within months after deployment.

SRM is generally intended to complement, not replace, emissions reduction and carbon dioxide removal. For example, the IPCC Sixth Assessment Report says: "There is high agreement in the literature that for addressing climate change risks SRM cannot be the main policy response to climate change and is, at best, a supplement to achieving sustained net zero or net negative CO2 emission levels globally".

Major reports on SRM that have investigated advantages and disadvantages of SRM (sometimes grouped with carbon dioxide removal and under the title of climate engineering) include those by the Royal Society (2009), the US National Academies (2015 and 2021), the UN Environment Programme (2023), and the European Union's Scientific Advice Mechanism (2024).

History

In 1965, during the administration of U.S. President Lyndon B. Johnson, the President's Science Advisory Committee delivered Restoring the Quality of Our Environment, the first report which warned of the harmful effects of carbon dioxide emissions from fossil fuel. To counteract global warming, the report mentioned "deliberately bringing about countervailing climatic changes", including "raising the albedo, or reflectivity, of the Earth".

In 1974, Russian climatologist Mikhail Budyko suggested that if global warming ever became a serious threat, it could be countered with airplane flights in the stratosphere, burning sulfur to make aerosols that would reflect sunlight away. Along with carbon dioxide removal, SRM was discussed jointly as geoengineering in a 1992 climate change report from the US National Academies.

David Keith, an American physicist, has worked on solar geoengineering since 1992, when he and Hadi Dowlatabadi published one of the first assessments of the technology and its policy implications, introducing a structured comparison of cost and risk. Keith has consistently argued that geoengineering needs a "systematic research program" to determine whether or not its approaches are feasible. He has also appealed for international standards of governance and oversight for how such research might proceed.

The first modeled results of SRM were published in 2000. In 2006 Nobel Laureate Paul Crutzen published an influential scholarly paper where he said, "Given the grossly disappointing international political response to the required greenhouse gas emissions, and further considering some drastic results of recent studies, research on the feasibility and environmental consequences of climate engineering [...] should not be tabooed."

Atmospheric methods

The atmospheric methods for SRM include stratospheric aerosol injection (SAI), marine cloud brightening (MCB) and cirrus cloud thinning (CCT).

Stratospheric aerosol injection (SAI)

Pinatubo eruption cloud: This volcano released huge quantities of stratospheric sulfur aerosols, and this event contributed greatly to understanding of stratospheric aerosol injection (SAI)

For stratospheric aerosol injection (SAI) small particles would be injected into the upper atmosphere to cool the planet with both global dimming and increased albedo. Of all the proposed SRM methods, SAI has received the most sustained attention: The IPCC concluded in 2018 that SAI "is the most-researched SRM method, with high agreement that it could limit warming to below 1.5 °C." This technique would mimic a cooling phenomenon that occurs naturally by the eruption of volcanoes. Sulfates are the most commonly proposed aerosol, since there is a natural analogue with (and evidence from) volcanic eruptions. Alternative materials such as using photophoretic particles, titanium dioxide, and diamond have been proposed. Delivery by custom aircraft appears most feasible, with artillery and balloons sometimes discussed.

This technique could give much more than 3.7 W/m2 of globally averaged negative forcing, which is sufficient to entirely offset the warming caused by a doubling of carbon dioxide.

The most recent Scientific Assessment of Ozone Depletion report in 2022 from the World Meteorological Organization concluded "Stratospheric Aerosol Injection (SAI) has the potential to limit the rise in global surface temperatures by increasing the concentrations of particles in the stratosphere... . However, SAI comes with significant risks and can cause unintended consequences."

A potential disadvantage of SAI is its potential to catalyze the destruction of the protective stratospheric ozone layer.

Marine cloud brightening (MCB)

Marine cloud brightening (MCB) would involve spraying fine sea water to whiten clouds and thus increase cloud reflectivity. It would work by "seeding to promote nucleation, reducing optical thickness and cloud lifetime, to allow more outgoing longwave radiation to escape into space".

