Search This Blog

Friday, April 2, 2021

Mesozoic

From Wikipedia, the free encyclopedia
 

The Mesozoic Era ( /ˌmɛz.əˈz.ɪk, ˌmɛz.-, ˌmɛs-, ˌm.zə-, -z-, ˌm.sə-, -s-/ mez-ə-ZOH-ik, mez-oh-, mess-, mee-zə-, -⁠zoh-, mee-sə-, -⁠soh-) meaning "middle life" is the middle of the three geological eras of the Phanerozoic Eon. It lasted from about 252 to 66 million years ago. It is also called the Age of Reptiles and the Age of Conifers.

The Mesozoic was preceded by the Paleozoic ("ancient life") and succeeded by the Cenozoic ("new life"). The era is subdivided into three periods: the Triassic, Jurassic, and Cretaceous, which are further subdivided into a number of epochs and stages.

The era began in the wake of the Permian–Triassic extinction event, the largest well-documented mass extinction in Earth's history, and ended with the Cretaceous–Paleogene extinction event, another mass extinction whose victims included the non-avian dinosaurs. The Mesozoic was a time of significant tectonic, climate, and evolutionary activity. The era witnessed the gradual rifting of the supercontinent Pangaea into separate landmasses that would move into their current positions during the next era. The climate of the Mesozoic was varied, alternating between warming and cooling periods. Overall, however, the Earth was hotter than it is today. Dinosaurs first appeared in the Mid-Triassic, and became the dominant terrestrial vertebrates in the Late Triassic or Early Jurassic, occupying this position for about 150 or 135 million years until their demise at the end of the Cretaceous. Birds first appeared in the Jurassic (however, true toothless birds appeared first in the Cretaceous), having evolved from a branch of theropod dinosaurs. The first mammals also appeared during the Mesozoic, but would remain small—less than 15 kg (33 lb)—until the Cenozoic. The flowering plants (angiosperms) appeared in the Early Cretaceous and would rapidly diversify throughout the period, replacing conifers and other gymnosperms as the dominant group of plants.

Naming

The phrase "Age of Reptiles" was introduced by the 19th century paleontologist Gideon Mantell who viewed it as dominated by diapsids such as Iguanodon, Megalosaurus, Plesiosaurus, and Pterodactylus.

Mesozoic means "middle life", deriving from the Greek prefix meso-/μεσο- for "between" and zōon/ζῷον meaning "animal" or "living being". The name "Mesozoic" was proposed in 1840 by the British geologist John Phillips (1800–1874).

The Mesozoic era was originally described as the "secondary" era, following the primary or Paleozoic, and preceding the Tertiary.

Geologic periods

Following the Paleozoic, the Mesozoic extended roughly 186 million years, from 251.902 to 66 million years ago when the Cenozoic Era began. This time frame is separated into three geologic periods. From oldest to youngest:

The lower boundary of the Mesozoic is set by the Permian–Triassic extinction event, during which it has been estimated that up to 90-96% of marine species became extinct although those approximations have been brought into question with some paleontologists estimating the actual numbers as low as 81%. It is also known as the "Great Dying" because it is considered the largest mass extinction in the Earth's history. The upper boundary of the Mesozoic is set at the Cretaceous–Paleogene extinction event (or K–Pg extinction event), which may have been caused by an asteroid impactor that created Chicxulub Crater on the Yucatán Peninsula. Towards the Late Cretaceous, large volcanic eruptions are also believed to have contributed to the Cretaceous–Paleogene extinction event. Approximately 50% of all genera became extinct, including all of the non-avian dinosaurs.

Triassic

The Triassic ranges roughly from 252 million to 201 million years ago, preceding the Jurassic Period. The period is bracketed between the Permian–Triassic extinction event and the Triassic–Jurassic extinction event, two of the "big five", and it is divided into three major epochs: Early, Middle, and Late Triassic.

The Early Triassic, about 252 to 247 million years ago, was dominated by deserts in the interior of the Pangaea supercontinent. The Earth had just witnessed a massive die-off in which 95% of all life became extinct, and the most common vertebrate life on land were Lystrosaurus, labyrinthodonts, and Euparkeria along with many other creatures that managed to survive the Permian extinction. Temnospondyls evolved during this time and would be the dominant predator for much of the Triassic.

The Middle Triassic, from 247 to 237 million years ago, featured the beginnings of the breakup of Pangaea and the opening of the Tethys Ocean. Ecosystems had recovered from the Permian extinction. Algae, sponge, corals, and crustaceans all had recovered, and new aquatic reptiles evolved, such as ichthyosaurs and nothosaurs. On land, pine forests flourished, as did groups of insects like mosquitoes and fruit flies. Reptiles began to get bigger and bigger, and the first crocodilians and dinosaurs evolved, which sparked competition with the large amphibians that had previously ruled the freshwater world, respectively mammal-like reptiles on land.

