Search This Blog

Tuesday, September 15, 2020

Galaxy formation and evolution

From Wikipedia, the free encyclopedia

The study of galaxy formation and evolution is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning, the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies. Galaxy formation is hypothesized to occur from structure formation theories, as a result of tiny quantum fluctuations in the aftermath of the Big Bang. The simplest model in general agreement with observed phenomena is the Lambda-CDM model—that is, that clustering and merging allows galaxies to accumulate mass, determining both their shape and structure.

Commonly observed properties of galaxies

Hubble tuning fork diagram of galaxy morphology

Because of the inability to conduct experiments in outer space, the only way to “test” theories and models of galaxy evolution is to compare them with observations. Explanations for how galaxies formed and evolved must be able to predict the observed properties and types of galaxies.

Edwin Hubble created the first galaxy classification scheme known as the Hubble tuning-fork diagram. It partitioned galaxies into ellipticals, normal spirals, barred spirals (such as the Milky Way), and irregulars. These galaxy types exhibit the following properties which can be explained by current galaxy evolution theories:

  • Many of the properties of galaxies (including the galaxy color–magnitude diagram) indicate that there are fundamentally two types of galaxies. These groups divide into blue star-forming galaxies that are more like spiral types, and red non-star forming galaxies that are more like elliptical galaxies.
  • Spiral galaxies are quite thin, dense, and rotate relatively fast, while the stars in elliptical galaxies have randomly oriented orbits.
  • The majority of giant galaxies contain a supermassive black hole in their centers, ranging in mass from millions to billions of times the mass of our Sun. The black hole mass is tied to the host galaxy bulge or spheroid mass.
  • Metallicity has a positive correlation with the absolute magnitude (luminosity) of a galaxy.

There is a common misconception that Hubble believed incorrectly that the tuning fork diagram described an evolutionary sequence for galaxies, from elliptical galaxies through lenticulars to spiral galaxies. This is not the case; instead, the tuning fork diagram shows an evolution from simple to complex with no temporal connotations intended. Astronomers now believe that disk galaxies likely formed first, then evolved into elliptical galaxies through galaxy mergers.

Current models also predict that the majority of mass in galaxies is made up of dark matter, a substance which is not directly observable, and might not interact through any means except gravity. This observation arises because galaxies could not have formed as they have, or rotate as they are seen to, unless they contain far more mass than can be directly observed.

Formation of disk galaxies

The earliest stage in the evolution of galaxies is the formation. When a galaxy forms, it has a disk shape and is called a spiral galaxy due to spiral-like "arm" structures located on the disk. There are different theories on how these disk-like distributions of stars develop from a cloud of matter: however, at present, none of them exactly predicts the results of observation.

Top-down theories

Olin Eggen, Donald Lynden-Bell, and Allan Sandage in 1962, proposed a theory that disk galaxies form through a monolithic collapse of a large gas cloud. The distribution of matter in the early universe was in clumps that consisted mostly of dark matter. These clumps interacted gravitationally, putting tidal torques on each other that acted to give them some angular momentum. As the baryonic matter cooled, it dissipated some energy and contracted toward the center. With angular momentum conserved, the matter near the center speeds up its rotation. Then, like a spinning ball of pizza dough, the matter forms into a tight disk. Once the disk cools, the gas is not gravitationally stable, so it cannot remain a singular homogeneous cloud. It breaks, and these smaller clouds of gas form stars. Since the dark matter does not dissipate as it only interacts gravitationally, it remains distributed outside the disk in what is known as the dark halo. Observations show that there are stars located outside the disk, which does not quite fit the "pizza dough" model. It was first proposed by Leonard Searle and Robert Zinn that galaxies form by the coalescence of smaller progenitors. Known as a top-down formation scenario, this theory is quite simple yet no longer widely accepted.

Bottom-up theories

More recent theories include the clustering of dark matter halos in the bottom-up process. Instead of large gas clouds collapsing to form a galaxy in which the gas breaks up into smaller clouds, it is proposed that matter started out in these “smaller” clumps (mass on the order of globular clusters), and then many of these clumps merged to form galaxies, which then were drawn by gravitation to form galaxy clusters. This still results in disk-like distributions of baryonic matter with dark matter forming the halo for all the same reasons as in the top-down theory. Models using this sort of process predict more small galaxies than large ones, which matches observations.

Astronomers do not currently know what process stops the contraction. In fact, theories of disk galaxy formation are not successful at producing the rotation speed and size of disk galaxies. It has been suggested that the radiation from bright newly formed stars, or from an active galactic nucleus can slow the contraction of a forming disk. It has also been suggested that the dark matter halo can pull the galaxy, thus stopping disk contraction.

