Search This Blog

Wednesday, September 23, 2015

Search for extraterrestrial intelligence


From Wikipedia, the free encyclopedia

Screen shot of the screensaver for SETI@home, a distributed computing project in which volunteers donate idle computer power to analyze radio signals for signs of extraterrestrial intelligence

The search for extraterrestrial intelligence (SETI) is the collective name for scientific activities undertaken to search for intelligent extraterrestrial life. For example, electromagnetic radiation is monitored for signs of transmissions from civilizations on other worlds.[1][2]
There are great challenges in searching the universe for signs of intelligent life, including their identification and interpretation. As various SETI projects have progressed, some have criticized early claims by researchers as being too "euphoric".[3]

Scientific investigation of the potential phenomenon began shortly after the advent of radio in the early 1900s. Focused international efforts to answer a variety of scientific questions have been going on since the 1980s. More recently, Stephen Hawking, British physicist, and Yuri Milner, Russian billionaire, along with the SETI Institute, announced a well-funded effort, called the Breakthrough Initiatives, to expand efforts to search for extraterrestrial life.[4]

History of SETI

Early work

As early as 1896, Nikola Tesla suggested that an extreme version of his wireless electrical transmission system could be used to contact beings on Mars.[5] In 1899 while conducting experiments at his Colorado Springs experimental station he thought he had detected a signal from the planet since an odd repetitive static signal seemed to cut off when Mars set in the night sky. Analysis of Tesla's research has ranged from suggestions that Tesla detected nothing, he simply was misunderstanding the new technology he was working with,[6] to claims that Tesla may have been observing signals from Marconi's European radio experiments and even that he could have picked up naturally occurring Jovian plasma torus signals.[7] In the early 1900s, Guglielmo Marconi, Lord Kelvin, and David Peck Todd also stated their belief that radio could be used to contact Martians, with Marconi stating that his stations had also picked up potential Martian signals.[8][better source needed]

On August 21–23, 1924, Mars entered an opposition closer to Earth than any time in a century before or the next 80 years.[9] In the United States, a "National Radio Silence Day" was promoted during a 36-hour period from the 21–23, with all radios quiet for five minutes on the hour, every hour. At the United States Naval Observatory, a radio receiver was lifted 3 kilometers (2 miles) above the ground in a dirigible tuned to a wavelength between 8 and 9 kilometers (~5 miles), using a "radio-camera" developed by Amherst College and Charles Francis Jenkins. The program was led by David Peck Todd with the military assistance of Admiral Edward W. Eberle (Chief of Naval Operations), with William F. Friedman (chief cryptographer of the United States Army), assigned to translate any potential Martian messages.[10][11]

A 1959 paper by Philip Morrison and Giuseppe Cocconi first pointed out the possibility of searching the microwave spectrum, and proposed frequencies and a set of initial targets[12][13]

In 1960, Cornell University astronomer Frank Drake performed the first modern SETI experiment, named "Project Ozma", after the Queen of Oz in L. Frank Baum's fantasy books.[14] Drake used a radio telescope 26 meters in diameter at Green Bank, West Virginia, to examine the stars Tau Ceti and Epsilon Eridani near the 1.420 gigahertz marker frequency, a region of the radio spectrum dubbed the "water hole" due to its proximity to the hydrogen and hydroxyl radical spectral lines. A 400 kilohertz band was scanned around the marker frequency, using a single-channel receiver with a bandwidth of 100 hertz. He found nothing of interest..

The Soviet scientists took a strong interest in SETI during the 1960s and performed a number of searches with omnidirectional antennas in the hope of picking up powerful radio signals. Soviet astronomer Iosif Shklovsky wrote the pioneering book in the field Universe, Life, Intelligence (1962), which was expanded upon by American astronomer Carl Sagan as the best-selling Intelligent Life in the Universe (1966).[15]

In the March 1955 issue of Scientific American, John D. Kraus described a concept to scan the cosmos for natural radio signals using a flat-plane radio telescope equipped with a parabolic reflector. Within two years, his concept was approved for construction by Ohio State University. With US$71,000 total in grants from the National Science Foundation, construction began on a 20-acre (8.1 ha) plot in Delaware, Ohio. This Ohio State University Radio Observatory telescope was called "Big Ear". Later, it began the world's first continuous SETI program, called the Ohio State University SETI program.

In 1971, NASA funded a SETI study that involved Drake, Bernard M. Oliver of Hewlett-Packard Corporation, and others. The resulting report proposed the construction of an Earth-based radio telescope array with 1,500 dishes known as "Project Cyclops". The price tag for the Cyclops array was US$10 billion. Cyclops was not built, but the report[16] formed the basis of much SETI work that followed.

The WOW! Signal
Credit: The Ohio State University Radio Observatory and the North American AstroPhysical Observatory (NAAPO).

The OSU SETI program gained fame on August 15, 1977, when Jerry Ehman, a project volunteer, witnessed a startlingly strong signal received by the telescope. He quickly circled the indication on a printout and scribbled the exclamation "Wow!" in the margin. Dubbed the Wow! signal, it is considered by some[who?] to be the best candidate for a radio signal from an artificial, extraterrestrial source ever discovered, but it has not been detected again in several additional searches.[17]

Sentinel, META, and BETA

In 1980, Carl Sagan, Bruce Murray, and Louis Friedman founded the U.S. Planetary Society, partly as a vehicle for SETI studies.

In the early 1980s, Harvard University physicist Paul Horowitz took the next step and proposed the design of a spectrum analyzer specifically intended to search for SETI transmissions. Traditional desktop spectrum analyzers were of little use for this job, as they sampled frequencies using banks of analog filters and so were restricted in the number of channels they could acquire. However, modern integrated-circuit digital signal processing (DSP) technology could be used to build autocorrelation receivers to check far more channels. This work led in 1981 to a portable spectrum analyzer named "Suitcase SETI" that had a capacity of 131,000 narrow band channels. After field tests that lasted into 1982, Suitcase SETI was put into use in 1983 with the 26-meter (85 ft) Harvard/Smithsonian radio telescope at Oak Ridge Observatory in Harvard, Massachusetts. This project was named "Sentinel" and continued into 1985.

Even 131,000 channels were not enough to search the sky in detail at a fast rate, so Suitcase SETI was followed in 1985 by Project "META", for "Megachannel Extra-Terrestrial Assay". The META spectrum analyzer had a capacity of 8.4 million channels and a channel resolution of 0.05 hertz. An important feature of META was its use of frequency Doppler shift to distinguish between signals of terrestrial and extraterrestrial origin. The project was led by Horowitz with the help of the Planetary Society, and was partly funded by movie maker Steven Spielberg. A second such effort, META II, was begun in Argentina in 1990, to search the southern sky. META II is still in operation, after an equipment upgrade in 1996.

The follow-on to META was named "BETA", for "Billion-channel Extraterrestrial Assay", and it commenced observation on October 30, 1995. The heart of BETA's processing capability consisted of 63 dedicated fast Fourier transform (FFT) engines, each capable of performing a 222-point complex FFTs in two seconds, and 21 general-purpose personal computers equipped with custom digital signal processing boards. This allowed BETA to receive 250 million simultaneous channels with a resolution of 0.5 hertz per channel. It scanned through the microwave spectrum from 1.400 to 1.720 gigahertz in eight hops, with two seconds of observation per hop. An important capability of the BETA search was rapid and automatic re-observation of candidate signals, achieved by observing the sky with two adjacent beams, one slightly to the east and the other slightly to the west. A successful candidate signal would first transit the east beam, and then the west beam and do so with a speed consistent with Earth's sidereal rotation rate. A third receiver observed the horizon to veto signals of obvious terrestrial origin. On March 23, 1999, the 26-meter radio telescope on which Sentinel, META and BETA were based was blown over by strong winds and seriously damaged.[18] This forced the BETA project to cease operation.