Following the bloom of the Middle Triassic, the Late Triassic, from 237 to 201 million years ago, featured frequent heat spells and moderate precipitation (10–20 inches per year). The recent warming led to a boom of dinosaurian evolution on land as those one began to separate from each other (Nyasasaurus from 243 to 210 million years ago, approximately 235–30 ma, some of them separated into Sauropodomorphs, Theropods and Herrerasaurids), as well as the first pterosaurs. During the Late Triassic, some advanced cynodonts gave rise to the first Mammaliaformes. All this climatic change, however, resulted in a large die-out known as the Triassic–Jurassic extinction event, in which many archosaurs (excluding pterosaurs, dinosaurs and crocodylomorphs), most synapsids, and almost all large amphibians became extinct, as well as 34% of marine life, in the Earth's fourth mass extinction event. The cause is debatable; flood basalt eruptions at the Central Atlantic magmatic province is cited as one possible cause.

Jurassic

The Jurassic ranges from 200 million years to 145 million years ago and features three major epochs: The Early Jurassic, the Middle Jurassic, and the Late Jurassic.

The Early Jurassic spans from 200 to 175 million years ago. The climate was tropical, much more humid than the Triassic. In the oceans, plesiosaurs, ichthyosaurs and ammonites were abundant. On land, dinosaurs and other archosaurs staked their claim as the dominant race, with theropods such as Dilophosaurus at the top of the food chain. The first true crocodiles evolved, pushing the large amphibians to near extinction. All-in-all, archosaurs rose to rule the world. Meanwhile, the first true mammals evolved, remaining relatively small but spreading widely; the Jurassic Castorocauda, for example, had adaptations for swimming, digging and catching fish. Fruitafossor, from the late Jurassic period about 150 million years ago, was about the size of a chipmunk, and its teeth, forelimbs and back suggest that it dug open the nests of social insects (probably termites, as ants had not yet appeared). The first multituberculates like Rugosodon evolved, while volaticotherians took to the skies.

The Middle Jurassic spans from 175 to 163 million years ago. During this epoch, dinosaurs flourished as huge herds of sauropods, such as Brachiosaurus and Diplodocus, filled the fern prairies, chased by many new predators such as Allosaurus. Conifer forests made up a large portion of the forests. In the oceans, plesiosaurs were quite common, and ichthyosaurs flourished. This epoch was the peak of the reptiles.

The Late Jurassic spans from 163 to 145 million years ago. During this epoch, the first avialans, like Archaeopteryx, evolved from small coelurosaurian dinosaurs. The increase in sea levels opened up the Atlantic seaway, which has grown continually larger until today. The divided landmasses gave opportunity for the diversification of new dinosaurs.

Cretaceous

The Cretaceous is the longest period of the Mesozoic, but has only two epochs: Early and Late Cretaceous.

The Early Cretaceous spans from 145 to 100 million years ago. The Early Cretaceous saw the expansion of seaways, and as a result, the decline and/or extinction of Laurasian sauropods. Some island-hopping dinosaurs, like Eustreptospondylus, evolved to cope with the coastal shallows and small islands of ancient Europe. Other dinosaurs rose up to fill the empty space that the Jurassic-Cretaceous extinction left behind, such as Carcharodontosaurus and Spinosaurus. Seasons came back into effect and the poles got seasonally colder, but some dinosaurs still inhabited the polar forests year round, such as Leaellynasaura and Muttaburrasaurus. The poles were too cold for crocodiles, and became the last stronghold for large amphibians like Koolasuchus. Pterosaurs got larger as genera like Tapejara and Ornithocheirus evolved. Mammals continued to expand their range: eutriconodonts produced fairly large, wolverine-like predators like Repenomamus and Gobiconodon, early therians began to expand into metatherians and eutherians, and cimolodont multituberculates went on to become common in the fossil record.

The Late Cretaceous spans from 100 to 66 million years ago. The Late Cretaceous featured a cooling trend that would continue in the Cenozoic era. Eventually, tropics were restricted to the equator and areas beyond the tropic lines experienced extreme seasonal changes in weather. Dinosaurs still thrived, as new taxa such as Tyrannosaurus, Ankylosaurus, Triceratops and hadrosaurs dominated the food web. In the oceans, mosasaurs ruled, filling the role of the ichthyosaurs, which, after declining, had disappeared in the Cenomanian-Turonian boundary event. Though pliosaurs had gone extinct in the same event, long-necked plesiosaurs such as Elasmosaurus continued to thrive. Flowering plants, possibly appearing as far back as the Triassic, became truly dominant for the first time. Pterosaurs in the Late Cretaceous declined for poorly understood reasons, though this might be due to tendencies of the fossil record, as their diversity seems to be much higher than previously thought. Birds became increasingly common and diversified into a variety of enantiornithe and ornithurine forms. Though mostly small, marine hesperornithes became relatively large and flightless, adapted to life in the open sea. Metatherians and primitive eutherian also became common and even produced large and specialised genera like Didelphodon and Schowalteria. Still, the dominant mammals were multituberculates, cimolodonts in the north and gondwanatheres in the south. At the end of the Cretaceous, the Deccan traps and other volcanic eruptions were poisoning the atmosphere. As this continued, it is thought that a large meteor smashed into earth 66 million years ago, creating the Chicxulub Crater in an event known as the K-Pg Extinction (formerly K-T), the fifth and most recent mass extinction event, in which 75% of life became extinct, including all non-avian dinosaurs. Everything over 10 kilograms became extinct. The age of the dinosaurs was over.