The Lambda-CDM model is a cosmological model that explains the formation of the universe after the Big Bang. It is a relatively simple model that predicts many properties observed in the universe, including the relative frequency of different galaxy types; however, it underestimates the number of thin disk galaxies in the universe. The reason is that these galaxy formation models predict a large number of mergers. If disk galaxies merge with another galaxy of comparable mass (at least 15 percent of its mass) the merger will likely destroy, or at a minimum greatly disrupt the disk, and the resulting galaxy is not expected to be a disk galaxy (see next section). While this remains an unsolved problem for astronomers, it does not necessarily mean that the Lambda-CDM model is completely wrong, but rather that it requires further refinement to accurately reproduce the population of galaxies in the universe.

Galaxy mergers and the formation of elliptical galaxies

Artist image of a firestorm of star birth deep inside core of young, growing elliptical galaxy.
 
NGC 4676 (Mice Galaxies) is an example of a present merger.
 
Antennae Galaxies are a pair of colliding galaxies – the bright, blue knots are young stars that have recently ignited as a result of the merger.
 
ESO 325-G004, a typical elliptical galaxy.

Elliptical galaxies (such as IC 1101) are among some of the largest known thus far. Their stars are on orbits that are randomly oriented within the galaxy (i.e. they are not rotating like disk galaxies). A distinguishing feature of elliptical galaxies is that the velocity of the stars does not necessarily contribute to flattening of the galaxy, such as in spiral galaxies. Elliptical galaxies have central supermassive black holes, and the masses of these black holes correlate with the galaxy's mass.

Elliptical galaxies have two main stages of evolution. The first is due to the supermassive black hole growing by accreting cooling gas. The second stage is marked by the black hole stabilizing by suppressing gas cooling, thus leaving the elliptical galaxy in a stable state. The mass of the black hole is also correlated to a property called sigma which is the dispersion of the velocities of stars in their orbits. This relationship, known as the M-sigma relation, was discovered in 2000. Elliptical galaxies mostly lack disks, although some bulges of disk galaxies resemble elliptical galaxies. Elliptical galaxies are more likely found in crowded regions of the universe (such as galaxy clusters).

Astronomers now see elliptical galaxies as some of the most evolved systems in the universe. It is widely accepted that the main driving force for the evolution of elliptical galaxies is mergers of smaller galaxies. Many galaxies in the universe are gravitationally bound to other galaxies, which means that they will never escape their mutual pull. If the galaxies are of similar size, the resultant galaxy will appear similar to neither of the progenitors, but will instead be elliptical. There are many types of galaxy mergers, which do not necessarily result in elliptical galaxies, but result in a structural change. For example, a minor merger event is thought to be occurring between the Milky Way and the Magellanic Clouds.

Mergers between such large galaxies are regarded as violent, and the frictional interaction of the gas between the two galaxies can cause gravitational shock waves, which are capable of forming new stars in the new elliptical galaxy. By sequencing several images of different galactic collisions, one can observe the timeline of two spiral galaxies merging into a single elliptical galaxy.

In the Local Group, the Milky Way and the Andromeda Galaxy are gravitationally bound, and currently approaching each other at high speed. Simulations show that the Milky Way and Andromeda are on a collision course, and are expected to collide in less than five billion years. During this collision, it is expected that the Sun and the rest of the Solar System will be ejected from its current path around the Milky Way. The remnant could be a giant elliptical galaxy.

Galaxy quenching

Star formation in what are now "dead" galaxies sputtered out billions of years ago.

One observation (see above) that must be explained by a successful theory of galaxy evolution is the existence of two different populations of galaxies on the galaxy color-magnitude diagram. Most galaxies tend to fall into two separate locations on this diagram: a "red sequence" and a "blue cloud". Red sequence galaxies are generally non-star-forming elliptical galaxies with little gas and dust, while blue cloud galaxies tend to be dusty star-forming spiral galaxies.

As described in previous sections, galaxies tend to evolve from spiral to elliptical structure via mergers. However, the current rate of galaxy mergers does not explain how all galaxies move from the "blue cloud" to the "red sequence". It also does not explain how star formation ceases in galaxies. Theories of galaxy evolution must therefore be able to explain how star formation turns off in galaxies. This phenomenon is called galaxy "quenching".

Stars form out of cold gas, so a galaxy is quenched when it has no more cold gas. However, it is thought that quenching occurs relatively quickly (within 1 billion years), which is much shorter than the time it would take for a galaxy to simply use up its reservoir of cold gas. Galaxy evolution models explain this by hypothesizing other physical mechanisms that remove or shut off the supply of cold gas in a galaxy. These mechanisms can be broadly classified into two categories: (1) preventive feedback mechanisms that stop cold gas from entering a galaxy or stop it from producing stars, and (2) ejective feedback mechanisms that remove gas so that it cannot form stars.