The extra condensation nuclei created by the spray would change the size distribution of the drops in existing clouds to make them whiter. The sprayers would use fleets of unmanned rotor ships known as Flettner vessels to spray mist created from seawater into the air to thicken clouds and thus reflect more radiation from the Earth. The whitening effect is created by using very small cloud condensation nuclei, which whiten the clouds due to the Twomey effect.

This technique can give more than 3.7 W/m2 of globally averaged negative forcing, which is sufficient to reverse the warming effect of a doubling of atmospheric carbon dioxide concentration.

Cirrus cloud thinning (CCT)

Cirrus clouds merging to cirrocumulus clouds

Cirrus cloud thinning (CCT) involves "seeding to promote nucleation, reducing optical thickness and cloud lifetime, to allow more outgoing longwave radiation to escape into space." Natural cirrus clouds are believed to have a net warming effect. These could be dispersed by the injection of various materials.

This method is strictly not SRM, as it increases outgoing longwave radiation instead of decreasing incoming shortwave radiation. However, because it shares some of the physical and especially governance characteristics as the other SRM methods, it is often included.

Other methods

Ground-based albedo modification (GBAM)

The IPCC describes ground-based albedo modification (GBAM) as "whitening roofs, changes in land use management (e.g., no-till farming), change of albedo at a larger scale (covering glaciers or deserts with reflective sheeting and changes in ocean albedo)." It is a method of enhancing Earth's albedo, i.e. the ability to reflect the visible, infrared, and ultraviolet wavelengths of the Sun, reducing heat transfer to the surface.

Space-based

The basic function of a space lens to mitigate global warming. The image is simplified, as a 1000 kilometre diameter lens is considered sufficient by most proposals, and would be much smaller than shown. Additionally, a zone plate would only be a few nanometers thick.

There are some proponents who argue that unlike stratospheric aerosol injection, space-based approaches are advantageous because they do not interfere directly with the biosphere and ecosystems. However, space-based approaches would cost about 1000 times more than their terrestrial alternatives. In 2022, the IPCC Sixth Assessment Report discussed SAI, MCB, CCT and even attempts to alter albedo on the ground or in the ocean, yet completely ignored space-based approaches.

There has been a range of proposals to reflect or deflect solar radiation from space, before it even reaches the atmosphere, commonly described as a space sunshade. The most straightforward is to have mirrors orbiting around the Earth—an idea first suggested even before the wider awareness of climate change, with rocketry pioneer Hermann Oberth considering it a way to facilitate terraforming projects in 1923. and this was followed by other books in 1929, 1957 and 1978. By 1992, the U.S. National Academy of Sciences described a plan to suspend 55,000 mirrors with an individual area of 100 square meters in a Low Earth orbit. Another contemporary plan was to use space dust to replicate Rings of Saturn around the equator, although a large number of satellites would have been necessary to prevent it from dissipating. A 2006 variation on this idea suggested relying entirely on a ring of satellites electromagnetically tethered in the same location. In all cases, sunlight exerts pressure which can displace these reflectors from orbit over time, unless stabilized by enough mass. Yet, higher mass immediately drives up launch costs.

In an attempt to deal with this problem, other researchers have proposed Inner lagrangian point between the Earth and the Sun as an alternative to near-Earth orbits, even though this tends to increase manufacturing or delivery costs instead. In 1989, a paper suggested founding a lunar colony, which would produce and deploy diffraction grating made out of a hundred million tonnes of glass. In 1997, a single, very large mesh of aluminium wires "about one millionth of a millimetre thick" was also proposed. Two other proposals from the early 2000s advocated the use of thin metallic disks 50–60 cm in diameter, which would either be launched from the Earth at a rate of once per minute over several decades, or be manufactured from asteroids directly in orbit.

When summarizing these options in 2009, the Royal Society concluded that their deployment times are measured in decades and costs in the trillions of USD, meaning that they are "not realistic potential contributors to short-term, temporary measures for avoiding dangerous climate change", and may only be competitive with the other geoengineering approaches when viewed from a genuinely long (a century or more) perspective, as the long lifetime of L1-based approaches could make them cheaper than the need to continually renew atmospheric-based measures over that timeframe.