Paleogeography and tectonics

Breakup of Pangaea

Compared to the vigorous convergent plate mountain-building of the late Paleozoic, Mesozoic tectonic deformation was comparatively mild. The sole major Mesozoic orogeny occurred in what is now the Arctic, creating the Innuitian orogeny, the Brooks Range, the Verkhoyansk and Cherskiy Ranges in Siberia, and the Khingan Mountains in Manchuria.

This orogeny was related to the opening of the Arctic Ocean and subduction of the North China and Siberian cratons under the Pacific Ocean. In contrast, the era featured the dramatic rifting of the supercontinent Pangaea, which gradually split into a northern continent, Laurasia, and a southern continent, Gondwana. This created the passive continental margin that characterizes most of the Atlantic coastline (such as along the U.S. East Coast) today.

By the end of the era, the continents had rifted into nearly their present forms, though not their present positions. Laurasia became North America and Eurasia, while Gondwana split into South America, Africa, Australia, Antarctica and the Indian subcontinent, which collided with the Asian plate during the Cenozoic, giving rise to the Himalayas.

Climate

The Triassic was generally dry, a trend that began in the late Carboniferous, and highly seasonal, especially in the interior of Pangaea. Low sea levels may have also exacerbated temperature extremes. With its high specific heat capacity, water acts as a temperature-stabilizing heat reservoir, and land areas near large bodies of water—especially oceans—experience less variation in temperature. Because much of Pangaea's land was distant from its shores, temperatures fluctuated greatly, and the interior probably included expansive deserts. Abundant red beds and evaporites such as halite support these conclusions, but some evidence suggests the generally dry climate of was punctuated by episodes of increased rainfall. The most important humid episodes were the Carnian Pluvial Event and one in the Rhaetian, a few million years before the Triassic–Jurassic extinction event.

Sea levels began to rise during the Jurassic, probably caused by an increase in seafloor spreading. The formation of new crust beneath the surface displaced ocean waters by as much as 200 m (656 ft) above today's sea level, flooding coastal areas. Furthermore, Pangaea began to rift into smaller divisions, creating new shoreline around the Tethys Ocean. Temperatures continued to increase, then began to stabilize. Humidity also increased with the proximity of water, and deserts retreated.

The climate of the Cretaceous is less certain and more widely disputed. Probably, higher levels of carbon dioxide in the atmosphere are thought to have almost eliminated the north–south temperature gradient: temperatures were about the same across the planet, and about 10°C higher than today. The circulation of oxygen to the deep ocean may also have been disrupted, preventing the decomposition of large volumes of organic matter, which was eventually deposited as "black shale".

Different studies have come to different conclusions about the amount of oxygen in the atmosphere during different parts of the Mesozoic, with some concluding oxygen levels were lower than the current level (about 21%) throughout the Mesozoic, some concluding they were lower in the Triassic and part of the Jurassic but higher in the Cretaceous, and some concluding they were higher throughout most or all of the Triassic, Jurassic and Cretaceous.

Life

Flora

Conifers were the dominant terrestrial plants for most of the Mesozoic, with grass becoming widespread in the Late Cretaceous. Flowering plants appeared late in the era but did not become widespread until the Cenozoic.

The dominant land plant species of the time were gymnosperms, which are vascular, cone-bearing, non-flowering plants such as conifers that produce seeds without a coating. This is opposed to the earth's current flora, in which the dominant land plants in terms of number of species are angiosperms. One particular plant genus, Ginkgo, is thought to have evolved at this time and is represented today by a single species, Ginkgo biloba. As well, the extant genus Sequoia is believed to have evolved in the Mesozoic.

Flowering plants radiated during the early Cretaceous, first in the tropics, but the even temperature gradient allowed them to spread toward the poles throughout the period. By the end of the Cretaceous, angiosperms dominated tree floras in many areas, although some evidence suggests that biomass was still dominated by cycads and ferns until after the Cretaceous–Paleogene extinction. Some plant species had distributions that were markedly different from succeeding periods; for example, the Schizeales, a fern order, were skewed to the Northern Hemisphere in the Mesozoic, but are now better represented in the Southern Hemisphere.

Fauna

Dinosaurs were the dominant terrestrial vertebrates throughout much of the Mesozoic.

The extinction of nearly all animal species at the end of the Permian period allowed for the radiation of many new lifeforms. In particular, the extinction of the large herbivorous pareiasaurs and carnivorous gorgonopsians left those ecological niches empty. Some were filled by the surviving cynodonts and dicynodonts, the latter of which subsequently became extinct.