MOP and Project Phoenix


Sensitivity vs range for SETI radio searches. The diagonal lines show transmitters of different effective powers. The x-axis is the sensitivity of the search. The y-axis on the right is the range in light-years, and on the left is the number of Sun-like stars within this range. The vertical line labeled SS is the typical sensitivity achieved by a full sky search, such as BETA above. The vertical line labeled TS is the typical sensitivity achieved by a targeted search such as Phoenix.[19]

In 1978, the NASA SETI program had been heavily criticized by Senator William Proxmire, and funding for SETI research was removed from the NASA budget by Congress in 1981;[20] however, funding was restored in 1982, after Carl Sagan talked with Proxmire and convinced him of the program's value.[20] In 1992, the U.S. government funded an operational SETI program, in the form of the NASA Microwave Observing Program (MOP). MOP was planned as a long-term effort to conduct a general survey of the sky and also carry out targeted searches of 800 specific nearby stars. MOP was to be performed by radio antennas associated with the NASA Deep Space Network, as well as the 140-foot (43 m) radio telescope of the National Radio Astronomy Observatory at Green Bank, West Virginia and the 1,000-foot (300 m) radio telescope at the Arecibo Observatory in Puerto Rico. The signals were to be analyzed by spectrum analyzers, each with a capacity of 15 million channels. These spectrum analyzers could be grouped together to obtain greater capacity. Those used in the targeted search had a bandwidth of 1 hertz per channel, while those used in the sky survey had a bandwidth of 30 hertz per channel.

MOP drew the attention of the United States Congress, where the program was ridiculed[21] and canceled one year after its start.[20] SETI advocates continued without government funding, and in 1995 the nonprofit SETI Institute of Mountain View, California resurrected the MOP program under the name of Project "Phoenix", backed by private sources of funding. Project Phoenix, under the direction of Jill Tarter, is a continuation of the targeted search program from MOP and studies roughly 1,000 nearby Sun-like stars. From 1995 through March 2004, Phoenix conducted observations at the 64-meter (210 ft) Parkes radio telescope in Australia, the 140-foot (43 m) radio telescope of the National Radio Astronomy Observatory in Green Bank, West Virginia, and the 1,000-foot (300 m) radio telescope at the Arecibo Observatory in Puerto Rico. The project observed the equivalent of 800 stars over the available channels in the frequency range from 1200 to 3000 MHz. The search was sensitive enough to pick up transmitters with 1 GW EIRP to a distance of about 200 light-years. According to Prof. Tarter, in 2012 it costs around "$2 million per year to keep SETI research going at the SETI Institute" and approximately 10 times that to support "all kinds of SETI activity around the world."[22]

Ongoing radio searches


Microwave window as seen by a ground based system. From NASA report SP-419: SETI – the Search for Extraterrestrial Intelligence

Many radio frequencies penetrate Earth's atmosphere quite well, and this led to radio telescopes that investigate the cosmos using large radio antennas. Furthermore, human endeavors emit considerable electromagnetic radiation as a byproduct of communications such as television and radio. These signals would be easy to recognize as artificial due to their repetitive nature and narrow bandwidths. If this is typical, one way of discovering an extraterrestrial civilization might be to detect artificial radio emissions from a location outside the Solar System.

Allen Telescope Array

The SETI Institute collaborated with the Radio Astronomy Laboratory at University of California, Berkeley to develop a specialized radio telescope array for SETI studies, something like a mini-cyclops array. Formerly known as the One Hectare Telescope (1HT), the concept was renamed the "Allen Telescope Array" (ATA) after the project's benefactor Paul Allen. Its sensitivity would be equivalent to a single large dish more than 100 meters in diameter if completed. Presently, the array under construction has 42 dishes at the Hat Creek Radio Observatory in rural northern California.[23][24]

The full array (ATA-350) is planned to consist of 350 or more offset-Gregorian radio dishes, each 6.1 meters (20 feet) in diameter. These dishes are the largest producible with commercially available satellite television dish technology. The ATA was planned for a 2007 completion date, at a very modest cost of US$25 million. The SETI Institute provided money for building the ATA while University of California, Berkeley designed the telescope and provided operational funding. The first portion of the array (ATA-42) became operational in October 2007 with 42 antennas. The DSP system planned for ATA-350 is extremely ambitious. Completion of the full 350 element array will depend on funding and the technical results from ATA-42.

ATA-42 (ATA) is designed to allow multiple observers simultaneous access to the interferometer output at the same time. Typically, the ATA snapshot imager (used for astronomical surveys and SETI) is run in parallel with the beam forming system (used primarily for SETI).[25] ATA also supports observations in multiple synthesized pencil beams at once, through a technique known as "multibeaming." Multibeaming provides an effective filter for identifying false positives in SETI, since a very distant transmitter must appear at only one point on the sky.[26][27][28]

SETI Institute's Center for SETI Research (CSR) uses ATA in the search for extraterrestrial intelligence, observing 12 hours a day, 7 days a week. From 2007-2015, ATA has identified hundreds of millions of technological signals. So far, all these signals have been assigned the status of noise or radio frequency interference because a) they appear to be generated by satellites or Earth-based transmitters, or b) they disappeared before the threshold time limit of ~1 hour.[29][30] Researchers in CSR are presently working on ways to reduce the threshold time limit, and to expand ATA's capabilities for detection of signals that may have embedded messages.[31]

Berkeley astronomers used the ATA to pursue several science topics, some of which might have turned up transient SETI signals,[32][33][34] until 2011, when the collaboration between the University of California and the SETI Institute was terminated. The DSP system planned for the ATA is extremely ambitious. The first portion of the array became operational in October 2007 with 42 antennas. Completion of the full 350 element array will depend on funding and the technical results from the 42-element sub-array.

CNET published an article and pictures about the Allen Telescope Array (ATA) on December 12, 2008.[35][36]

In April 2011, the ATA was forced to enter an 8-month "hibernation" due to funding shortfalls. Regular operation of the ATA was resumed on December 5, 2011.[37][38]

In 2012, new life was breathed into the ATA thanks to a $3.6M philanthropic donation by Franklin Antonio, Co-Founder and Chief Scientist of QUALCOMM Incorporated.[39] This gift supports upgrades of all the receivers on the ATA dishes to have dramatically (2x - 10x from 1–8 GHz) greater sensitivity than before and supporting sensitive observations over a wider frequency range from 1–18 GHz, though initially the radio frequency electronics go to only 12 GHz. As of July, 2013 the first of these receivers was installed and proven. Full installation on all 42 antennas is expected in June, 2014. ATA is especially well suited to the search for extraterrestrial intelligence SETI and to discovery of astronomical radio sources, such as heretofore unexplained non-repeating, possibly extragalactic, pulses known as fast radio bursts or FRBs.

View of Arecibo Observatory in Puerto Rico with its 300 m (980 ft) dish- the world's largest. A small fraction of its observation time is devoted to SETI searches.