One theorized preventive mechanism called “strangulation” keeps cold gas from entering the galaxy. Strangulation is likely the main mechanism for quenching star formation in nearby low-mass galaxies. The exact physical explanation for strangulation is still unknown, but it may have to do with a galaxy's interactions with other galaxies. As a galaxy falls into a galaxy cluster, gravitational interactions with other galaxies can strangle it by preventing it from accreting more gas. For galaxies with massive dark matter halos, another preventive mechanism called “virial shock heating” may also prevent gas from becoming cool enough to form stars.

Ejective processes, which expel cold gas from galaxies, may explain how more massive galaxies are quenched. One ejective mechanism is caused by supermassive black holes found in the centers of galaxies. Simulations have shown that gas accreting onto supermassive black holes in galactic centers produces high-energy jets; the released energy can expel enough cold gas to quench star formation.

Our own Milky Way and the nearby Andromeda Galaxy currently appear to be undergoing the quenching transition from star-forming blue galaxies to passive red galaxies.

Gallery

UniverseMachine

From Wikipedia, the free encyclopedia
 
Logo of the UniverseMachine.

The UniverseMachine (also known as the Universe Machine) is a project of an ongoing series of astrophysical supercomputer simulations of various models of possible universes, that was created by astronomer Peter Behroozi and his research team at the Steward Observatory and the University of Arizona. As such, numerous universes with different physical characteristics may be simulated in order to develop insights into the possible beginning, and later evolution, of our current universe. One of the major objectives of the project is to better understand the role of dark matter in the development of the universe. According to Behroozi, "On the computer, we can create many different universes and compare them to the actual one, and that lets us infer which rules lead to the one we see."

Besides lead investigator Behroozi, research team members include astronomer Charlie Conroy of Harvard University, physicist Andrew Hearin of the Argonne National Laboratory and physicist Risa Wechsler of Stanford University. Support funding for the project is provided by NASA, the National Science Foundation and the Munich Institute for Astro- and Particle Physics.

Description

Besides using computers and related resources at the NASA Ames Research Center and the Leibniz-Rechenzentrum in Garching, Germany, the research team used the High-Performance Computing cluster at the University of Arizona. Two-thousand processors simultaneously processed the data over three weeks. In this way, the research team generated over 8 million universes, and at least 9.6×1013 galaxies. As such, the UniverseMachine program continuously produced millions of universes, each simulated universe containing 12 million galaxies, and each resulting simulated universe permitted to develop from 400 million years after the Big Bang, on up to the present day.

According to team member Wechsler, "The really cool thing about this study is that we can use all the data we have about galaxy evolution — the numbers of galaxies, how many stars they have and how they form those stars — and put that together into a comprehensive picture of the last 13 billion years of the universe." Wechsler further commented, "For me, the most exciting thing is that we now have a model where we can start to ask all of these questions in a framework that works ... We have a model that is inexpensive enough computationally, that we can essentially calculate an entire universe in about a second.Then we can afford to do that millions of times and explore all of the parameter space."

Results

One of the results of the study suggests that denser dark matter in the early universe didn't seem to negatively impact star formation rates as thought initially. According to the studies, galaxies of a given size were more likely to form stars much longer and at a high rate. The researchers expect to extend their studies with the project to include how often stars expire in supernovae, how dark matter may affect the shape of galaxies and eventually, by at least providing a better understanding of the workings of the universe, how life originated.

Monday, September 14, 2020

Observable universe

From Wikipedia, the free encyclopedia
 
Observable universe
Observable Universe with Measurements 01.png
Visualization of the whole observable universe. The scale is such that the fine grains represent collections of large numbers of superclusters. The Virgo Supercluster—home of Milky Way—is marked at the center, but is too small to be seen.
Diameter8.8×1026 m or 880 Ym (28.5 Gpc or 93 Gly)
Volume4×1080 m3
Mass (ordinary matter)1.5×1053 kg
Density (of total energy)9.9×10−27 kg/m3 (equivalent to 6 protons per cubic meter of space)
Age13.799±0.021 billion years
Average temperature2.72548 K
Contents

The observable universe is a spherical region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these objects has had time to reach the Solar System and Earth since the beginning of the cosmological expansion. There are at least 2 trillion galaxies in the observable universe. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction. That is, the observable universe has a spherical volume (a ball) centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth.