Recent research indicates that it took much longer for the reestablishment of complex ecosystems with high biodiversity, complex food webs, and specialized animals in a variety of niches, beginning in the mid-Triassic 4M to 6M years after the extinction, and not fully proliferated until 30M years after the extinction. Animal life was then dominated by various archosaurs: dinosaurs, pterosaurs, and aquatic reptiles such as ichthyosaurs, plesiosaurs, and mosasaurs.

The climatic changes of the late Jurassic and Cretaceous favored further adaptive radiation. The Jurassic was the height of archosaur diversity, and the first birds and eutherian mammals also appeared. Some have argued that insects diversified in symbiosis with angiosperms, because insect anatomy, especially the mouth parts, seems particularly well-suited for flowering plants. However, all major insect mouth parts preceded angiosperms, and insect diversification actually slowed when they arrived, so their anatomy originally must have been suited for some other purpose.

Eta Corvi

From Wikipedia, the free encyclopedia
 
η Corvi
Corvus constellation map.svg
Red circle.svg
Location of η Corvi (circled)
Observation data
Epoch J2000.0      Equinox J2000.0 (ICRS)
Constellation Corvus
Right ascension 12h 32m 04.22653s
Declination −16° 11′ 45.6165″
Apparent magnitude (V) 4.29–4.32
Characteristics
Spectral type F2 V
U−B color index +0.00
B−V color index +0.38
R−I color index +0.18
Variable type Suspected
Astrometry

Radial velocity (Rv)−2.80 ± 1.5 km/s
Proper motion (μ) RA: −425.17
Dec.: −57.23
Parallax (π)54.70 ± 0.17
Distance59.6 ± 0.2 ly
(18.28 ± 0.06 pc)
Absolute magnitude (MV)2.99

Details

Mass1.43 ± 0.05 M
Radius1.2 R
Temperature6700 K
Metallicity[Fe/H] = −0.03
Rotational velocity (v sin i)68 ± 2 km/s
Age1.5+0.2
−0.4
Gyr

Other designations
η Crv, Eta Corvi, Eta Crv, 8 Corvi, 8 Crv, BD−15°3489, GC 17087, GJ 471.2, GJ 9411, HD 109085, HIP 61174, HR 4775, LTT 4755, NLTT 31021, PPM 225971, SAO 157345
Database references
SIMBADdata
ARICNSdata

Eta Corvi (Eta Crv, η Corvi, η Crv) is an F-type main-sequence star, the sixth-brightest star in the constellation of Corvus. Two debris disks have been detected orbiting this star, one at ~150 AU, and a warmer one within a few astronomical units (AU).

Properties

Artist's conception of a storm of comets in the Eta Corvi system, with a possible planet

Eta Corvi is only about 30% of the Sun's age. The concentration of iron and other heavy elements in its atmosphere is only about 93% that of the Sun's. The projected rotational velocity at the star's equator (v sin i) is 68 km/s - more than 30 times faster than that for the Sun. A yellow-white main sequence star of spectral type F2V, it has an estimated surface temperature of 6950 K. It is 1.52 times as massive as the Sun and is 4.87 times as luminous. It is 59 light-years distant from the Solar System.

The IRAS satellite detected an excess of infrared radiation from this star, beyond what would normally be expected for a stellar object of this class. Observations in the submillimetre band confirmed the presence of excess dust in orbit around the star having about 60% of the mass of the Moon and a temperature of 80 K. The data indicated a debris disk with an estimated maximum radius of 180 AU from the star, or 180 times the separation of Earth and the Sun. (Compare with the Kuiper belt, which extends out to 55 AU from the Sun.)

Recent submillimeter observations confirm the presence of an outer flat, circumstellar disk of debris with an outer radius of 150 AU. It is oriented at an inclination to the line of sight from the Earth. Most of the inner 100 AU of the disk is relatively free of material, which suggests it was cleared away by a planetary system. In addition, infrared radiation which appears to be from an inner, hotter, debris disk within 3.5 AU of the star has been observed.

Since the Poynting–Robertson effect would cause the dust in the outer disk to spiral in to the star within 20 million years, much younger than the age of the system, the observed presence of dust in the outer disk means that it must be constantly replenished. It is thought that this happens by the collisions of planetesimals orbiting at a distance of about 150 AU, which are repeatedly broken down into smaller and smaller pieces, eventually becoming dust. The origin of the inner disk is not clear. It may have originated from planetesimals recently having moved from the outer regions of the system into the inner system, in a process similar to the Late Heavy Bombardment in the history of the Solar System, and subsequently being ground to dust by collisions.