SERENDIP

SERENDIP (Search for Extraterrestrial Radio Emissions from Nearby Developed Intelligent Populations) is a SETI program launched in 1979 by the University of California, Berkeley.[40] SERENDIP takes advantage of ongoing "mainstream" radio telescope observations as a "piggy-back" or "commensal" program, using large radio telescopes including the NRAO 90m telescope at Green Bank and the Arecibo 305m telescope. Rather than having its own observation program, SERENDIP analyzes deep space radio telescope data that it obtains while other astronomers are using the telescopes.
The most recently deployed SERENDIP spectrometer, SERENDIP V.v, was installed at the Arecibo Observatory in June 2009 and is currently operational. The digital back-end instrument is an FPGA-based 128 million-channel digital spectrometer covering 200 MHz of bandwidth. It takes data commensally with the seven-beam Arecibo L-band Feed Array[41] (ALFA). The program has found around 400 suspicious signals, but there is not enough data to prove that they belong to extraterrestrial intelligence.[42]

Breakthrough Listen

Breakthrough Listen is a ten-year initiative with $100 million funding begun in July 2015 to actively search for intelligent extraterrestrial communications in the universe, in a substantially expanded way, using resources that had not previously been extensively used for the purpose.[43][44][45] It has been described as the most comprehensive search for alien communications to date.[44]
Announced in July 2015, the project will use thousands of hours every year on two major radiotelescopes, the Green Bank Observatory in West Virginia and the Parkes Observatory in Australia.[46] Previously, only about 24 to 36 hours of telescope per year was used in the search for alien life.[44] Furthermore, the Automated Planet Finder of Lick Observatory will search for optical signals coming from laser transmissions. For processing of the massive data, the experience of SETI and SETI@home will be used.[46] SETI founder Frank Drake is one of the project's scientists.[43][44]

Community SETI projects

SETI@home


SETI@home logo

SETI@home was conceived by David Gedye along with Craig Kasnoff and is a popular volunteer distributed computing project that was launched by the University of California, Berkeley, in May 1999. It was originally funded by The Planetary Society and Paramount Pictures, and later by the state of California. The project is run by director David P. Anderson and chief scientist Dan Werthimer. Any individual can become involved with SETI research by downloading the Berkeley Open Infrastructure for Network Computing (BOINC) software program, attaching to the SETI@home project, and allowing the program to run as a background process that uses idle computer power. The SETI@home program itself runs signal analysis on a "work unit" of data recorded from the central 2.5 MHz wide band of the SERENDIP IV instrument. After computation on the work unit is complete, the results are then automatically reported back to SETI@home servers at University of California, Berkeley. By June 28, 2009, the SETI@home project had over 180,000 active participants volunteering a total of over 290,000 computers. These computers give SETI@home an average computational power of 617 teraFLOPS.[47] In 2004 radio source SHGb02+14a was an interesting signal but was quickly shown to have a natural source.[48][49]

As of 2010, after 10 years of data collection, SETI@home has listened to that one frequency at every point of over 67 percent of the sky observable from Arecibo with at least three scans (out of the goal of nine scans), which covers about 20 percent of the full celestial sphere.[50]

SETI Net

SETI Net is a private search system created by a single individual. It is closely affiliated with the SETI League and is one of the project Argus stations (DM12jw).

The SETI Net station consists of off-the-shelf, consumer-grade electronics to minimize cost and to allow this design to be replicated as simply as possible. It has a 3-meter parabolic antenna that can be directed in azimuth and elevation, an LNA that covers the 1420 MHz spectrum, a receiver to reproduce the wideband audio, and a standard personal computer as the control device and for deploying the detection algorithms.

The antenna can be pointed and locked to one sky location, enabling the system to integrate on it for long periods. Currently the Wow! signal area is being monitored when it is above the horizon. All search data are collected and made available on the Internet archive.

SETI Net started operation in the early 1980s as a way to learn about the science of the search, and has developed several software packages for the amateur SETI community. It has provided an astronomical clock, a file manager to keep track of SETI data files, a spectrum analyzer optimized for amateur SETI, remote control of the station from the Internet, and other packages.

The SETI League and Project Argus

Founded in 1994 in response to the United States Congress cancellation of the NASA SETI program, The SETI League, Inc. is a membership-supported nonprofit organization with 1,500 members in 62 countries. This grass-roots alliance of amateur and professional radio astronomers is headed by executive director emeritus H. Paul Shuch, the engineer credited with developing the world's first commercial home satellite TV receiver. Many SETI League members are licensed radio amateurs and microwave experimenters. Others are digital signal processing experts and computer enthusiasts.

The SETI League pioneered the conversion of backyard satellite TV dishes 3 to 5 m (10–16 ft) in diameter into research-grade radio telescopes of modest sensitivity.[51] The organization concentrates on coordinating a global network of small, amateur-built radio telescopes under Project Argus, an all-sky survey seeking to achieve real-time coverage of the entire sky.[52] Project Argus was conceived as a continuation of the all-sky survey component of the late NASA SETI program (the targeted search having been continued by the SETI Institute's Project Phoenix). There are currently 143 Project Argus radio telescopes operating in 27 countries. Project Argus instruments typically exhibit sensitivity on the order of 10−23 Watts/square metre, or roughly equivalent to that achieved by the Ohio State University Big Ear radio telescope in 1977, when it detected the landmark "Wow!" candidate signal.

The name "Argus" derives from the mythical Greek guard-beast who had 100 eyes, and could see in all directions at once. In the SETI context, the name has been used for radio telescopes in fiction (Arthur C. Clarke, "Imperial Earth"; Carl Sagan, "Contact"), was the name initially used for the NASA study ultimately known as "Cyclops," and is the name given to an omnidirectional radio telescope design being developed at the Ohio State University.

Optical experiments

While most SETI sky searches have studied the radio spectrum, some SETI researchers have considered the possibility that alien civilizations might be using powerful lasers for interstellar communications at optical wavelengths. The idea was first suggested by R. N. Schwartz and Charles Hard Townes in a 1961 paper published in the journal Nature titled "Interstellar and Interplanetary Communication by Optical Masers". However, the 1971 Cyclops study discounted the possibility of optical SETI, reasoning that construction of a laser system that could outshine the bright central star of a remote star system would be too difficult. In 1983, Townes published a detailed study of the idea in the United States journal Proceedings of the National Academy of Sciences, which was met with widespread agreement by the SETI community.[citation needed]

There are two problems with optical SETI. The first problem is that lasers are highly "monochromatic", that is, they emit light only on one frequency, making it troublesome to figure out what frequency to look for. However, according to the uncertainty principle, emitting light in narrow pulses results in a broad spectrum of emission; the spread in frequency becomes higher as the pulse width becomes narrower, making it easier to detect an emission.

The other problem is that while radio transmissions can be broadcast in all directions, lasers are highly directional. This means that a laser beam could be easily blocked by clouds of interstellar dust, and Earth would have to cross its direct line of fire by chance to receive it.

Optical SETI supporters have conducted paper studies[53] of the effectiveness of using contemporary high-energy lasers and a ten-meter diameter mirror as an interstellar beacon. The analysis shows that an infrared pulse from a laser, focused into a narrow beam by such a mirror, would appear thousands of times brighter than the Sun to a distant civilization in the beam's line of fire. The Cyclops study proved incorrect in suggesting a laser beam would be inherently hard to see.

Such a system could be made to automatically steer itself through a target list, sending a pulse to each target at a constant rate. This would allow targeting of all Sun-like stars within a distance of 100 light-years. The studies have also described an automatic laser pulse detector system with a low-cost, two-meter mirror made of carbon composite materials, focusing on an array of light detectors. This automatic detector system could perform sky surveys to detect laser flashes from civilizations attempting contact.