The word observable in this sense does not refer to the capability of modern technology to detect light or other information from an object, or whether there is anything to be detected. It refers to the physical limit created by the speed of light itself. Because no signals can travel faster than light, any object farther away from us than light could travel in the age of the universe (estimated as of 2015 around 13.799±0.021 billion years) simply cannot be detected, as the signals could not have reached us yet. Sometimes astrophysicists distinguish between the visible universe, which includes only signals emitted since recombination (when hydrogen atoms were formed from protons and electrons and photons were emitted)—and the observable universe, which includes signals since the beginning of the cosmological expansion (the Big Bang in traditional physical cosmology, the end of the inflationary epoch in modern cosmology).

According to calculations, the current comoving distance—proper distance, which takes into account that the universe has expanded since the light was emitted—to particles from which the cosmic microwave background radiation (CMBR) was emitted, which represents the radius of the visible universe, is about 14.0 billion parsecs (about 45.7 billion light-years), while the comoving distance to the edge of the observable universe is about 14.3 billion parsecs (about 46.6 billion light-years), about 2% larger. The radius of the observable universe is therefore estimated to be about 46.5 billion light-years and its diameter about 28.5 gigaparsecs (93 billion light-years, or 8.8×1026 metres or 2.89×1027 feet), which equals 880 yottametres. The total mass of ordinary matter in the universe can be calculated using the critical density and the diameter of the observable universe to be about 1.5 × 1053 kg. In November 2018, astronomers reported that the extragalactic background light (EBL) amounted to 4 × 1084 photons.

As the universe's expansion is accelerating, all currently observable objects will eventually appear to freeze in time, while emitting progressively redder and fainter light. For instance, objects with the current redshift z from 5 to 10 will remain observable for no more than 4–6 billion years. In addition, light emitted by objects currently situated beyond a certain comoving distance (currently about 19 billion parsecs) will never reach Earth.

The universe versus the observable universe

Some parts of the universe are too far away for the light emitted since the Big Bang to have had enough time to reach Earth or its scientific space-based instruments, and so lie outside the observable universe. In the future, light from distant galaxies will have had more time to travel, so additional regions will become observable. However, owing to Hubble's law, regions sufficiently distant from the Earth are expanding away from it faster than the speed of light (special relativity prevents nearby objects in the same local region from moving faster than the speed of light with respect to each other, but there is no such constraint for distant objects when the space between them is expanding; see uses of the proper distance for a discussion) and furthermore the expansion rate appears to be accelerating owing to dark energy.

Assuming dark energy remains constant (an unchanging cosmological constant), so that the expansion rate of the universe continues to accelerate, there is a "future visibility limit" beyond which objects will never enter our observable universe at any time in the infinite future, because light emitted by objects outside that limit would never reach the Earth. (A subtlety is that, because the Hubble parameter is decreasing with time, there can be cases where a galaxy that is receding from the Earth just a bit faster than light does emit a signal that reaches the Earth eventually.) This future visibility limit is calculated at a comoving distance of 19 billion parsecs (62 billion light-years), assuming the universe will keep expanding forever, which implies the number of galaxies that we can ever theoretically observe in the infinite future (leaving aside the issue that some may be impossible to observe in practice due to redshift, as discussed in the following paragraph) is only larger than the number currently observable by a factor of 2.36.

Artist's logarithmic scale conception of the observable universe with the Solar System at the center, inner and outer planets, Kuiper belt, Oort cloud, Alpha Centauri, Perseus Arm, Milky Way galaxy, Andromeda Galaxy, nearby galaxies, Cosmic web, Cosmic microwave radiation and the Big Bang's invisible plasma on the edge. Celestial bodies appear enlarged to appreciate their shapes.

Though in principle more galaxies will become observable in the future, in practice an increasing number of galaxies will become extremely redshifted due to ongoing expansion, so much so that they will seem to disappear from view and become invisible. An additional subtlety is that a galaxy at a given comoving distance is defined to lie within the "observable universe" if we can receive signals emitted by the galaxy at any age in its past history (say, a signal sent from the galaxy only 500 million years after the Big Bang), but because of the universe's expansion, there may be some later age at which a signal sent from the same galaxy can never reach the Earth at any point in the infinite future (so, for example, we might never see what the galaxy looked like 10 billion years after the Big Bang), even though it remains at the same comoving distance (comoving distance is defined to be constant with time—unlike proper distance, which is used to define recession velocity due to the expansion of space), which is less than the comoving radius of the observable universe. This fact can be used to define a type of cosmic event horizon whose distance from the Earth changes over time. For example, the current distance to this horizon is about 16 billion light-years, meaning that a signal from an event happening at present can eventually reach the Earth in the future if the event is less than 16 billion light-years away, but the signal will never reach the Earth if the event is more than 16 billion light-years away.