In 2021, researchers in Sweden considered building solar sails in the near-Earth orbit, which would then arrive to L1 point over 600 days one by one. Once they all form an array in situ, the combined 1.5 billion sails would have total area of 3.75 million square kilometers, while their combined mass is estimated in a range between 83 million tons (present-day technology) and 34 million tons (optimal advancements). This proposal would cost between five and ten trillion dollars, but only once launch cost has been reduced to US$50/kg, which represents a massive reduction from the present-day costs of $4400–2700/kg for the most widely used launch vehicles.

In July 2022, a pair of researchers from MIT Senseable City Lab, Olivia Borgue and Andreas M. Hein, have instead proposed integrating nanotubes made out of silicon dioxide into ultra-thin polymeric films (described as "space bubbles" in the media), whose semi-transparent nature would allow them to resist the pressure of solar wind at L1 point better than any alternative with the same weight. The use of these "bubbles" would limit the mass of a distributed sunshade roughly the size of Brazil to about 100,000 tons, much lower than the earlier proposals. However, it would still require between 399 and 899 yearly launches of a vehicle such as SpaceX Starship for a period of around 10 years, even though the production of the bubbles themselves would have to be done in space. The flights would not begin until research into production and maintenance of these bubbles is completed, which the authors estimate would require a minimum of 10–15 years. After that, the space shield may be large enough by 2050 to prevent crossing of the 2 °C (3.6 °F) threshold.

In 2023, three astronomers revisited the space dust concept, instead advocating for a lunar colony which would continuously mine the Moon in order to eject lunar dust into space on a trajectory where it would interfere with sunlight streaming towards the Earth. Ejections would have to be near-continuous, as since the dust would scatter in a matter of days, and about 10 million tons would have to be dug out and launched annually. The authors admit that they lack a background in either climate or rocket science, and the proposal may not be logistically feasible.

Costs

Cost estimates for SAI

A study in 2020 looked at the cost of SAI through to the year 2100. It found that relative to other climate interventions and solutions, SAI remains inexpensive. However, at about $18 billion per year per degree Celsius of warming avoided (in 2020 USD), a solar geoengineering program with substantial climate impact would lie well beyond the financial reach of individuals, small states, or other non-state potential rogue actors. The annual cost of delivering a sufficient amount of sulfur to counteract expected greenhouse warming is estimated at $5–10 billion US dollars.

SAI is expected to have low direct financial costs of implementation, relative to the expected costs of both unabated climate change and aggressive mitigation.

Technical problem areas

Aspects of regional scales and seasonal timescales

A moderate magnitude of SRM would bring important aspects of the climate—for example, average and extreme temperature, water availability, and cyclone intensity—closer to their preindustrial values for most of the planet at a subregional resolution. Furthermore, SRM's effect would occur rapidly, unlike those of other responses to climate change. However, even under optimal implementation, some climatic anomalies—especially regarding precipitation—would persist, although mostly at lesser magnitudes than without SRM.

As well as imperfect and geographically uneven cancellation of the climatic effect of greenhouse gases, SRM has other significant technical problems. The IPCC Sixth Assessment Report explains some of the risks and uncertainties as follows: "[...] SRM could offset some of the effects of increasing GHGs on global and regional climate, including the carbon and water cycles. However, there would be substantial residual or overcompensating climate change at the regional scales and seasonal time scales, and large uncertainties associated with aerosol–cloud–radiation interactions persist. The cooling caused by SRM would increase the global land and ocean CO2 sinks, but this would not stop CO2 from increasing in the atmosphere or affect the resulting ocean acidification under continued anthropogenic emissions."

Likewise, a 2023 report from the UN Environment Programme stated, "Climate model results indicate that an operational SRM deployment could fully or partially offset the global mean warming caused by anthropogenic GHG emissions and reduce some climate change hazards in most regions. There could be substantial residual or possible overcompensating climate change at regional scales and seasonal timescales." The report also said: "An operational SRM deployment would introduce new risks to people and ecosystems".