Several optical SETI experiments are now in progress. A Harvard-Smithsonian group that includes Paul Horowitz designed a laser detector and mounted it on Harvard's 155 centimeters (61 inches) optical telescope. This telescope is currently being used for a more conventional star survey, and the optical SETI survey is "piggybacking" on that effort. Between October 1998 and November 1999, the survey inspected about 2,500 stars. Nothing that resembled an intentional laser signal was detected, but efforts continue. The Harvard-Smithsonian group is now working with Princeton University to mount a similar detector system on Princeton's 91-centimeter (36-inch) telescope. The Harvard and Princeton telescopes will be "ganged" to track the same targets at the same time, with the intent being to detect the same signal in both locations as a means of reducing errors from detector noise.

The Harvard-Smithsonian group is now building a dedicated all-sky optical survey system along the lines of that described above, featuring a 1.8-meter (72-inch) telescope. The new optical SETI survey telescope is being set up at the Oak Ridge Observatory in Harvard, Massachusetts.

The University of California, Berkeley, home of SERENDIP and SETI@home, is also conducting optical SETI searches. One is being directed by Geoffrey Marcy, an extrasolar planet hunter, and involves examination of records of spectra taken during extrasolar planet hunts for a continuous, rather than pulsed, laser signal. The other Berkeley optical SETI effort is more like that being pursued by the Harvard-Smithsonian group and is being directed by Dan Werthimer of Berkeley, who built the laser detector for the Harvard-Smithsonian group. The Berkeley survey uses a 76-centimeter (30-inch) automated telescope at Leuschner Observatory and an older laser detector built by Werthimer.

The 74m Colossus Telescope[54] is designed to detect optical and thermal signatures of extraterrestrial civilizations from planetary systems within 60 light-years from the Sun.

Gamma-ray bursts

Gamma-ray bursts (GRBs) are candidates for extraterrestrial communication. These high-energy bursts are observed about once per day and originate throughout the observable universe. SETI currently omits gamma ray frequencies in their monitoring and analysis because they are absorbed by the Earth's atmosphere and difficult to detect with ground-based receivers. In addition, the wide burst bandwidths pose a serious analysis challenge for modern digital signal processing systems. Still, the continued mysteries surrounding gamma-ray bursts have encouraged hypotheses invoking extraterrestrials. John A. Ball from the MIT Haystack Observatory suggests that an advanced civilization that has reached a technological singularity would be capable of transmitting a two-millisecond pulse encoding 1×1018 bits of information. This is "comparable to the estimated total information content of Earth's biosystem—genes and memes and including all libraries and computer media."[55]

Search for extraterrestrial artifacts

The possibility of using interstellar messenger probes in the search for extraterrestrial intelligence was first suggested by Ronald N. Bracewell in 1960 (see Bracewell probe), and the technical feasibility of this approach was demonstrated by the British Interplanetary Society's starship study Project Daedalus in 1978. Starting in 1979, Robert Freitas advanced arguments[56][57][58] for the proposition that physical space-probes are a superior mode of interstellar communication to radio signals. See Voyager Golden Record.

In recognition that any sufficiently advanced interstellar probe in the vicinity of Earth could easily monitor the terrestrial Internet, Invitation to ETI was established by Prof. Allen Tough in 1996, as a Web-based SETI experiment inviting such spacefaring probes to establish contact with humanity. The project's 100 Signatories includes prominent physical, biological, and social scientists, as well as artists, educators, entertainers, philosophers and futurists. Prof. H. Paul Shuch, executive director emeritus of The SETI League, serves as the project's Principal Investigator.

Inscribing a message in matter and transporting it to an interstellar destination can be enormously more energy efficient than communication using electromagnetic waves if delays larger than light transit time can be tolerated.[59] That said, for simple messages such as "hello," radio SETI could be far more efficient.[60] If energy requirement is used as a proxy for technical difficulty, then a solarcentric Search for Extraterrestrial Artifacts (SETA)[61] may be a useful supplement to traditional radio or optical searches.[62][63]

Much like the "preferred frequency" concept in SETI radio beacon theory, the Earth-Moon or Sun-Earth libration orbits[64] might therefore constitute the most universally convenient parking places for automated extraterrestrial spacecraft exploring arbitrary stellar systems. A viable long-term SETI program may be founded upon a search for these objects.

In 1979, Freitas and Valdes conducted a photographic search of the vicinity of the Earth-Moon triangular libration points L4 and L5, and of the solar-synchronized positions in the associated halo orbits, seeking possible orbiting extraterrestrial interstellar probes, but found nothing to a detection limit of about 14th magnitude.[64] The authors conducted a second, more comprehensive photographic search for probes in 1982[65] that examined the five Earth-Moon Lagrangian positions and included the solar-synchronized positions in the stable L4/L5 libration orbits, the potentially stable nonplanar orbits near L1/L2, Earth-Moon L3, and also L2 in the Sun-Earth system. Again no extraterrestrial probes were found to limiting magnitudes of 17–19th magnitude near L3/L4/L5, 10–18th magnitude for L1/L2, and 14–16th magnitude for Sun-Earth L2.

In June 1983, Valdes and Freitas[66] used the 26 m radiotelescope at Hat Creek Radio Observatory to search for the tritium hyperfine line at 1516 MHz from 108 assorted astronomical objects, with emphasis on 53 nearby stars including all visible stars within a 20 light-year radius. The tritium frequency was deemed highly attractive for SETI work because (1) the isotope is cosmically rare, (2) the tritium hyperfine line is centered in the SETI waterhole region of the terrestrial microwave window, and (3) in addition to beacon signals, tritium hyperfine emission may occur as a byproduct of extensive nuclear fusion energy production by extraterrestrial civilizations. The wideband- and narrowband-channel observations achieved sensitivities of 5–14 x 10−21 W/m²/channel and 0.7-2 x 10−24 W/m²/channel, respectively, but no detections were made.

Technosignatures

Technosignatures, including all signs of technology with the exception of the interstellar radio messages that define traditional SETI, are a recent avenue in the search for extraterrestrial intelligence. Technosignatures may originate from various sources, from megastructures such as Dyson spheres and space mirrors or space shaders[67] to the atmospheric contamination created by an industrial civilization,[68] or city lights on extrasolar planets, and may be detectable in the future with large hypertelescopes.[69]
Technosignatures can be divided into three broad categories: astroengineering projects, signals of planetary origin, and spacecraft within and outside the Solar System. An astroengineering installation such as a Dyson sphere, designed to convert all of the incident radiation of its host star into energy, could be detected through the observation of an infrared excess from a solar analog star.[70] After examining some 100,000 nearby large galaxies a team of researchers has concluded that none of them contain any obvious signs of highly advanced technological civilizations. [71][72][73] Another form of astroengineering, the Shkadov thruster, moves its host star by reflecting some of the star's light back on itself, and can be detected by observing if its transits across the star abruptly end with the thruster in front.[74] Asteroid mining within the Solar System is also a detectable technosignature of the first kind.[75]

Individual extrasolar planets can be analyzed for signs of technology. Avi Loeb of the Harvard-Smithsonian Center for Astrophysics has proposed that persistent light signals on the night side of an exoplanet can be an indication of the presence of cities and an advanced civilization.[76][77] In addition, the excess infrared radiation[69][78] and chemicals[79][80] produced by various industrial processes or terraforming efforts[81] may point to intelligence.