The Eta Corvi planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(years)
Eccentricity Inclination Radius
Dust disk 6.7 ± 2.7 AU
Dust disk 165.8 ± 3.7 AU 46.8° ± 1.3°

Possible Late Heavy Bombardment

In 2010–2011, Carey Lisse of the Johns Hopkins University Applied Physics Laboratory and his group analyzed the Spitzer IRS 5–35 μm spectrum of the warm, ~360K circumstellar dust and found that it showed clear evidence for warm, water- and carbon-rich dust at ~3 AU from the central star, in the system's habitable zone, uncoupled and in a separate reservoir from the system's extended sub-mm dust ring at 150 ± 20 AU. Spectral features similar in kind and amplitude to those found for ultra-primitive (i.e., formed very early in the lifetime of the Eta Corvi system) ~10 Myr old cometary material were found (water ice and gas, olivines and pyroxenes, amorphous carbon and metal sulfides), in addition to emissions due to impact produced silica and high temperature/pressure carbonaceous phases. The warm dust is very primitive, and definitely not from an asteroidal parent body. A large amount, at least 3 x 1019 kg, of 0.1 – 1000 μm warm dust is present, in a roughly collisional equilibrium distribution with dn/da ~ a−3.5. This is the equivalent of a 160-kilometer-radius centaur or medium-sized Kuiper belt object of 1.0 g cm−3 density or a "comet" of 260 km radius and 0.40 g cm−3 density. The warm dust mass is much larger than that of a solar system comet (1012 – 1015 kg), but is very similar to the mass of a Kuiper belt object (1019 – 1021 kg). The amount of water tied up in the observed material, ~1019 kg, is > 0.1% of the water in the Earth's oceans, and the amount of carbon is also considerable, ~1018 kg.

The team found that the best model for what is going on is that some process (e.g., planetary migration) is dynamically exciting the Eta Corvi-equivalent of the Solar System's Kuiper belt (KB), causing frequent collisions amongst Kuiper belt objects (KBOs) and producing the observed copious Kuiper belt dust. As part of this process, one or more of the excited KBOs was scattered onto an orbit that sent it into the inner system, where it collided with a planetary-class body at ~3 AU, releasing a large amount of thermally unprocessed, primitive ice and carbon-rich dust. Their analysis suggests that the system is likely a good analogue for the Late Heavy Bombardment (LHB) processes that occurred in the early Solar System at 0.6–0.8 Gyr after the formation of the calcium–aluminium-rich inclusions (minerals such as olivines that are among the first solids condensed from the cooling protoplanetary disk) and is thus worthy of further detailed study in order to understand the nature of the LHB. It is also a good system to perform a search for a rocky planetary body at ~3 AU (the impacted planet), and for a giant planet at ~115 AU (the Kuiper belt dynamical stirrer at ~ the 3:2 resonance of the Kuiper belt dust at 150 AU).

Name

In Chinese astronomy, Eta Corvi is called 左轄, Pinyin: Zuǒxiá, meaning Left Linchpin, because this star is marking itself and stands alone in the Left Linchpin asterism, Chariot mansion. 左轄 (Zuǒxiá), westernized into Tso Hea, but the name Tso Hea was already designated for β Corvi (Kraz) by R.H. Allen.

Late Heavy Bombardment

From Wikipedia, the free encyclopedia
 
Artist's impression of the Moon during the Late Heavy Bombardment (above) and today (below)

The Late Heavy Bombardment (LHB), or lunar cataclysm, is a hypothesized event thought to have occurred approximately 4.1 to 3.8 billion years (Ga) ago, at a time corresponding to the Neohadean and Eoarchean eras on Earth. During this interval, a disproportionately large number of asteroids are theorized to have collided with the early terrestrial planets in the inner Solar System, including Mercury, Venus, Earth and Mars. Since 2018, the existence of the Late Heavy Bombardment has been questioned.

Evidence for the LHB derives from lunar samples brought back by the Apollo astronauts. Isotopic dating of Moon rocks implies that most impact melts occurred in a rather narrow interval of time. Several hypotheses attempt to explain the apparent spike in the flux of impactors (i.e. asteroids and comets) in the inner Solar System, but no consensus yet exists. The Nice model, popular among planetary scientists, postulates that the giant planets underwent orbital migration and, in doing so, scattered objects in the asteroid and/or Kuiper belts into eccentric orbits, and into the path of the terrestrial planets. Other researchers argue that the lunar sample data do not require a cataclysmic cratering event near 3.9 Ga, and that the apparent clustering of impact-melt ages near this time is an artifact of sampling materials retrieved from a single large impact basin. They also note that the rate of impact cratering could differ significantly between the outer and inner zones of the Solar System.

Evidence for a cataclysm

The main piece of evidence for a lunar cataclysm comes from the radiometric ages of impact melt rocks that were collected during the Apollo missions. The majority of these impact melts are believed to have formed during the collision of asteroids or comets tens of kilometres across, forming impact craters hundreds of kilometres in diameter. The Apollo 15, 16, and 17 landing sites were chosen as a result of their proximity to the Imbrium, Nectaris, and Serenitatis basins, respectively.