SRM would imperfectly compensate for anthropogenic climate changes. Greenhouse gases warm throughout the globe and year, whereas SRM reflects light more effectively at low latitudes and in the hemispheric summer (due to the sunlight's angle of incidence) and only during daytime. Deployment regimes could compensate for this heterogeneity by changing and optimizing injection rates by latitude and season.

Impacts on precipitation

Models indicate that SRM would compensate more effectively for temperature than for precipitation. Therefore, using SRM to fully return global mean temperature to a preindustrial level would overcorrect for precipitation changes. This has led to claims that it would dry the planet or even cause drought, but this would depend on the intensity (i.e. radiative forcing) of SRM. Furthermore, soil moisture is more important for plants than average annual precipitation. Because SRM would reduce evaporation, it more precisely compensates for changes to soil moisture than for average annual precipitation. Likewise, the intensity of tropical monsoons is increased by climate change and decreased by SRM.

A net reduction in tropical monsoon intensity might manifest at moderate use of SRM, although to some degree the effect of this on humans and ecosystems would be mitigated by greater net precipitation outside of the monsoon system. This has led to claims that SRM "would disrupt the Asian and African summer monsoons", but the impact would depend on the particular implementation regime.

Maintenance and termination shock

The direct climatic effects of SRM are reversible within short timescales. Models project that SRM interventions would take effect rapidly, but would also quickly fade out if not sustained. If SRM masked significant warming, stopped abruptly, and was not resumed within a year or so, the climate would rapidly warm towards levels which would have existed without the use of SRM, sometimes known as termination shock. The rapid rise in temperature might lead to more severe consequences than a gradual rise of the same magnitude. However, some scholars have argued that this appears preventable because it would be in states' interest to resume any terminated deployment regime, and because infrastructure and knowledge could be made redundant and resilient.

Failure to reduce ocean acidification

Change in sea surface pH caused by anthropogenic CO2 between the 1700s and the 1990s. This ocean acidification will still be a major problem unless atmospheric CO2 is reduced.

SRM does not directly influence atmospheric carbon dioxide concentration and thus does not reduce ocean acidification. While not a risk of SRM per se, this points to the limitations of relying on it to the exclusion of emissions reduction.

Effect on sky and clouds

Managing solar radiation using aerosols or cloud cover would involve changing the ratio between direct and indirect solar radiation. This would affect plant life and solar energy. Visible light, useful for photosynthesis, is reduced proportionally more than is the infrared portion of the solar spectrum due to the mechanism of Mie scattering. As a result, deployment of atmospheric SRM would reduce by at least 2–5% the growth rates of phytoplankton, trees, and crops between now and the end of the century. Uniformly reduced net shortwave radiation would hurt solar photovoltaics by the same >2–5% because of the bandgap of silicon photovoltaics.

Uncertainty regarding effects

Much uncertainty remains about SRM's likely effects. Most of the evidence regarding SRM's expected effects comes from climate models and volcanic eruptions. Some uncertainties in climate models (such as aerosol microphysics, stratospheric dynamics, and sub-grid scale mixing) are particularly relevant to SRM and are a target for future research. Volcanoes are an imperfect analogue as they release the material in the stratosphere in a single pulse, as opposed to sustained injection.

Climate change has various effects on agriculture. One of them is the CO2 fertilization effect which affects different crops in different ways. A net increase in agricultural productivity from SRM has been predicted by some studies due to the combination of more diffuse light and carbon dioxide's fertilization effect. Other studies suggest that SRM would have little net effect on agriculture.

There have also been proposals to focus SRM at the poles, in order to combat sea level rise or regional marine cloud brightening (MCB) in order to protect coral reefs from bleaching. However, there is low confidence about the ability to control geographical boundaries of the effect.

SRM might be used in ways that are not optimal. In particular, SRM's climatic effects would be rapid and reversible, which would bring the disadvantage of sudden warming if it were to be stopped suddenly. Similarly, if SRM was very heterogenous, then the climatic responses could be severe and uncertain.