Clearly, light and heat detected from planets are to be distinguished from natural sources to conclusively prove the existence of civilization on a planet. However, as argued by the Colossus team,[82] a civilization heat signature should be within a "comfortable" temperature range, like terrestrial urban heat islands, i.e. only a few degrees warmer than the planet itself. In contrast, such natural sources as wild fires, volcanoes, etc. are significantly hotter, so they will be well distinguished by their maximum flux at a different wavelength.

Extraterrestrial craft are another target in the search for technosignatures. Magnetic sail interstellar spacecraft are detectable over thousands of light-years of distance through the synchrotron radiation they produce through interaction with the interstellar medium; other interstellar spacecraft designs can be detected at more modest distances.[83] In addition, robotic probes within the Solar System are also being sought out with optical and radio searches.[84][85]

Fermi paradox

Italian physicist Enrico Fermi suggested in the 1950s that if technologically advanced civilizations are common in the universe, then they should be detectable in one way or another. (According to those who were there,[86] Fermi either asked "Where are they?" or "Where is everybody?")
The Fermi paradox is commonly understood as asking why extraterrestrials have not visited Earth,[87] but the same reasoning applies to the question of why signals from extraterrestrials have not been heard. The SETI version of the question is sometimes referred to as "the Great Silence".

The Fermi paradox can be stated more completely as follows:
The size and age of the universe incline us to believe that many technologically advanced civilizations must exist. However, this belief seems logically inconsistent with our lack of observational evidence to support it. Either (1) the initial assumption is incorrect and technologically advanced intelligent life is much rarer than we believe, or (2) our current observations are incomplete and we simply have not detected them yet, or (3) our search methodologies are flawed and we are not searching for the correct indicators.
There are multiple explanations proposed for the Fermi paradox,[88] ranging from analyses suggesting that intelligent life is rare (the "Rare Earth hypothesis"), to analyses suggesting that although extraterrestrial civilizations may be common, they would not communicate, or would not travel across interstellar distances.

Science writer Timothy Ferris has posited that since galactic societies are most likely only transitory, an obvious solution is an interstellar communications network, or a type of library consisting mostly of automated systems. They would store the cumulative knowledge of vanished civilizations and communicate that knowledge through the galaxy. Ferris calls this the "Interstellar Internet", with the various automated systems acting as network "servers". If such an Interstellar Internet exists, the hypothesis states, communications between servers are mostly through narrow-band, highly directional radio or laser links. Intercepting such signals is, as discussed earlier, very difficult. However, the network could maintain some broadcast nodes in hopes of making contact with new civilizations.

Although somewhat dated in terms of "information culture" arguments, not to mention the obvious technological problems of a system that could work effectively for billions of years and requires multiple lifeforms agreeing on certain basics of communications technologies, this hypothesis is actually testable (see below).

A significant problem is the vastness of space. Despite piggybacking on the world's most sensitive radio telescope, Charles Stuart Bowyer said, the instrument could not detect random radio noise emanating from a civilization like ours, which has been leaking radio and TV signals for less than 100 years. For SERENDIP and most other SETI projects to detect a signal from an extraterrestrial civilization, the civilization would have to be beaming a powerful signal directly at us. It also means that Earth civilization will only be detectable within a distance of 100 light-years.[89]

Post detection disclosure protocol

The International Academy of Astronautics (IAA) has a long-standing SETI Permanent Study Group (SPSG, formerly called the IAA SETI Committee), which addresses matters of SETI science, technology, and international policy. The SPSG meets in conjunction with the International Astronautical Congress (IAC) held annually at different locations around the world, and sponsors two SETI Symposia at each IAC. In 2005, the IAA established the SETI: Post-Detection Science and Technology Taskgroup (Chairman, Professor Paul Davies) "to act as a Standing Committee to be available to be called on at any time to advise and consult on questions stemming from the discovery of a putative signal of extraterrestrial intelligent (ETI) origin."

When awarded the 2009 TED Prize, SETI Institute's Jill Tarter outlined the organisation's "post detection protocol".[90] During NASA's funding of the project, an administrator would be first informed with the intention of informing the United States executive government. The current protocol for SETI Institute is to first internally investigate the signal, seeking independent verification and confirmation. During the process, the organisation's private financiers would be secretly informed. Once a signal has been verified, a telegram would be sent via the Central Bureau for Astronomical Telegrams. Following this process, Tarter says that the organisation will hold a press conference with the aim of broadcasting to the public. SETI Institute's Seth Shostak has claimed that knowledge of the discovery would likely leak as early as the verification process.[91]

However, the protocols mentioned apply only to radio SETI rather than for METI (Active SETI).[92] The intention for METI is covered under the SETI charter "Declaration of Principles Concerning Sending Communications with Extraterrestrial Intelligence".

The SETI Institute does not officially recognise the Wow! signal as of extraterrestrial origin (as it was unable to be verified). The SETI Institute has also publicly denied that the candidate signal Radio source SHGb02+14a is of extraterrestrial origin[93][94] though full details of the signal, such as its exact location have never been disclosed to the public.[speculation?] Although other volunteering projects such as Zooniverse credit users for discoveries, there is currently no crediting or early notification by SETI@Home following the discovery of a signal.

Some people, including Steven M. Greer,[95] have expressed cynicism that the general public might not be informed in the event of a genuine discovery of extraterrestrial intelligence due to significant vested interests. Some, such as Bruce Jakosky[96] have also argued that the official disclosure of extraterrestrial life may have far reaching and as yet undetermined implications for society, particularly for the world's religions.

Active SETI

Active SETI, also known as messaging to extraterrestrial intelligence (METI), consists of sending signals into space in the hope that they will be picked up by an alien intelligence.

Realized interstellar radio message projects

In November 1974, a largely symbolic attempt was made at the Arecibo Observatory to send a message to other worlds. Known as the Arecibo Message, it was sent towards the globular cluster M13, which is 25,000 light-years from Earth. Further IRMs Cosmic Call, Teen Age Message, Cosmic Call 2, and A Message From Earth were transmitted in 1999, 2001, 2003 and 2008 from the Evpatoria Planetary Radar.

Debate

Physicist Stephen Hawking, in his book A Brief History of Time, suggests that "alerting" extraterrestrial intelligences to our existence is foolhardy, citing mankind's history of treating his fellow man harshly in meetings of civilizations with a significant technology gap. He suggests, in view of this history, that we "lay low".