Both popular and professional research articles in cosmology often use the term "universe" to mean "observable universe". This can be justified on the grounds that we can never know anything by direct experimentation about any part of the universe that is causally disconnected from the Earth, although many credible theories require a total universe much larger than the observable universe. No evidence exists to suggest that the boundary of the observable universe constitutes a boundary on the universe as a whole, nor do any of the mainstream cosmological models propose that the universe has any physical boundary in the first place, though some models propose it could be finite but unbounded, like a higher-dimensional analogue of the 2D surface of a sphere that is finite in area but has no edge.

It is plausible that the galaxies within our observable universe represent only a minuscule fraction of the galaxies in the universe. According to the theory of cosmic inflation initially introduced by its founder, Alan Guth (and by D. Kazanas), if it is assumed that inflation began about 10−37 seconds after the Big Bang, then with the plausible assumption that the size of the universe before the inflation occurred was approximately equal to the speed of light times its age, that would suggest that at present the entire universe's size is at least 3 × 1023 (1.5 × 1034 light-years) times the radius of the observable universe. There are also lower estimates claiming that the entire universe is in excess of 250 times larger (3,450 billion light-years) (by volume, not by radius) than the observable universe and also higher estimates implying that the universe could have a diameter of at least 101010122 Mpc.

If the universe is finite but unbounded, it is also possible that the universe is smaller than the observable universe. In this case, what we take to be very distant galaxies may actually be duplicate images of nearby galaxies, formed by light that has circumnavigated the universe. It is difficult to test this hypothesis experimentally because different images of a galaxy would show different eras in its history, and consequently might appear quite different. Bielewicz et al. claim to establish a lower bound of 27.9 gigaparsecs (91 billion light-years) on the diameter of the last scattering surface (since this is only a lower bound, the paper leaves open the possibility that the whole universe is much larger, even infinite). This value is based on matching-circle analysis of the WMAP 7 year data. This approach has been disputed.

Size

Hubble Ultra-Deep Field image of a region of the observable universe (equivalent sky area size shown in bottom left corner), near the constellation Fornax. Each spot is a galaxy, consisting of billions of stars. The light from the smallest, most redshifted galaxies originated nearly 14 billion years ago.

The comoving distance from Earth to the edge of the observable universe is about 14.26 gigaparsecs (46.5 billion light-years or 4.40×1026 m) in any direction. The observable universe is thus a sphere with a diameter of about 28.5 gigaparsecs (93 billion light-years or 8.8×1026 m). Assuming that space is roughly flat (in the sense of being a Euclidean space), this size corresponds to a comoving volume of about 1.22×104 Gpc3 (4.22×105 Gly3 or 3.57×1080 m3).

The figures quoted above are distances now (in cosmological time), not distances at the time the light was emitted. For example, the cosmic microwave background radiation that we see right now was emitted at the time of photon decoupling, estimated to have occurred about 380,000 years after the Big Bang, which occurred around 13.8 billion years ago. This radiation was emitted by matter that has, in the intervening time, mostly condensed into galaxies, and those galaxies are now calculated to be about 46 billion light-years from us. To estimate the distance to that matter at the time the light was emitted, we may first note that according to the Friedmann–Lemaître–Robertson–Walker metric, which is used to model the expanding universe, if at the present time we receive light with a redshift of z, then the scale factor at the time the light was originally emitted is given by

.

WMAP nine-year results combined with other measurements give the redshift of photon decoupling as z = 1091.64±0.47, which implies that the scale factor at the time of photon decoupling would be ​11092.64. So if the matter that originally emitted the oldest cosmic microwave background (CMBR) photons has a present distance of 46 billion light-years, then at the time of decoupling when the photons were originally emitted, the distance would have been only about 42 million light-years.

Misconceptions about its size

An example of the misconception that the radius of the observable universe is 13 billion light-years. This plaque appears at the Rose Center for Earth and Space in New York City.

Many secondary sources have reported a wide variety of incorrect figures for the size of the visible universe. Some of these figures are listed below, with brief descriptions of possible reasons for misconceptions about them.