Governance and policy risks

Global governance issues

The potential use of SRM poses several governance challenges because of its high leverage, low apparent direct costs, and technical feasibility as well as issues of power and jurisdiction. Because international law is generally consensual, this creates a challenge of widespread participation being required. Key issues include who will have control over the deployment of SRM and under what governance regime the deployment can be monitored and supervised. A governance framework for SRM must be sustainable enough to contain a multilateral commitment over a long period of time and yet be flexible as information is acquired, the techniques evolve, and interests change through time.

Frank Biermann and other political scientists argue that the current international political system is inadequate for the fair and inclusive governance of SRM deployment on a global scale. Other researchers have suggested that building a global agreement on SRM deployment will be very difficult, and instead power blocs are likely to emerge. There are, however, significant incentives for states to cooperate in choosing a specific SRM policy, which make unilateral deployment a rather unlikely event.

Other relevant aspects of the governance of SRM include supporting research, ensuring that it is conducted responsibly, regulating the roles of the private sector and (if any) the military, public engagement, setting and coordinating research priorities, undertaking trusted scientific assessment, building trust, and compensating for possible harms.

Although climate models of SRM rely on some optimal or consistent implementation, leaders of countries and other actors may disagree as to whether, how, and to what degree SRM be used. This could result in suboptimal deployments and exacerbate international tensions. Likewise, blame for perceived local negative impacts from SRM could be a source of international tensions.

There is a risk that countries may start using SRM without proper precaution or research. SRM, at least by stratospheric aerosol injection, appears to have low direct implementation costs relative to its potential impact, and many countries have the financial and technical resources to undertake SRM. Some have suggested that SRM could be within reach of a lone "Greenfinger", a wealthy individual who takes it upon him or herself to be the "self-appointed protector of the planet". Others argue that states will insist on maintaining control of SRM.

Lessened climate change mitigation

The existence of SRM may reduce the political and social impetus for climate change mitigation. This has often been called a potential "moral hazard", although such language is not precise. Some modelling work suggests that the threat of SRM may in fact increase the likelihood of emissions reduction.

Advocacy for SRM

The leading argument supportive of SRM research is that the risks of likely anthropogenic climate change are great and imminent enough to warrant research and evaluation of a wide range of responses, even one with limitations and risks of its own. Leading this effort have been some climate scientists (such as James Hansen), some of whom have endorsed one or both public letters that support further SRM research.

Scientific organizations that have called for further research in SRM include:

In 2024, Professor David Keith stated that in the last year or so, there has been far more engagement with SRM from senior political leaders than was previously the case.

Some nongovernmental organizations actively support SRM research and governance dialogues. The Degrees Initiative is a UK registered charity, established to build capacity in developing countries to evaluate SRM. It works toward "changing the global environment in which SRM is evaluated, ensuring informed and confident representation from developing countries." However, the German NGO Geoengineering Monitor has criticized The Degrees Initiative for "being an organisation based in the Global North imposing its research agenda onto the Global South" as well as "normalising and legitimising solar geoengineering as a viable mitigation strategy". They also point out that it is "predominantly funded by foundations run by technology and finance billionaires based in the Global North".

SilverLining is an American organization that advances SRM research as part of "climate interventions to reduce near-term climate risks and impacts." It is funded by "philanthropic foundations and individual donors focused on climate change".

The Alliance for Just Deliberation on Solar Geoengineering advances "just and inclusive deliberation" regarding SRM. The Carnegie Climate Governance Initiative catalyzed governance of SRM and carbon dioxide removal, although it ended operations in 2023.

Critics point out that some climate change deniers or former climate change deniers are now actively supporting research in SRM. One example is Danish author Bjorn Lomborg, who "poo-pooed the effects of climate change until he became a geoengineering proponent". Another example is Newt Gingrich, an American politician.

The fossil fuels lobby is among those who advocate for SRM research. However, others say that "Concluding that advocacy of SRM research originates from climate deniers and oil executives is perhaps understandable but untrue".