The concern over METI was raised by the science journal Nature in an editorial in October 2006, which commented on a recent meeting of the International Academy of Astronautics SETI study group. The editor said, "It is not obvious that all extraterrestrial civilizations will be benign, or that contact with even a benign one would not have serious repercussions" (Nature Vol 443 12 October 06 p 606). Astronomer and science fiction author David Brin has expressed similar concerns.[97]

Richard Carrigan, a particle physicist at the Fermi National Accelerator Laboratory near Chicago, Illinois, suggested that passive SETI could also be dangerous and that a signal released onto the Internet could act as a computer virus.[98] Computer security expert Bruce Schneier dismissed this possibility as a "bizarre movie-plot threat".[99]

To lend a quantitative basis to discussions of the risks of transmitting deliberate messages from Earth, the SETI Permanent Study Group of the International Academy of Astronautics adopted in 2007 a new analytical tool, the San Marino Scale.[100] Developed by Prof. Ivan Almar and Prof. H. Paul Shuch, the scale evaluates the significance of transmissions from Earth as a function of signal intensity and information content. Its adoption suggests that not all such transmissions are equal, and each must be evaluated separately before establishing blanket international policy regarding active SETI.[citation needed]

However, some scientists consider these fears about the dangers of METI as panic and irrational superstition; see, for example, Alexander L. Zaitsev's papers.[101][102]

On 13 February 2015, scientists (including Geoffrey Marcy, Seth Shostak, Frank Drake, Elon Musk and David Brin) at a convention of the American Association for the Advancement of Science, discussed Active SETI and whether transmitting a message to possible intelligent extraterrestrials in the Cosmos was a good idea;[103][104] one result was a statement, signed by many, that a "worldwide scientific, political and humanitarian discussion must occur before any message is sent".[105] On 28 March 2015, a related essay was written by Seth Shostak and published in The New York Times.[106]

Breakthrough Message

The Breakthrough Message program is an open competition announced in July 2015 to design a digital message that could be transmitted from Earth to an extraterrestrial civilization, with a US$1,000,000 prize pool. The message should be "representative of humanity and planet Earth". The program pledges "not to transmit any message until there has been a wide-ranging debate at high levels of science and politics on the risks and rewards of contacting advanced civilizations".[107]

Criticism

As various SETI projects have progressed, some have criticized early claims by researchers as being too "euphoric". For example, Peter Schenkel, while remaining a supporter of SETI projects, has written that
"[i]n light of new findings and insights, it seems appropriate to put excessive euphoria to rest and to take a more down-to-earth view ... We should quietly admit that the early estimates—that there may be a million, a hundred thousand, or ten thousand advanced extraterrestrial civilizations in our galaxy—may no longer be tenable."[1]
Clive Trotman presents some sobering but realistic calculations emphasizing the timeframe dimension.[108]

SETI has also occasionally been the target of criticism by those who suggest that it is a form of pseudoscience. In particular, critics allege that no observed phenomena suggest the existence of extraterrestrial intelligence, and furthermore that the assertion of the existence of extraterrestrial intelligence has no good Popperian criteria for falsifiability.[3]

In response, SETI advocates note, among other things, that the Drake Equation was never a hypothesis, and so never intended to be testable, nor to be "solved"; it was merely a clever representation of the agenda for the world's first scientific SETI meeting in 1961, and it serves as a tool in formulating testable hypotheses. Further, they note that the existence of intelligent life on Earth is a plausible reason to expect it elsewhere, and that individual SETI projects have clearly defined "stop" conditions.

Quantum teleportation



From Wikipedia, the free encyclopedia

Quantum teleportation is a process by which quantum information (e.g. the exact state of an atom or photon) can be transmitted (exactly, in principle) from one location to another, with the help of classical communication and previously shared quantum entanglement between the sending and receiving location. Because it depends on classical communication, which can proceed no faster than the speed of light, it cannot be used for faster-than-light transport or communication of classical bits. It also cannot be used to make copies of a system, as this violates the no-cloning theorem. While it has proven possible to teleport one or more qubits of information between two (entangled) atoms,[1][2][3] this has not yet been achieved between molecules or anything larger and may not even be possible due to the no-teleportation theorem.[clarification needed]

Although the name is inspired by the teleportation commonly used in fiction, there is no relationship outside the name, because quantum teleportation concerns only the transfer of information. Quantum teleportation is not a form of transportation, but of communication; it provides a way of transporting a qubit from one location to another, without having to move a physical particle along with it.
The seminal paper[4] first expounding the idea was published by C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters in 1993.[5] Since then, quantum teleportation was first realized with single photons [6] and later demonstrated with various material systems such as atoms, ions, electrons and superconducting circuits. The record distance for quantum teleportation is 143 km (89 mi),[7]

Non-technical summary

In matters relating to quantum or classical information theory, it is convenient to work with the simplest possible unit of information, the two-state system. In classical information this is a bit, commonly represented using one or zero (or true or false). The quantum analog of a bit is a quantum bit, or qubit. Qubits encode a type of information, called quantum information, which differs sharply from "classical" information. For example, quantum information can be neither copied (the no-cloning theorem) nor destroyed (the no-deleting theorem), and classical bits cannot be used to encode quantum bits.

Quantum teleportation provides a mechanism of moving a qubit from one location to another, without having to physically transport the underlying particle that a qubit is normally attached to. Much like the invention of the telegraph allowed classical bits to be transported at high speed across continents, quantum teleportation holds the promise that one day, qubits could be moved likewise. However, as of 2013, only photons and single atoms have been employed as information bearers; molecules have not, nor does this even seem likely in the upcoming years, as the technology remains daunting. Specific distance and quantity records are stated below.

The movement of qubits does require the movement of "things"; in particular, the actual teleportation protocol requires that an entangled quantum state or Bell state be created, and its two parts shared between two locations (the source and destination, or Alice and Bob). In essence, a certain kind of "quantum channel" between two sites must be established first, before a qubit can be moved. Teleportation also requires a classical information link to be established, as two classical bits must be transmitted to accompany each qubit. The need for such links may, at first, seem disappointing; however, this is not unlike ordinary communications, which requires wires, radios or lasers. What's more, Bell states are most easily shared using photons from lasers, and so teleportation could be done, in principle, through open space.

The quantum states of single atoms have been teleported.[1][2][3] An atom consists of several parts: the qubits in the electronic state or electron shells surrounding the atomic nucleus, the qubits in the nucleus itself, and, finally, the electrons, protons and neutrons making up the atom. Physicists have teleported the qubits encoded in the electronic state of atoms; they have not teleported the nuclear state, nor the nucleus itself. It is therefore false to say "an atom has been teleported". It has not. The quantum state of an atom has. Thus, performing this kind of teleportation requires a stock of atoms at the receiving site, available for having qubits imprinted on them. The importance of teleporting nuclear state is unclear: nuclear state does affect the atom, e.g. in hyperfine splitting, but whether such state would need to be teleported in some futuristic "practical" application is debatable.

An important aspect of quantum information theory is entanglement, which imposes statistical correlations between otherwise distinct physical systems. These correlations hold even when measurements are chosen and performed independently, out of causal contact from one another, as verified in Bell test experiments. Thus, an observation resulting from a measurement choice made at one point in spacetime seems to instantaneously affect outcomes in another region, even though light hasn't yet had time to travel the distance; a conclusion seemingly at odds with Special relativity (EPR paradox). However such correlations can never be used to transmit any information faster than the speed of light, a statement encapsulated in the no-communication theorem. Thus, teleportation, as a whole, can never be superluminal, as a qubit cannot be reconstructed until the accompanying classical information arrives.

The proper description of quantum teleportation requires a basic mathematical toolset, which, although complex, is not out of reach of advanced high-school students, and indeed becomes accessible to college students with a good grounding in finite-dimensional linear algebra. In particular, the theory of Hilbert spaces and projection matrixes is heavily used. A qubit is described using a two-dimensional complex number-valued vector space (a Hilbert space); the formal manipulations given below do not make use of anything much more than that. Strictly speaking, a working knowledge of quantum mechanics is not required to understand the mathematics of quantum teleportation, although without such acquaintance, the deeper meaning of the equations may remain quite mysterious.