The apparent clustering of ages of these impact melts, between about 3.8 and 4.1 Ga, led to postulation that the ages record an intense bombardment of the Moon. They called it the "lunar cataclysm" and proposed that it represented a dramatic increase in the rate of bombardment of the Moon around 3.9 Ga. If these impact melts were derived from these three basins, then not only did these three prominent impact basins form within a short interval of time, but so did many others based on stratigraphic grounds. At the time, the conclusion was considered controversial.

As more data has become available, particularly from lunar meteorites, this theory, while still controversial, has gained in popularity. The lunar meteorites are believed to randomly sample the lunar surface, and at least some of these should have originated from regions far from the Apollo landing sites. Many of the feldspathic lunar meteorites probably originated from the lunar far side, and impact melts within these have recently been dated. Consistent with the cataclysm hypothesis, none of their ages was found to be older than about 3.9 Ga. Nevertheless, the ages do not "cluster" at this date, but span between 2.5 and 3.9 Ga.

Dating of howardite, eucrite and diogenite (HED) meteorites and H chondrite meteorites originating from the asteroid belt reveal numerous ages from 3.4–4.1 Ga and an earlier peak at 4.5 Ga. The 3.4–4.1 Ga ages has been interpreted as representing an increase in impact velocities as computer simulations using hydrocode reveal that the volume of impact melt increases 100–1,000 times as the impact velocity increases from the current asteroid belt average of 5 km/s to 10 km/s. Impact velocities above 10 km/s require very high inclinations or the large eccentricities of asteroids on planet crossing orbits. Such objects are rare in the current asteroid belt but the population would be significantly increased by the sweeping of resonances due to giant planet migration.

Studies of the highland crater size distributions suggest that the same family of projectiles struck Mercury and the Moon during the Late Heavy Bombardment. If the history of decay of late heavy bombardment on Mercury also followed the history of late heavy bombardment on the Moon, the youngest large basin discovered, Caloris, is comparable in age to the youngest large lunar basins, Orientale and Imbrium, and all of the plains units are older than 3 billion years.

Criticisms of the cataclysm hypothesis

While the cataclysm hypothesis has recently gained in popularity, particularly among dynamicists who have identified possible causes for such a phenomenon, the cataclysm hypothesis is still controversial and based on debatable assumptions. Two criticisms are that (1) the "cluster" of impact ages could be an artifact of sampling a single basin's ejecta, and (2) that the lack of impact melt rocks older than about 4.1 Ga is related to all such samples having been pulverized, or their ages being reset.

The first criticism concerns the origin of the impact melt rocks that were sampled at the Apollo landing sites. While these impact melts have been commonly attributed to having been derived from the closest basin, it has been argued that a large portion of these might instead be derived from the Imbrium basin. The Imbrium impact basin is the youngest and largest of the multi-ring basins found on the central nearside of the Moon, and quantitative modeling shows that significant amounts of ejecta from this event should be present at all of the Apollo landing sites. According to this alternative hypothesis, the cluster of impact melt ages near 3.9 Ga simply reflects material being collected from a single impact event, Imbrium, and not several. Additional criticism also argues that the age spike at 3.9 Ga identified in 40Ar/39Ar dating could also be produced by an episodic early crust formation followed by partial 40Ar losses as the impact rate declined.

A second criticism concerns the significance of the lack of impact melt rocks older than about 4.1 Ga. One hypothesis for this observation that does not involve a cataclysm is that old melt rocks did exist, but that their radiometric ages have all been reset by the continuous effects of impact cratering over the past 4 billion years. Furthermore, it is possible that these putative samples could all have been pulverized to such small sizes that it is impossible to obtain age determinations using standard radiometric methods. Latest reinterpretation of crater statistics suggests that the flux on the Moon and on Mars may have been lower in general. Thus, the recorded crater population can be explained without any peak in the earliest bombardment of the inner Solar System.

Geological consequences on Earth

If a cataclysmic cratering event truly occurred on the Moon, the Earth would have been affected as well. Extrapolating lunar cratering rates to Earth at this time suggests that the following number of craters would have formed:

  • 22,000 or more impact craters with diameters >20 km (12 mi),
  • about 40 impact basins with diameters about 1,000 km (620 mi),
  • several impact basins with diameters about 5,000 km (3,100 mi),

Before the formulation of the LHB theory, geologists generally assumed that the Earth remained molten until about 3.8 Ga. This date could be found in many of the oldest-known rocks from around the world, and appeared to represent a strong "cutoff point" beyond which older rocks could not be found. These dates remained fairly constant even across various dating methods, including the system considered the most accurate and least affected by environment, uranium–lead dating of zircons. As no older rocks could be found, it was generally assumed that the Earth had remained molten until this date, which defined the boundary between the earlier Hadean and later Archean eons. Nonetheless, in 1999, the oldest known rock on Earth was dated to be 4.031 ± 0.003 billion years old, and is part of the Acasta Gneiss of the Slave Craton in northwestern Canada.