Opposition to deployment and research

Opposition to SRM has come from various academics and NGOs. The most common concern is that SRM could lessen climate change mitigation efforts. Opponents of SRM research often emphasize that reductions of greenhouse gas emissions would also bring co-benefits (for example reduced air pollution) and that consideration of SRM could prevent these outcomes.

The ETC Group, an environmental justice organization, has been a pioneer in opposing SRM research. It was later joined by the Heinrich Böll Foundation (affiliated with the German Green Party) and the Center for International Environmental Law. The German NGO Geoengineering Monitor (funded through a collaboration between ETC Group, Biofuelwatch and the Heinrich Boell Foundation) has the goal to "serve as a resource for civil society, policy-makers, journalists and the wider public in order to support advocacy work that opposes geoengineering and aims to address the root causes of climate change instead".

In 2021, researchers at Harvard put plans for a SRM test on hold after Indigenous Sámi people objected to the test taking place in their homeland. Although the test would not have involved any atmospheric experiments, members of the Saami Council spoke out against the lack of consultation and SRM more broadly. Speaking at a panel organized by the Center for International Environmental Law and other groups, Saami Council Vice President Åsa Larsson Blind said, "This goes against our worldview that we as humans should live and adapt to nature."

By 2024, U.S. government agencies were operating an airborne early warning system for detecting small concentrations of aerosols to determine where other countries might be carrying out geoengineering attempts, thought to have unpredictable effects on climate.

The Climate Overshoot Commission is a group of global, eminent, and independent figures. It investigated and developed a comprehensive strategy to reduce climate risks. The Commission is not supporting deployment of SRM. In fact, it recommends a "a moratorium on the deployment of solar radiation modification (SRM) and large-scale outdoor experiment". But it also says that "governance of SRM research should be expanded".

Proposed international non-use agreement on solar geoengineering

In 2022, a dozen academics launched a campaign for national policies of "no public funding, no outdoor experiments, no patents, no deployment, and no support in international institutions... including in assessments by the Intergovernmental Panel on Climate Change." The proponents call this an International Non-Use Agreement on Solar Geoengineering.

The advocates’ core argument is that, because SRM would be global in effect and some countries are much more powerful than others, it is “not governable in a globally inclusive and just manner within the current international political system.” They therefore oppose the “normalization” of SRM and call on countries, intergovernmental organizations, and others to adopt the proposal’s five elements.

On the day that the academic article was published, the authors also launched a campaign calling for others to endorse the proposal. Their open letter emphasized, in addition to the governance challenges, that SRM’s risks are “poorly understood and can never be fully known” and that its potential would threaten commitments to reducing greenhouse gas emissions. As of December 2024, nearly 540 academics and 60 advocacy organizations have endorsed the proposal. Among the latter is Climate Action Network, itself a coalition of more than 1900 political organizations. The position from Climate Action Network included a footnote that excluded the Environmental Defense Fund and the Natural Resources Defense Council.

Research funding

As of 2018, total research funding worldwide remained modest, at less than 10 million US dollars annually. Almost all research into SRM has to date consisted of computer modeling or laboratory tests, and there are calls for more research funding as the science is poorly understood.

A study from 2022 investigated where the funding for solar geoengineering (SG) came from globally. The authors concluded "the primary funders of SG research do not emanate from fossil capital" and that there are "close ties to mostly US financial and technological capital as well as a number of billionaire philanthropists".

Country activities

Few countries have an explicit governmental position on SRM. Those that do, such as the United Kingdom and Germany, support some SRM research even if they do not see it as a current climate policy option. For example, the German Federal Government does have an explicit position on SRM and stated in 2023 in a strategy document climate foreign policy: "Due to the uncertainties, implications and risks, the German Government is not currently considering solar radiation management (SRM) as a climate policy option". The document also stated: "Nonetheless, in accordance with the precautionary principle we will continue to analyse and assess the extensive scientific, technological, political, social and ethical risks and implications of SRM, in the context of technology-neutral basic research as distinguished from technology development for use at scale".