13.8 billion light-years
The age of the universe is estimated to be 13.8 billion years. While it is commonly understood that nothing can accelerate to velocities equal to or greater than that of light, it is a common misconception that the radius of the observable universe must therefore amount to only 13.8 billion light-years. This reasoning would only make sense if the flat, static Minkowski spacetime conception under special relativity were correct. In the real universe, spacetime is curved in a way that corresponds to the expansion of space, as evidenced by Hubble's law. Distances obtained as the speed of light multiplied by a cosmological time interval have no direct physical significance.
15.8 billion light-years
This is obtained in the same way as the 13.8-billion-light-year figure, but starting from an incorrect age of the universe that the popular press reported in mid-2006.
78 billion light-years
In 2003, Cornish et al. found this lower bound for the diameter of the whole universe (not just the observable part), postulating that the universe is finite in size due to it having a nontrivial topology, with this lower bound based on the estimated current distance between points that we can see on opposite sides of the cosmic microwave background radiation (CMBR). If the whole universe is smaller than this sphere, then light has had time to circumnavigate it since the Big Bang, producing multiple images of distant points in the CMBR, which would show up as patterns of repeating circles. Cornish et al. looked for such an effect at scales of up to 24 gigaparsecs (78 Gly or 7.4×1026 m) and failed to find it, and suggested that if they could extend their search to all possible orientations, they would then "be able to exclude the possibility that we live in a universe smaller than 24 Gpc in diameter". The authors also estimated that with "lower noise and higher resolution CMB maps (from WMAP's extended mission and from Planck), we will be able to search for smaller circles and extend the limit to ~28 Gpc." This estimate of the maximum lower bound that can be established by future observations corresponds to a radius of 14 gigaparsecs, or around 46 billion light-years, about the same as the figure for the radius of the visible universe (whose radius is defined by the CMBR sphere) given in the opening section. A 2012 preprint by most of the same authors as the Cornish et al. paper has extended the current lower bound to a diameter of 98.5% the diameter of the CMBR sphere, or about 26 Gpc.
156 billion light-years
This figure was obtained by doubling 78 billion light-years on the assumption that it is a radius. Because 78 billion light-years is already a diameter (the original paper by Cornish et al. says, "By extending the search to all possible orientations, we will be able to exclude the possibility that we live in a universe smaller than 24 Gpc in diameter," and 24 Gpc is 78 billion light-years), the doubled figure is incorrect. This figure was very widely reported. A press release from Montana State University, where Cornish works as an astrophysicist, noted the error when discussing a story that had appeared in Discover magazine, saying "Discover mistakenly reported that the universe was 156 billion light-years wide, thinking that 78 billion was the radius of the universe instead of its diameter." As noted above, 78 billion was also incorrect.
180 billion light-years
This estimate combines the erroneous 156-billion-light-year figure with evidence that the M33 Galaxy is actually fifteen percent farther away than previous estimates and that, therefore, the Hubble constant is fifteen percent smaller. The 180-billion figure is obtained by adding 15% to 156 billion light-years.

Large-scale structure

Galaxy clusters, like RXC J0142.9+4438, are the nodes of the cosmic web that permeates the entire Universe.
 
Map of the Cosmic Web Generated from Slime Mould Algorithm

Sky surveys and mappings of the various wavelength bands of electromagnetic radiation (in particular 21-cm emission) have yielded much information on the content and character of the universe's structure. The organization of structure appears to follow as a hierarchical model with organization up to the scale of superclusters and filaments. Larger than this (at scales between 30 and 200 megaparsecs), there seems to be no continued structure, a phenomenon that has been referred to as the End of Greatness.

Walls, filaments, nodes, and voids

The organization of structure arguably begins at the stellar level, though most cosmologists rarely address astrophysics on that scale. Stars are organized into galaxies, which in turn form galaxy groups, galaxy clusters, superclusters, sheets, walls and filaments, which are separated by immense voids, creating a vast foam-like structure sometimes called the "cosmic web". Prior to 1989, it was commonly assumed that virialized galaxy clusters were the largest structures in existence, and that they were distributed more or less uniformly throughout the universe in every direction. However, since the early 1980s, more and more structures have been discovered. In 1983, Adrian Webster identified the Webster LQG, a large quasar group consisting of 5 quasars. The discovery was the first identification of a large-scale structure, and has expanded the information about the known grouping of matter in the universe.

In 1987, Robert Brent Tully identified the Pisces–Cetus Supercluster Complex, the galaxy filament in which the Milky Way resides. It is about 1 billion light-years across. That same year, an unusually large region with a much lower than average distribution of galaxies was discovered, the Giant Void, which measures 1.3 billion light-years across. Based on redshift survey data, in 1989 Margaret Geller and John Huchra discovered the "Great Wall", a sheet of galaxies more than 500 million light-years long and 200 million light-years wide, but only 15 million light-years thick. The existence of this structure escaped notice for so long because it requires locating the position of galaxies in three dimensions, which involves combining location information about the galaxies with distance information from redshifts. Two years later, astronomers Roger G. Clowes and Luis E. Campusano discovered the Clowes–Campusano LQG, a large quasar group measuring two billion light-years at its widest point which was the largest known structure in the universe at the time of its announcement. In April 2003, another large-scale structure was discovered, the Sloan Great Wall. In August 2007, a possible supervoid was detected in the constellation Eridanus. It coincides with the 'CMB cold spot', a cold region in the microwave sky that is highly improbable under the currently favored cosmological model. This supervoid could cause the cold spot, but to do so it would have to be improbably big, possibly a billion light-years across, almost as big as the Giant Void mentioned above.