Older rocks could be found, however, in the form of asteroid fragments that fall to Earth as meteorites. Like the rocks on Earth, asteroids also show a strong cutoff point, at about 4.6 Ga, which is assumed to be the time when the first solids formed in the protoplanetary disk around the then-young Sun. The Hadean, then, was the period of time between the formation of these early rocks in space, and the eventual solidification of the Earth's crust, some 700 million years later. This time would include the accretion of the planets from the disk and the slow cooling of the Earth into a solid body as the gravitational potential energy of accretion was released.

Later calculations showed that the rate of collapse and cooling depends on the size of the rocky body. Scaling this rate to an object of Earth mass suggested very rapid cooling, requiring only 100 million years. The difference between measurement and theory presented a conundrum at the time.

The LHB offers a potential explanation for this anomaly. Under this model, the rocks dating to 3.8 Ga solidified only after much of the crust was destroyed by the LHB. Collectively, the Acasta Gneiss in the North American cratonic shield and the gneisses within the Jack Hills portion of the Narryer Gneiss Terrane in Western Australia are the oldest continental fragments on Earth, yet they appear to post-date the LHB. The oldest mineral yet dated on Earth, a 4.404 Ga zircon from Jack Hills, predates this event, but it is likely a fragment of crust left over from before the LHB, contained within a much younger (~3.8 Ga old) rock.

The Jack Hills zircon led to something of a revolution in our understanding of the Hadean eon. Older references generally show that Hadean Earth had a molten surface with prominent volcanos. The name "Hadean" itself refers to the "hellish" conditions assumed on Earth for the time, from the Greek Hades. Zircon dating suggested, albeit controversially, that the Hadean surface was solid, temperate, and covered by acidic oceans. This picture derives from the presence of particular isotopic ratios that suggest the action of water-based chemistry at some time before the formation of the oldest rocks (see Cool early Earth).

Of particular interest, Manfred Schidlowski argued in 1979 that the carbon isotopic ratios of some sedimentary rocks found in Greenland were a relic of organic matter. There was much debate over the precise dating of the rocks, with Schidlowski suggesting they were about 3.8 Ga old, and others suggesting a more "modest" 3.6 Ga. In either case it was a very short time for abiogenesis to have taken place, and if Schidlowski was correct, arguably too short a time. The Late Heavy Bombardment and the "re-melting" of the crust that it suggests provides a timeline under which this would be possible; life either formed immediately after the Late Heavy Bombardment, or more likely survived it, having arisen earlier during the Hadean. Recent studies suggest that the rocks Schidlowski found are indeed from the older end of the possible age range at about 3.85 Ga, suggesting the latter possibility is the most likely answer. More recent studies have found no evidence for the isotopically light carbon ratios that were the basis for the original claims.

More recently, a similar study of Jack Hills rocks shows traces of the same sort of potential organic indicators. Thorsten Geisler of the Institute for Mineralogy at the University of Münster studied traces of carbon trapped in small pieces of diamond and graphite within zircons dating to 4.25 Ga. The ratio of carbon-12 to carbon-13 was unusually high, normally a sign of "processing" by life.

Three-dimensional computer models developed in May 2009 by a team at the University of Colorado at Boulder postulate that much of Earth's crust, and the microbes living in it, could have survived the bombardment. Their models suggest that although the surface of the Earth would have been sterilized, hydrothermal vents below the Earth's surface could have incubated life by providing a sanctuary for heat-loving microbes.

In April 2014, scientists reported finding evidence of the largest terrestrial meteor impact event to date near the Barberton Greenstone Belt. They estimated the impact occurred about 3.26 billion years ago and that the impactor was approximately 37 to 58 kilometres (23 to 36 miles) wide. The crater from this event, if it still exists, has not yet been found.

Possible causes

Giant-planet migration

Simulation showing outer planets and planetesimal belt: (a) Early configuration, before Jupiter (green) and Saturn (orange) reach 2:1 resonance; (b) Scattering of planetesimals into the inner Solar System after the orbital shift of Neptune (dark blue) and Uranus (light blue); (c) After ejection of planetesimals by planets.

In the Nice model the Late Heavy Bombardment is the result of a dynamical instability in the outer Solar System. The original Nice model simulations by Gomes et al. began with the Solar System's giant planets in a tight orbital configuration surrounded by a rich trans-Neptunian belt. Objects from this belt stray into planet crossing orbits causing the orbits of the planets to migrate over several hundred million years. Jupiter and Saturn's orbits drift apart slowly until they cross a 2:1 orbital resonance causing the eccentricities of their orbits to increase. The orbits of the planets become unstable and Uranus and Neptune are scattered onto wider orbits that disrupt the outer belt, causing a bombardment of comets as they enter planet-crossing orbits. Interactions between the objects and the planets also drive a faster migration of Jupiter and Saturn's orbits. This migration causes resonances to sweep through the asteroid belt, increasing the eccentricities of many asteroids until they enter the inner Solar System and impact the terrestrial planets.