Protocol


Diagram for quantum teleportation of a photon

The prerequisites for quantum teleportation are a qubit that is to be teleported, a conventional communication channel capable of transmitting two classical bits (i.e., one of four states), and means of generating an entangled EPR pair of qubits, transporting each of these to two different locations, A and B, performing a Bell measurement on one of the EPR pair qubits, and manipulating the quantum state of the other of the pair. The protocol is then as follows:
  1. An EPR pair is generated, one qubit sent to location A, the other to B.
  2. At location A, a Bell measurement of the EPR pair qubit and the qubit to be teleported (the quantum state |\phi \rangle) is performed, yielding one of four measurement outcomes, which can be encoded in two classical bits of information. Both qubits at location A are then discarded.
  3. Using the classical channel, the two bits are sent from A to B. (This is the only potentially time-consuming step after step 1, due to speed-of-light considerations.)
  4. As a result of the measurement performed at location A, the EPR pair qubit at location B is in one of four possible states. Of these four possible states, one is identical to the original quantum state |\phi \rangle, and the other three are closely related. Which of these four possibilities actually obtains is encoded in the two classical bits. Knowing this, the qubit at location B is modified in one of three ways, or not at all, to result in a qubit identical to |\phi \rangle, the qubit that was chosen for teleportation.

Experimental results and records

Work in 1998 verified the initial predictions,[8] and the distance of teleportation was increased in August 2004 to 600 meters, using optical fiber.[9] Subsequently, the record distance for quantum teleportation has been gradually increased to 16 km,[10] then to 97 km,[11] and is now 143 km (89 mi),.[7] For material systems, the record distance is 21 m.[12]

A variant of teleportation called "open-destination" teleportation, with receivers located at multiple locations, was demonstrated in 2004 using five-photon entanglement.[13] Teleportation of a composite state of two single photons has also been realized.[14] In April 2011, experimenters reported that they had demonstrated teleportation of wave packets of light up to a bandwidth of 10 MHz while preserving strongly nonclassical superposition states.[15][16] In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid technique, was reported.[17] On 29 May 2014, scientists announced a reliable way of transferring data by quantum teleportation. Quantum teleportation of data had been done before but with highly unreliable methods.[18][19] On 26 February 2015, scientists reported the first experiment teleporting multiple degrees of freedom of a quantum particle.[20]

Researchers have also successfully used quantum teleportation to transmit information between clouds of gas atoms, notable because the clouds of gas are macroscopic atomic ensembles.[21][22]

Formal presentation

There are a variety of way in which the teleportation protocol can be written mathematically. Some are very compact but abstract, and some are verbose but straightforward and concrete. The presentation below is of the latter form: verbose, but has the benefit of showing each quantum state simply and directly. Later sections review more compact notations.

The teleportation protocol begins with a quantum state or qubit |\psi\rangle, in Alice's possession, that she wants to convey to Bob. This qubit can be written generally, in bra–ket notation, as:
|\psi\rangle_C = \alpha |0\rangle_C + \beta|1\rangle_C.
The subscript C above is used only to distinguish this state from A and B, below. The protocol requires that Alice and Bob share a maximally entangled state. This state is fixed in advance, by mutual agreement between Alice and Bob, and can be any one of the four Bell states shown. It does not matter which one.
|\Phi^+\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |0\rangle_{B} + |1\rangle_A \otimes |1\rangle_{B}),
|\Phi^-\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |0\rangle_{B} - |1\rangle_A \otimes |1\rangle_{B}),
|\Psi^+\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |1\rangle_{B} + |1\rangle_A \otimes |0\rangle_{B}),
|\Psi^-\rangle_{AB} = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |1\rangle_{B} - |1\rangle_A \otimes |0\rangle_{B}).
In the following, assume that Alice and Bob share the state |\Phi^+\rangle_{AB}. Alice obtains one of the particles in the pair, with the other going to Bob. (This is implemented by preparing the particles together and shooting them to Alice and Bob from a common source.) The subscripts A and B in the entangled state refer to Alice's or Bob's particle.

At this point, Alice has two particles (C, the one she wants to teleport, and A, one of the entangled pair), and Bob has one particle, B. In the total system, the state of these three particles is given by
 |\Phi^+\rangle_{AB} \otimes |\psi\rangle_C = \frac{1}{\sqrt{2}} (|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)\otimes (\alpha |0\rangle_C + \beta|1\rangle_C).
Alice will then make a local measurement in the Bell basis (i.e. the four Bell states) on the two particles in her possession. To make the result of her measurement clear, it is best to write the state of Alice's two qubits as superpositions of the Bell basis. This is done by using the following general identities, which are easily verified:
|0\rangle \otimes |0\rangle = \frac{1}{\sqrt{2}} (|\Phi^+\rangle + |\Phi^-\rangle),
|0\rangle \otimes |1\rangle = \frac{1}{\sqrt{2}} (|\Psi^+\rangle + |\Psi^-\rangle),
|1\rangle \otimes |0\rangle = \frac{1}{\sqrt{2}} (|\Psi^+\rangle - |\Psi^-\rangle),
and
|1\rangle \otimes |1\rangle = \frac{1}{\sqrt{2}} (|\Phi^+\rangle - |\Phi^-\rangle).
One applies these identities with A and C subscripts. The total three particle state, of A, B and C together, thus becomes the following four-term superposition:

\begin{align}
|\Phi^+\rangle_{AB} \ \otimes\ | & \psi\rangle_C = \\
\frac{1}{2} \Big \lbrack
\ & |\Phi^+\rangle_{AC} \otimes (\alpha |0\rangle_B + \beta|1\rangle_B)
\ + \ |\Phi^-\rangle_{AC} \otimes (\alpha |0\rangle_B - \beta|1\rangle_B) \\
\ + \ & |\Psi^+\rangle_{AC} \otimes (\beta |0\rangle_B + \alpha|1\rangle_B)
\ + \ |\Psi^-\rangle_{AC} \otimes (\beta |0\rangle_B - \alpha|1\rangle_B) \Big \rbrack . \\
\end{align}
The above is just a change of basis on Alice's part of the system. No operation has been performed and the three particles are still in the same total state. The actual teleportation occurs when Alice measures her two qubits A,C, in the Bell basis
|\Phi^+\rangle_{AC}, |\Phi^-\rangle_{AC}, |\Psi^+\rangle_{AC}, |\Psi^-\rangle_{AC}.
Experimentally, this measurement may be achieved via a series of laser pulses directed at the two particles. Given the above expression, evidently the result of Alice's (local) measurement is that the three-particle state would collapse to one of the following four states (with equal probability of obtaining each):
  • |\Phi^+\rangle_{AC} \otimes (\alpha |0\rangle_B + \beta|1\rangle_B)
  • |\Phi^-\rangle_{AC} \otimes (\alpha |0\rangle_B - \beta|1\rangle_B)
  • |\Psi^+\rangle_{AC} \otimes (\beta |0\rangle_B + \alpha|1\rangle_B)
  • |\Psi^-\rangle_{AC} \otimes (\beta |0\rangle_B - \alpha|1\rangle_B)
Alice's two particles are now entangled to each other, in one of the four Bell states, and the entanglement originally shared between Alice's and Bob's particles is now broken. Bob's particle takes on one of the four superposition states shown above. Note how Bob's qubit is now in a state that resembles the state to be teleported. The four possible states for Bob's qubit are unitary images of the state to be teleported.

The result of Alice's Bell measurement tells her which of the above four states the system is in. She can now send her result to Bob through a classical channel. Two classical bits can communicate which of the four results she obtained.