Question, Web Fundamentals.svg Unsolved problem in physics:
The largest structures in the universe are larger than expected. Are these actual structures or random density fluctuations?
(more unsolved problems in physics)
Computer simulated image of an area of space more than 50 million light-years across, presenting a possible large-scale distribution of light sources in the universe—precise relative contributions of galaxies and quasars are unclear.

Another large-scale structure is the SSA22 Protocluster, a collection of galaxies and enormous gas bubbles that measures about 200 million light-years across.

In 2011, a large quasar group was discovered, U1.11, measuring about 2.5 billion light-years across. On January 11, 2013, another large quasar group, the Huge-LQG, was discovered, which was measured to be four billion light-years across, the largest known structure in the universe at that time. In November 2013, astronomers discovered the Hercules–Corona Borealis Great Wall, an even bigger structure twice as large as the former. It was defined by the mapping of gamma-ray bursts.

End of Greatness

The End of Greatness is an observational scale discovered at roughly 100 Mpc (roughly 300 million light-years) where the lumpiness seen in the large-scale structure of the universe is homogenized and isotropized in accordance with the Cosmological Principle. At this scale, no pseudo-random fractalness is apparent. The superclusters and filaments seen in smaller surveys are randomized to the extent that the smooth distribution of the universe is visually apparent. It was not until the redshift surveys of the 1990s were completed that this scale could accurately be observed.

Observations

"Panoramic view of the entire near-infrared sky reveals the distribution of galaxies beyond the Milky Way. The image is derived from the 2MASS Extended Source Catalog (XSC)—more than 1.5 million galaxies, and the Point Source Catalog (PSC)—nearly 0.5 billion Milky Way stars. The galaxies are color-coded by 'redshift' obtained from the UGC, CfA, Tully NBGC, LCRS, 2dF, 6dFGS, and SDSS surveys (and from various observations compiled by the NASA Extragalactic Database), or photo-metrically deduced from the K band (2.2 μm). Blue are the nearest sources (z < 0.01); green are at moderate distances (0.01 < z < 0.04) and red are the most distant sources that 2MASS resolves (0.04 < z < 0.1). The map is projected with an equal area Aitoff in the Galactic system (Milky Way at center)."

Another indicator of large-scale structure is the 'Lyman-alpha forest'. This is a collection of absorption lines that appear in the spectra of light from quasars, which are interpreted as indicating the existence of huge thin sheets of intergalactic (mostly hydrogen) gas. These sheets appear to be associated with the formation of new galaxies.

Caution is required in describing structures on a cosmic scale because things are often different from how they appear. Gravitational lensing (bending of light by gravitation) can make an image appear to originate in a different direction from its real source. This is caused when foreground objects (such as galaxies) curve surrounding spacetime (as predicted by general relativity), and deflect passing light rays. Rather usefully, strong gravitational lensing can sometimes magnify distant galaxies, making them easier to detect. Weak lensing (gravitational shear) by the intervening universe in general also subtly changes the observed large-scale structure.

The large-scale structure of the universe also looks different if one only uses redshift to measure distances to galaxies. For example, galaxies behind a galaxy cluster are attracted to it, and so fall towards it, and so are slightly blueshifted (compared to how they would be if there were no cluster) On the near side, things are slightly redshifted. Thus, the environment of the cluster looks somewhat squashed if using redshifts to measure distance. An opposite effect works on the galaxies already within a cluster: the galaxies have some random motion around the cluster center, and when these random motions are converted to redshifts, the cluster appears elongated. This creates a "finger of God"—the illusion of a long chain of galaxies pointed at the Earth.

Cosmography of Earth's cosmic neighborhood

At the centre of the Hydra-Centaurus Supercluster, a gravitational anomaly called the Great Attractor affects the motion of galaxies over a region hundreds of millions of light-years across. These galaxies are all redshifted, in accordance with Hubble's law. This indicates that they are receding from us and from each other, but the variations in their redshift are sufficient to reveal the existence of a concentration of mass equivalent to tens of thousands of galaxies.