The Nice model has undergone some modification since its initial publication. The giant planets now begin in a multi-resonant configuration due an early gas-driven migration through the protoplanetary disk. Interactions with the trans-Neptunian belt allow their escape from the resonances after several hundred million years. The encounters between planets that follow include one between an ice giant and Saturn that propels the ice giant onto a Jupiter-crossing orbit followed by an encounter with Jupiter that drives the ice giant outward. This jumping-Jupiter scenario quickly increases the separation of Jupiter and Saturn, limiting the effects of resonance sweeping on the asteroids and the terrestrial planets. While this is required to preserve the low eccentricities of the terrestrial planets and avoid leaving the asteroid belt with too many high eccentricity asteroids, it also reduces the fraction of asteroids removed from the main asteroid belt, leaving a now nearly depleted inner band of asteroids as the primary source of the impactors of the LHB. The ice giant is often ejected following its encounter with Jupiter leading some to propose that the Solar System began with five giant planets. Recent works, however, have found that impacts from this inner asteroid belt would be insufficient to explain the formation of ancient impact spherule beds and the lunar basins, and that the asteroid belt was probably not the source of the Late Heavy Bombardment.

Late Uranus/Neptune formation

According to one planetesimal simulation of the establishment of the planetary system, the outermost planets Uranus and Neptune formed very slowly, over a period of several billion years. Harold Levison and his team have also suggested that the relatively low density of material in the outer Solar System during planet formation would have greatly slowed their accretion. This "late appearance" of these planets has therefore been suggested as a different reason for the LHB. However, recent calculations of gas-flows combined with planetesimal runaway growth in the outer Solar System imply that Jovian planets formed extremely rapidly, on the order of 10 My, which does not support this explanation for the LHB.

Planet V hypothesis

The Planet V hypothesis posits that a fifth terrestrial planet created the Late Heavy Bombardment when its meta-stable orbit entered the inner asteroid belt. The hypothetical fifth terrestrial planet, Planet V, had a mass less than half of Mars and originally orbited between Mars and the asteroid belt. Planet V's orbit became unstable due to perturbations from the other inner planets causing it to intersect the inner asteroid belt. After close encounters with Planet V, many asteroids entered Earth-crossing orbits producing the Late Heavy Bombardment. Planet V was ultimately lost, likely plunging into the Sun. In numerical simulations, an uneven distribution of asteroids, with the asteroids heavily concentrated toward the inner asteroid belt, has been shown to be necessary to produce the LHB via this mechanism. An alternate version of this hypothesis in which the lunar impactors are debris resulting from Planet V impacting Mars, forming the Borealis Basin, has been proposed to explain a low number of giant lunar basins relative to craters and a lack of evidence of cometary impactors.

Disruption of Mars-crossing asteroid

A hypothesis proposed by Matija Ćuk posits that the last few basin-forming impacts were the result of the collisional disruption of a large Mars-crossing asteroid. This Vesta-sized asteroid was a remnant of a population which initially was much larger than the current main asteroid belt. Most of the pre-Imbrium impacts would have been due to these Mars-crossing objects, with the early bombardment extending until 4.1 billion years ago. A lull in basin-forming impacts then followed during which the lunar magnetic field decayed. Then roughly 3.9 billion years ago a catastrophic impact disrupted the Vesta-sized asteroid radically increasing the population of Mars-crossing objects. Many of these objects then evolved onto Earth-crossing orbits producing a spike in the lunar impact rate during which the last few lunar impact basins are formed. Ćuk points to the weak or absent residual magnetism of the last few basins and a change in the size-frequency distribution of craters which formed during this late bombardment as evidence supporting this hypothesis. The timing and the cause of the change in the size-frequency distribution of craters is controversial.

Other potential sources

A number of other possible sources of the Late Heavy Bombardment have been investigated. Among these are additional Earth satellites orbiting independently or as lunar trojans, planetesimals left over from the formations of the terrestrial planets, Earth or Venus co-orbitals, and the breakup of a large main belt asteroid. Additional Earth satellites on independent orbits were shown to be quickly captured into resonances during the Moon's early tidally-driven orbital expansion and were lost or destroyed within in a few million years Lunar trojans were found to be destabilized within 100 million years by a solar resonance when the Moon reached 27 Earth radii. Planetesimals left over from the formation of the terrestrial planets were shown to be depleted too rapidly due to collisions and ejections to form the last lunar basins. The long-term stability of primordial Earth or Venus co-orbitals (trojans or objects with horseshoe orbits) in conjunction with the lack of current observations indicate that they were unlikely to have been common enough to contribute to the LHB. Producing the LHB from the collisional disruption of a main belt asteroid was found to require at minimum a 1,000–1,500 km parent body with the most favorable initial conditions. Debris produced by collisions among inner planets, now lost, has also been proposed as a source of the LHB.

Exosystem with possible Late Heavy Bombardment

Evidence has been found for Late Heavy Bombardment-like conditions around the star Eta Corvi.

 

Equality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Equality_...