Major academic institutions, including Harvard University, have begun research into SRM, with NOAA alone investing $22 million from 2019 to 2022, though few outdoor tests have been run to date.

Some countries, such as the U.S., Germany, China, Finland, Norway, and Japan, as well as the European Union, have funded SRM research.

In 2021, the National Academies of Sciences, Engineering, and Medicine released their consensus study report Recommendations for Solar Geoengineering Research and Research Governance. The report recommended an initial investment into SRM research of $100–200 million over five years.

International collaborations

Under the World Climate Research Programme there is a Lighthouse Activity called Research on Climate Intervention as of 2024. This will include research on all possible climate interventions (another term for climate engineering): "large-scale Carbon Dioxide Removal (CDR; also known as Greenhouse Gas Removal, or Negative Emissions Technologies) and Solar Radiation Modification (SRM; also known as Solar Reflection Modification, Albedo Modification, or Radiative Forcing Management)".

Philanthropic and venture capitalist activities

There are also research activities on SRM that are funded by philanthropy. According to Bloomberg News, as of 2024 several American billionaires are funding research into SRM: "A growing number of Silicon Valley founders and investors are backing research into blocking the sun by spraying reflective particles high in the atmosphere or making clouds brighter." The article listed the following billionaires as being notable geoengineering research supporters: Mike Schroepfer, Sam Altman, Matt Cohler, Rachel Pritzker, Bill Gates, Dustin Moskovitz.

SRM research initiatives, or non-profit knowledge hubs, include for example SRM360 which is "supporting an informed, evidence-based discussion of sunlight reflection methods (SRM)". Funding comes from the LAD Climate Fund. David Keith, a long-term proponent of SRM, is one of the members of the advisory board.

Another example is Reflective, which is "a philanthropically-funded initiative focused on sunlight reflection research and technology development". Their funding is "entirely by grants or donations from a number of leading philanthropies focused on addressing climate change": Outlier Projects, Navigation Fund, Astera Institute, Open Philanthropy, Crankstart, Matt Cohler, Richard and Sabine Wood.

Deployment activities

Some startups in the private sector have secured funding for potential SRM deployment. One such example is Make Sunsets, which began launching balloons containing helium and sulfur dioxide. The startup sells cooling credits, claiming that each US$10 credit would offset the warming effect of one ton of carbon dioxide warming for a year. Based in California, Make Sunsets conducted some of its activities in Mexico. In response to these activities, which were conducted without prior notification or consent, the Mexican government announced measures to prohibit SRM experiments within its borders. Even people who advocate for more research into SRM have criticized Make Sunsets' undertaking.

Mexico has announced that it will prohibit "experimental practices with solar geoengineering", although it remains unclear what this policy will include and whether the policy has actually been implemented.

Society and culture

There have been a handful of studies into attitudes to and opinions of SRM. These generally find low levels of awareness, uneasiness with the implementation of SRM, cautious support of research, and a preference for greenhouse gas emissions reduction. Although most public opinion studies have polled residents of developed countries, those that have examined residents of developing countries—which tend to be more vulnerable to climate change impacts—find slightly greater levels of support there.

The largest assessment of public opinion and perception of SRM, which had over 30,000 respondents in 30 countries, found that "Global South publics are significantly more favorable about potential benefits and express greater support for climate-intervention technologies." Though the assessment also found Global South publics had greater concern the technologies could undermine climate-mitigation.

In the film Snowpiercer, as well as in the television spin-off, an apocalyptic global ice-age is caused by the introduction of a fictional substance, dubbed, CW-7 into the atmosphere, with the intention of preventing global-warming by blocking out the light of the sun.

In the novel The Ministry for the Future by Kim Stanley Robinson, stratospheric aerosol injection is used by the Indian Government as a climate mitigation measure following a catastrophic and deadly heatwave.

The novel Termination Shock by Neal Stephenson revolves around a private initiative by a billionaire, with covert support or opposition from some national governments, to inject sulfur into the stratosphere using recoverable gliders launched with a gun.

Pythagoras

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Pythagoras   Pythagoras Bust of Pythago...