After Bob receives the message from Alice, he will know which of the four states his particle is in. Using this information, he performs a unitary operation on his particle to transform it to the desired state \alpha |0\rangle_B + \beta|1\rangle_B:
  • If Alice indicates her result is |\Phi^+\rangle_{AC}, Bob knows his qubit is already in the desired state and does nothing. This amounts to the trivial unitary operation, the identity operator.
\sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1\end{bmatrix}
to recover the state.
  • If Alice's message corresponds to |\Psi^+\rangle_{AC}, Bob applies the gate
\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0\end{bmatrix}
to his qubit.
  • Finally, for the remaining case, the appropriate gate is given by
 - \sigma_3 \sigma_1 = i \sigma_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0\end{bmatrix}.
Teleportation is thus achieved. The above-mentioned three gates correspond to rotations of π radians (180°) about appropriate axes (X, Y and Z).[clarification needed]

Some remarks:
  • After this operation, Bob's qubit will take on the state |\psi\rangle_B= \alpha |0\rangle_B + \beta|1\rangle_B, and Alice's qubit becomes an (undefined) part of an entangled state. Teleportation does not result in the copying of qubits, and hence is consistent with the no cloning theorem.
  • There is no transfer of matter or energy involved. Alice's particle has not been physically moved to Bob; only its state has been transferred. The term "teleportation", coined by Bennett, Brassard, Crépeau, Jozsa, Peres and Wootters, reflects the indistinguishability of quantum mechanical particles.
  • For every qubit teleported, Alice needs to send Bob two classical bits of information. These two classical bits do not carry complete information about the qubit being teleported. If an eavesdropper intercepts the two bits, she may know exactly what Bob needs to do in order to recover the desired state. However, this information is useless if she cannot interact with the entangled particle in Bob's possession.

Alternative notations


Quantum teleportation, as computed in a dagger compact category.[23] Such diagrams are employed in categorical quantum mechanics, and trace back to Penrose graphical notation, developed in the early 1970s.[24]

Quantum circuit representation of quantum teleportation

There are a variety of different notations in use that describe the teleportation protocol. One common one is by using the notation of quantum gates. In the above derivation, the unitary transformation that is the change of basis (from the standard product basis into the Bell basis) can be written using quantum gates. Direct calculation shows that this gate is given by
G = (H \otimes I) \; C_N
where H is the one qubit Walsh-Hadamard gate and C_N is the Controlled NOT gate.

Entanglement swapping

Teleportation can be applied not just to pure states, but also mixed states, that can be regarded as the state of a single subsystem of an entangled pair. The so-called entanglement swapping is a simple and illustrative example.

If Alice has a particle which is entangled with a particle owned by Bob, and Bob teleports it to Carol, then afterwards, Alice's particle is entangled with Carol's.

A more symmetric way to describe the situation is the following: Alice has one particle, Bob two, and Carol one. Alice's particle and Bob's first particle are entangled, and so are Bob's second and Carol's particle:
                      ___
                     /   \
 Alice-:-:-:-:-:-Bob1 -:- Bob2-:-:-:-:-:-Carol
                     \___/
Now, if Bob performs a projective measurement on his two particles in the Bell state basis and communicates the results to Carol, as per the teleportation scheme described above, the state of Bob's first particle can be teleported to Carol's. Although Alice and Carol never interacted with each other, their particles are now entangled.

A detailed diagrammatic derivation of entanglement swapping has been given by Bob Coecke,[25] presented in terms of categorical quantum mechanics.

N-state particles

One can imagine how the teleportation scheme given above might be extended to N-state particles, i.e. particles whose states lie in the N dimensional Hilbert space. The combined system of the three particles now has an N^3 dimensional state space. To teleport, Alice makes a partial measurement on the two particles in her possession in some entangled basis on the N^2 dimensional subsystem. This measurement has N^2 equally probable outcomes, which are then communicated to Bob classically. Bob recovers the desired state by sending his particle through an appropriate unitary gate.

Logic gate teleportation

In general, mixed states ρ may be transported, and a linear transformation ω applied during teleportation, thus allowing data processing of quantum information. This is one of the foundational building blocks of quantum information processing. This is demonstrated below.

General description

A general teleportation scheme can be described as follows. Three quantum systems are involved. System 1 is the (unknown) state ρ to be teleported by Alice. Systems 2 and 3 are in a maximally entangled state ω that are distributed to Alice and Bob, respectively. The total system is then in the state
\rho \otimes \omega.
A successful teleportation process is a LOCC quantum channel Φ that satisfies
(\operatorname{Tr}_{12} \circ \Phi ) (\rho \otimes \omega) = \rho\,,
where Tr12 is the partial trace operation with respect systems 1 and 2, and \circ denotes the composition of maps. This describes the channel in the Schrödinger picture.

Taking adjoint maps in the Heisenberg picture, the success condition becomes
\langle \Phi(\rho \otimes \omega)| I \otimes O \rangle = \langle \rho | O \rangle
for all observable O on Bob's system. The tensor factor in I \otimes O is 12 \otimes 3 while that of \rho \otimes \omega is 1 \otimes 23.

Further details

The proposed channel Φ can be described more explicitly. To begin teleportation, Alice performs a local measurement on the two subsystems (1 and 2) in her possession. Assume the local measurement have effects
{F_i} = {M_i ^2}.
If the measurement registers the i-th outcome, the overall state collapses to
(M_i \otimes I)(\rho \otimes \omega)(M_i \otimes I).
The tensor factor in (M_i \otimes I) is 12 \otimes 3 while that of \rho \otimes \omega is 1 \otimes 23. Bob then applies a corresponding local operation Ψi on system 3. On the combined system, this is described by
(Id \otimes \Psi_i)(M_i \otimes I)(\rho \otimes \omega)(M_i \otimes I).
where Id is the identity map on the composite system 1 \otimes 2.

Therefore the channel Φ is defined by
\Phi (\rho \otimes \omega) = \sum_i (Id \otimes \Psi_i)(M_i \otimes I)(\rho \otimes \omega)(M_i \otimes I)
Notice Φ satisfies the definition of LOCC. As stated above, the teleportation is said to be successful if, for all observable O on Bob's system, the equality
\langle \Phi(\rho \otimes \omega), I \otimes O \rangle = \langle \rho, O \rangle
holds. The left hand side of the equation is:

\sum_i \langle (Id \otimes \Psi_i)(M_i \otimes I)(\rho \otimes \omega)(M_i \otimes I), \; I \otimes O \rangle

= \sum_i \langle (M_i \otimes I)(\rho \otimes \omega)(M_i \otimes I), \; I \otimes \Psi_i ^*(O)\rangle
where Ψi* is the adjoint of Ψi in the Heisenberg picture. Assuming all objects are finite dimensional, this becomes
\sum_i \operatorname{Tr} \; (\rho \otimes \omega)(F_i \otimes \Psi_i^*(O)).
The success criterion for teleportation has the expression
\sum_i \operatorname{Tr} \; (\rho \otimes \omega)(F_i \otimes \Psi_i ^*(O)) = \operatorname{Tr} \; \rho \cdot O.

Local explanation of the phenomenon

A local explanation of quantum teleportation is put forward by David Deutsch and Patrick Hayden, with respect to the many-worlds interpretation of Quantum mechanics. Their paper asserts that the two bits that Alice sends Bob contain "locally inaccessible information" resulting in the teleportation of the quantum state. "The ability of quantum information to flow through a classical channel ..., surviving decoherence, is ... the basis of quantum teleportation."[26]

Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_group In mathematics , a Lie gro...