The Great Attractor, discovered in 1986, lies at a distance of between 150 million and 250 million light-years (250 million is the most recent estimate), in the direction of the Hydra and Centaurus constellations. In its vicinity there is a preponderance of large old galaxies, many of which are colliding with their neighbours, or radiating large amounts of radio waves.

In 1987, astronomer R. Brent Tully of the University of Hawaii's Institute of Astronomy identified what he called the Pisces–Cetus Supercluster Complex, a structure one billion light-years long and 150 million light-years across in which, he claimed, the Local Supercluster was embedded.

Mass of ordinary matter

The mass of the observable universe is often quoted as 1050 tonnes or 1053 kg. In this context, mass refers to ordinary matter and includes the interstellar medium (ISM) and the intergalactic medium (IGM). However, it excludes dark matter and dark energy. This quoted value for the mass of ordinary matter in the universe can be estimated based on critical density. The calculations are for the observable universe only as the volume of the whole is unknown and may be infinite.

Estimates based on critical density

Critical density is the energy density for which the universe is flat. If there is no dark energy, it is also the density for which the expansion of the universe is poised between continued expansion and collapse. From the Friedmann equations, the value for critical density, is:

where G is the gravitational constant and H = H0 is the present value of the Hubble constant. The value for H0, due to the European Space Agency's Planck Telescope, is H0 = 67.15 kilometres per second per megaparsec. This gives a critical density of 0.85×10−26 kg/m3 (commonly quoted as about 5 hydrogen atoms per cubic metre). This density includes four significant types of energy/mass: ordinary matter (4.8%), neutrinos (0.1%), cold dark matter (26.8%), and dark energy (68.3%). Although neutrinos are Standard Model particles, they are listed separately because they are ultra-relativistic and hence behave like radiation rather than like matter. The density of ordinary matter, as measured by Planck, is 4.8% of the total critical density or 4.08×10−28 kg/m3. To convert this density to mass we must multiply by volume, a value based on the radius of the "observable universe". Since the universe has been expanding for 13.8 billion years, the comoving distance (radius) is now about 46.6 billion light-years. Thus, volume (4/3πr3) equals 3.58×1080 m3 and the mass of ordinary matter equals density (4.08×10−28 kg/m3) times volume (3.58×1080 m3) or 1.46×1053 kg.

Matter content—number of atoms

Assuming the mass of ordinary matter is about 1.45×1053 kg as discussed above, and assuming all atoms are hydrogen atoms (which are about 74% of all atoms in our galaxy by mass, see Abundance of the chemical elements), the estimated total number of atoms in the observable universe is obtained by dividing the mass of ordinary matter by the mass of a hydrogen atom (1.45×1053 kg divided by 1.67×10−27 kg). The result is approximately 1080 hydrogen atoms, also known as the Eddington number.

Most distant objects

The most distant astronomical object yet announced as of 2016 is a galaxy classified GN-z11. In 2009, a gamma ray burst, GRB 090423, was found to have a redshift of 8.2, which indicates that the collapsing star that caused it exploded when the universe was only 630 million years old. The burst happened approximately 13 billion years ago, so a distance of about 13 billion light-years was widely quoted in the media (or sometimes a more precise figure of 13.035 billion light-years), though this would be the "light travel distance" rather than the "proper distance" used in both Hubble's law and in defining the size of the observable universe (cosmologist Ned Wright argues against the common use of light travel distance in astronomical press releases on this page, and at the bottom of the page offers online calculators that can be used to calculate the current proper distance to a distant object in a flat universe based on either the redshift z or the light travel time). The proper distance for a redshift of 8.2 would be about 9.2 Gpc, or about 30 billion light-years. Another record-holder for most distant object is a galaxy observed through and located beyond Abell 2218, also with a light travel distance of approximately 13 billion light-years from Earth, with observations from the Hubble telescope indicating a redshift between 6.6 and 7.1, and observations from Keck telescopes indicating a redshift towards the upper end of this range, around 7. The galaxy's light now observable on Earth would have begun to emanate from its source about 750 million years after the Big Bang.

Horizons

The limit of observability in our universe is set by a set of cosmological horizons which limit—based on various physical constraints—the extent to which we can obtain information about various events in the universe. The most famous horizon is the particle horizon which sets a limit on the precise distance that can be seen due to the finite age of the universe. Additional horizons are associated with the possible future extent of observations (larger than the particle horizon owing to the expansion of space), an "optical horizon" at the surface of last scattering, and associated horizons with the surface of last scattering for neutrinos and gravitational waves.

A diagram of our location in the observable universe. (Alternative image.)
 
Logarithmic map of the observable universe. From left to right, spacecraft and celestial bodies are arranged according to their proximity to the Earth.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...